

Emergence of near-threshold structures in heavy hadron spectrum

Feng-Kun Guo

Institute of Theoretical Physics, CAS

PCFT/ICTS @USTC, 2021.07.08

General model-independent analysis on threshold structures:

X.-K. Dong, FKG, B.-S. Zou, Phys. Rev. Lett. 126 (2021) 152001 [arXiv:2011.14517] Systematic spectrum of hadronic molecules:

X.-K. Dong, FKG, B.-S. Zou, 物理学进展 41 (2021) 65 [arXiv:2101.01021]

Charmonium

• Meson consisting of a charm quark and an anticharm quark

 \overline{C}

C

- \succ The first charmonium: J/ψ
- Probing both perturbative and nonperturbative QCD

Cornell potential model: Eichten et al., PRD17(1978)3090

From talk by Hanhart at APS2018

Charmonium(-like) structures

Charmonium-like structures

• $Z_c(3900)^{\pm}$

BESIII, PRL110(2013)252001; Belle, PRL110(2013)252002

P_c and double- J/ψ structures

data from LHCb, PRL122 (2019) 222001;

fit from

M.-L. Du, Baru, FKG, Hanhart, Meißner, Oller, Q. Wang, PRL124 (2020) 072001

data from LHCb, Sci.Bull.65 (2020) 1983; fit from X.-K. Dong, Baru, FKG, Hanhart, Nedefiev, PRL126 (2021) 132001

Many new structures are near thresholds of a pair of hadron hadrons.

Why are there so many (near-)threshold structures in heavy-hadron spectrum? Is there any rule?

Threshold structures

X.-K. Dong, FKG, B.-S. Zou, *Explaining the Many Threshold Structures in the Heavy Quark Hadron Spectrum*, Phys.Rev.Lett.126 (2021) 152001 [arXiv:2011.14517]

Threshold cusp

• Unitarity of the *S*-matrix: $SS^{\dagger} = S^{\dagger}S = 1$, $S_{fi} = \delta_{fi} - i(2\pi)^4 \delta^4 (p_f - p_i)T_{fi}$ *T*-matrix: $T_{fi} - T_{fi}^{\dagger} = -i(2\pi)^4 \sum_n \delta(p_n - p_i)T_{fn}^{\dagger}T_{ni}$

all physically accesible states

assuming all intermediate states are two-body, partial-wave unitarity relation:

 $\operatorname{Im} T_{L,fi}(s) = -\sum_n T^*_{L,fn} \,\rho_n(s) \, T_{L,ni}$

2-body phase space factor: $\rho_n(s) = q_{\text{cm},n}(s)/(2\sqrt{s})\theta(\sqrt{s}-m_{n1}-m_{n2}),$

$$q_{\mathrm{cm},n}(s) = \sqrt{[s - (m_{n1} + m_{n2})^2][s - (m_{n1} - m_{n2})^2]} / (2\sqrt{s})$$

• There is always a cusp at an S-wave threshold

Effective range expansion

$$f_0^{-1}(k) = \frac{1}{a_0} + \frac{1}{2}r_0k^2 - ik + \mathcal{O}\left(\frac{k^4}{\beta^4}\right)$$

 a_0 : S-wave scattering length; negative for repulsion or attraction w/ a bound state positive for attraction w/o bound state

Very close to threshold, then scattering length approximation:

$$^{1}(E) = \frac{1}{a_0} - i\sqrt{2\mu E}$$

$$|f_0(E)|^2 = \begin{cases} \frac{1}{1/a_0^2 + 2\mu E} & \text{for } E \ge 0\\ \frac{1}{\left(1/a_0 + \sqrt{-2\mu E}\right)^2} & \text{for } E < 0\\ \frac{2.0}{1} \end{cases}$$

• Cusp at threshold (E=0)

• Maximal at threshold for positive a_0 (attraction)

- Half-maximum width: $\frac{2}{\mu a_0^2}$; virtual state pole at $E_{\text{virtual}} = -1/(2\mu a_0^2)$
- Strong interaction, a₀ becomes negative, pole below threshold, peak below threshold

 f_0^-

Bound state, virtual state and resonance

- Bound state: pole below threshold on real axis of the first Riemann sheet of complex energy plane
- Virtual state: pole below threshold on real axis of the second Riemann sheet
- Resonance: pole in the complex plane on the second Riemann sheet

