Weak Cosmic Censorship and Second Law of Black Hole Thermodynamics

Bo Ning

Sichuan University

Based on Baoyi Chen, Feng-Li Lin, BN and Yanbei Chen, 2006.08663, 2211.17225

East Asia Joint Workshop on Fields and Strings 2023 13 Nov 2023

Second Law \implies Weak Cosmic Censorship

for higher derivative gravity, and beyond

Cosmic Censorship Conjecture

proposed to save the predictability of GR Penrose 1969

► Weak CCC:

Singularity should be hidden behind the future event horizon, so as not to influent the spacetime outside the black hole

Strong CCC:

Cauchy horizon should be destroyed by perturbations, otherwise wormhole travelers would be influenced by the timelike singularity

WCCC: Evidence

Gedanken experiment: trying to destroy horizon by throwing matter into black hole, overcharging or overspinning are found impossible

- extremal black hole: dropping test particles into black hole, geodesics into horizon are forbidden in linear order perturbation Wald 1974
- near extremal black hole: an inequality based on Wald formalism is developed to connect falling matter and conserved charges of black hole, taking care of second order perturbation effect Sorce-Wald 2017

Basically a first law point of view.

WCCC: Evidence

Our approach: physical constraints on infalling matter could come from the second law of black hole thermodynamics

Picture

For vacuum solution family parametrized by (m, q), denote condition for black hole by

 $W(m,q) \geq 0$

denote resultant changes of parameters due to infalling matter by δm and δq , WCCC is satisfied iff

 $W(m + \delta m, q + \delta q) \geq 0$

Higher derivative gravity

Consider general quartic order corrections to Einstein-Maxwell theory:

$$L = \frac{1}{2\kappa}R - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} + c_1R^2 + c_2R_{\mu\nu}R^{\mu\nu} + c_3R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} + c_4\kappa RF_{\mu\nu}F^{\mu\nu} + c_5\kappa R_{\mu\nu}F^{\mu\rho}F^{\nu}{}_{\rho} + c_6\kappa R_{\mu\nu\rho\sigma}F^{\mu\nu}F^{\rho\sigma} + c_7\kappa^2 F_{\mu\nu}F^{\mu\nu}F_{\rho\sigma}F^{\rho\sigma} + c_8\kappa^2 F_{\mu\nu}F^{\nu\rho}F_{\rho\sigma}F^{\sigma\mu}$$

- Higher derivative theories can arise naturally from quantum corrections from the point of view of effective field theory
- WCCC should apply to generic effective field theories of gravity if it were a fundamental principle for protecting the predictive power of theory

Higher derivative gravity

2nd order perturbed solution (e.g. for c_4 only), solved by generalizing the perturbative method in $_{\rm Kats-Motl-Padi\ 2007}$:

$$ds^{2} = -f(r)dt^{2} + \frac{dr^{2}}{g(r)} + r^{2}d\Omega$$

$$\begin{split} f(r) &= 1 - \frac{\kappa m}{r} + \frac{\kappa q^2}{2r^2} + c_4 \left(\frac{4\kappa^2 q^2}{r^4} - \frac{6\kappa^3 m q^2}{r^5} + \frac{4\kappa^3 q^4}{r^6} \right) + c_4^2 \left(-\frac{32\kappa^4 q^4}{7r^8} - \frac{6\kappa^5 m q^4}{r^9} + \frac{32\kappa^5 q^6}{3r^{10}} \right) \\ g(r) &= 1 - \frac{\kappa m}{r} + \frac{\kappa q^2}{2r^2} + c_4 \left(-\frac{16\kappa^2 q^2}{r^4} + \frac{14\kappa^3 m q^2}{r^5} - \frac{6\kappa^3 q^4}{r^6} \right) + c_4^2 \left(\frac{1088\kappa^4 q^4}{7r^8} - \frac{126\kappa^5 m q^4}{r^9} + \frac{152\kappa^5 q^6}{3r^{10}} \right) \\ A_t &= -\frac{q}{r} - c_4 \frac{2\kappa^2 q^3}{r^5} + c_4^2 \left(\frac{576\kappa^3 q^3}{7r^7} - \frac{96\kappa^4 m q^3}{r^8} + \frac{50\kappa^4 q^5}{r^9} \right) \end{split}$$

Criterion function:

$$W(m,q) = m^2 - q^2 \left(1 + \frac{128c_4^2}{21q^4} + \cdots\right)^2$$

WCCC and 2nd Law

Consider initial nearly extremal black hole (for c_4) characterized by ϵ :

$$q = \sqrt{1 - \epsilon^2} \left(m - \frac{128c_4^2}{21m^3} \right)$$

perturbed by a one-parameter family of infalling matter, finally settling down to a new solution with parameter

$$m(\lambda) = m + \lambda \delta m + \frac{\lambda^2 \delta^2 m}{2}, \quad q(\lambda) = q + \lambda \delta q + \frac{\lambda^2 \delta^2 q}{2}$$

► If constraints on δm , δq , $\delta^2 m$, $\delta^2 q$ arising from $S(m(\lambda), q(\lambda)) \ge S(m, q)$ will guarantee $W(m + \delta m, q