Plot from Matuschek, Baru, FKG, Hanhart, 2007.05329

For $\frac{1}{1/a_0 - i k}$, only bound or virtual state poles are possible

Coupled channels

- Full threshold structure needs to be measured in a lower channel is coupled channels
- Consider a two-channel system, construct a nonrelativistic effective field theory (NREFT)
 - \succ Energy region around the higher threshold, Σ_2
 - > Expansion in powers of $E = \sqrt{s} \Sigma_2$
 - Momentum in the lower channel can also be expanded

• Very close to the higher threshold, LO:

$$T(E) = 8\pi\Sigma_2 \begin{pmatrix} -\frac{1}{a_{11}} + ik_1 & \frac{1}{a_{12}} \\ \frac{1}{a_{12}} & -\frac{1}{a_{22}} - \sqrt{-2\mu_2 E - i\epsilon} \\ = -\frac{8\pi\Sigma_2}{\det} \begin{pmatrix} \frac{1}{a_{22}} + \sqrt{-2\mu_2 E - i\epsilon} & \frac{1}{a_{11}} \\ \frac{1}{a_{12}} & \frac{1}{a_{11}} - ik_1 \end{pmatrix},$$
$$\det = \left(\frac{1}{a_{11}} - ik_1\right) \left(\frac{1}{a_{22}} + \sqrt{-2\mu_2 E - i\epsilon}\right) - \frac{1}{a_{12}^2}$$

Effective scattering length with open-channel effects becomes complex, $\text{Im} \frac{1}{a_{22,\text{eff}}} \leq 0$

$$T_{22}(E) = -\frac{8\pi}{\Sigma_2} \left[\frac{1}{a_{22,\text{eff}}} - i\sqrt{2\mu_2 E} + \mathcal{O}(E) \right]^{-1}$$
$$\frac{1}{a_{22,\text{eff}}} = \frac{1}{a_{22}} - \frac{a_{11}}{a_{12}^2(1 + a_{11}^2 k_1^2)} - i\frac{a_{11}^2 k_1}{a_{12}^2(1 + a_{11}^2 k_1^2)}.$$

Consider a production process, must go through final-state interaction (unitarity)

 $P_1^{\Lambda}[1+G_1^{\Lambda}T_{11}(E)]+P_2^{\Lambda}G_2^{\Lambda}(E)T_{21}(E)$ $+ \Phi_{P^{\Lambda}} G_{1}^{\Lambda} + \Phi_{P^{\Lambda}} G_{2}^{\Lambda} + \Phi_{P^{\Lambda}} G_{2}^{\Lambda} + \Phi_{P^{\Lambda}} G_{2}^{\Lambda} + P_{1}^{\Lambda} G_{2}^{\Lambda} + P_{2}^{\Lambda} G_{2}^{\Lambda} + P_{2}^{\Lambda} G_{2}^{\Lambda} G_{2}^{\Lambda} + P_{2}^{\Lambda} + P_{2}^{\Lambda} G_{2}^{\Lambda} + P_{2}^{\Lambda} + P$ $\equiv P_1 T_{11}(E) + P_2 T_{21}(E)$

- All nontrivial energy dependence are contained in $T_{11}(E)$ and $T_{21}(E)$
- Case-1: dominated by $T_{21}(E)$,

• Case-2: dominated by $T_{11}(E)$

- Cusp at threshold (E=0)
- One pole and one zero
- For strongly interacting channel-2 (large a_{22}), there must be a dip around threshold
- Abrupt drop if there is a nearby pole

More complicated line shape if both channels are important for the production

• Case-3: final states in channel-2 P_{2}^{Λ} + P_{1}^{Λ} + P_{1}^{Λ} + P_{2}^{Λ} + P_{2}

- Suppression due to phase space
- Peak just above threshold would require the pole to be nearby

Phenomenology

Phenomenology

• $p\bar{p}$ threshold in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

BESIII, PRL117(2016)042002

Drastic drop:

- \succ there should be a pole near the $p\bar{p}$ threshold
- $ightarrow p ar{p}$ is not the driving channel

• $D^{(*)}\overline{D}^{(*)}$ should be the driving channels for $X(3872), Z_c(3900), Z_c(4020)$

Phenomenology

- Production of states with hidden-charm and hidden-bottom: open-flavor much easier than $Q\bar{Q}$ + light hadrons, generally peaks around threshold of a pair of open-flavor hadrons for attractive interaction
- Complications due to more channels
- Threshold structures should be more pronounced in bottom than in charm
 - Either threshold cusp or below-threshold peak
 - > peak width $\propto 1/m_Q$ for fixed a
 - > Perturbative estimate of scattering length: $a \propto m_Q$ [potential independent of m_Q]; nonperturbative for strong attraction, near-threshold pole

Model estimate of near-th. interactions

Constant contact terms saturated by light-vector-meson exchange, similar to VMD in the

resonance saturation of the low-energy constants in CHPT

	$L_i^r(M_\rho)$	V	А	S	S_1	η_1	Tota
L_1^r	0.7 ± 0.3	0.6	0	-0.2	0.2 ^{b)}	0	0.6
$L_2^{\tilde{r}}$	1.3 ± 0.7	1.2	0	0	0	0	1.2
L_3	-4.4 ± 2.5	- 3.6	0	0.6	0	0	- 3.0
$L_4^{\tilde{r}}$	-0.3 ± 0.5	0	0	-0.5	0.5 ^{b)}	0	0.0
L_5^r	1.4 ± 0.5	0	0	1.4 ^{a)}	0	0	1.4
L_6^r	-0.2 ± 0.3	0	0	-0.3	0.3 ^b)	0	0.0
L_7	-0.4 ± 0.15	0	0	0	0	-0.3	-0.3
$L_8^{\dot{r}}$	0.9 ± 0.3	0	0	0.9^{a}	0	0	0.9
L	6.9 ± 0.7	6.9 ^{a)}	0	0	0	0	6.9
Li	-5.2 ± 0.3	-10.0	4.0	0	0	0	- 6.0

Ecker, Gasser, Pich, de Rafael, NPB321(1989)311

 $ho,\omega,\phi,\psi^{\dagger}$

• List of attractive pairs

$H\bar{H}$	$D^{(*)}\bar{D}^{(*)}[0,1^{\dagger}];$	$D_s^{(*)}\bar{D}^{(*)}\ [\frac{1}{2}^{\dagger}];$	$D_s^{(*)} \bar{D}_s^{(*)} [0]$
	$X(3872), Z_c(3900, 4020)$	$Z_{cs}(3985)$	X(4140)
	$Z_b(10610, 10650)$		
$\bar{H}T$	$\bar{D}^{(*)}\Xi_c [0];$	$ar{D}_{s}^{(*)}\Lambda_{c}\left[0^{\dagger} ight]$	
	$P_{cs}(4459)$		
$\bar{H}S$	$\bar{D}^{(*)}\Sigma_{c}^{(*)}\left[\frac{1}{2}\right];$	$\bar{D}_{s}^{(*)}\Sigma_{c}^{(*)}[1^{\dagger}];$	$\bar{D}^{(*)}\Xi_c^{\prime(*)}[0];$
	$P_c(4312, 4440, 4457)$		
	$\bar{D}^{(*)}\Omega_{c}^{(*)}\left[rac{1}{2}^{\dagger} ight]$		
$T\bar{T}$	$\Lambda_c \bar{\Lambda}_c [0];$	$\Lambda_c \bar{\Xi}_c \left[\frac{1}{2}\right];$	$\Xi_c \bar{\Xi}_c \left[0,1\right]$
$T\bar{S}$	$\Lambda_c \bar{\Sigma}_c^{(*)} [1];$	$\Lambda_c \bar{\Xi}_c^{\prime(*)} \left[\frac{1}{2}\right];$	$\Lambda_c \bar{\Omega}_c^{(*)} \left[0^\dagger \right];$
	$\Xi_c \bar{\Sigma}_c^{(*)} [\frac{3}{2}^{\dagger}, \frac{1}{2}];$	$\Xi_c \bar{\Xi}_c^{\prime(*)} [1,0];$	$\Xi_c \bar{\Omega}_c^{(*)} \left[\frac{1}{2} \right]$
$S\bar{S}$	$\Sigma_{c}^{(*)} \bar{\Sigma}_{c}^{(*)} [2^{\dagger}, 1, 0];$	$\Sigma_c^{(*)} \bar{\Xi}_c^{\prime(*)} \left[\frac{3}{2}^{\dagger}, \frac{1}{2}\right];$	$\Sigma_{c}^{(*)}\bar{\Omega}_{c}^{(*)}[0^{\dagger}];$
	$\left \Xi_{c}^{'(*)}\bar{\Xi}_{c}^{'(*)}\left[1,0\right];\right.$	$\Xi_c^{\prime(*)} \bar{\Omega}_c^{(*)} \left[\frac{1}{2}\right];$	$\Omega_c^{(*)}\bar{\Omega}_c^{(*)}\left[0\right]$

Hadronic molecules

X.-K. Dong, FKG, B.-S. Zou, A Survey of Heavy-Antiheavy Hadronic Molecules, 物理学进展 41 (2021) 65 [arXiv:2101.01021]

Method

- Approximations:
 - Constant contact terms (V) saturated by light-vector-meson exchange, similar to the vector-meson dominance in the resonance saturation of the low-energy constants in CHPT
 G. Ecker, J. Gasser, A. Pich, E. de Rafael, NPB321(1989)311
 - Single channels
 - Neglecting mixing with normal charmonia
- The T-matrix:

$$T = \frac{V}{1 - VG}$$

G: two-point scalar loop integral regularized using dim.reg. with a subtraction constant matched to a Gaussian regularized G at threshold

$$G(E) = \frac{1}{16\pi^2} \left\{ a(\mu) + \log \frac{m_1^2}{\mu^2} + \frac{m_2^2 - m_1^2 + s}{2s} \log \frac{m_2^2}{m_1^2} + \frac{k}{E} \log \frac{(2kE+s)^2 - m_1^2 + m_2^2}{(2kE-s)^2 - m_1^2 + m_2^2} \right\}$$

$$G(E) = \int \frac{l^2 dl}{4\pi^2} \frac{\omega_1 + \omega_2}{\omega_1 \omega_2} \frac{e^{-2l^2/\Lambda^2}}{E^2 - (\omega_1 + \omega_2)^2 + i\epsilon} \text{ with } \omega_i = \sqrt{m_i^2 + l^2}$$

Hadronic molecules appear as bound or virtual state poles of the T matrix

X(3872) and related states

X(3872) as a $\overline{D}D^*$ bound state Negative-C parity partner observed by COMPASS PLB783(2018)334 $\overline{D}D$ bound state predicted with lattice Prelovsek et al., 2011.02542 Evidence for a $D_s^* \overline{D}_s^*$ virtual state in LHCb data?

LHCb data: arXiv:2103.01803

Isoscalar vectors and related states

- ✓ $Y(4260)/\psi(4230)$ as a $\overline{D}D_1$ bound state
- ✓ Vector charmonia around 4.4 GeV unclear
- ✓ Evidence for $1^{--} \Lambda_c \overline{\Lambda}_c$ bound state in BESIII data
 - Sommerfeld factor
 - Near-threshold pole
 - Different from *Y*(4630/4660)

Data taken from BESIII, PRL120(2018)132001

 ✓ Many 1⁻⁻ states above 4.8 GeV: Belle-II, BEPC-III, STCF

Hidden-charm pentaquarks

Many more baryon-antibaryon molecular states above 4.7 GeV

Conclusion

- General rule for (near-)threshold structures: S-wave attraction, more prominent for heavier particles and stronger attraction
- Strong attraction, then hadronic molecules below threshold, otherwise threshold cusps
- Structures should be more prominent in bottom than in charm
- 229 hadronic molecules predicted
- Kinematical singularities (threshold cusp, TS) and resonances are NOT exclusive

Thank you for your attention!

More states with exotic quantum numbers

 Many baryon-antibaryon molecular states above 4.7 GeV, beyond the current exp. region

Comments on Z_c and Z_{cs}

- ✓ Isovector interaction between $D^{(*)}\overline{D}^{(*)}$ from light vector exchange vanishes
- Charmonia exchange might be important here: F.Aceti, M.Bayar, E.Oset et al., PRD90(2014)016003
 no mass hierarchy, a series of charmonia can be exchanged Dong, FKG, Zou, arXiv:2101.01021
 axial-vector meson exchange considered in Yan, Peng, Sanchez Sanchez, Pavon Valderrama 2102.13058
- ✓ Z_c (3900,4020) as $\overline{D}^{(*)}D^*$ virtual states
- ✓ $Z_{cs}(3985)$ as $D_s \overline{D}^*$, $D\overline{D}_s^*$ virtual state; there should also be a $D^*\overline{D}_s^*$ state around 4.1 GeV Z. Yang, X. Cao, FKG, J. Nieves, M. Pavon Valderrama, PRD103(2021)074029

Comments on *Z*_c and *Z*_{cs}

✓ Simultaneous fit to the BESIII and LHCb Z_{cs} data: Z_{cs} as virtual states

Ortega, Entem, Fernandez, 2103.07781

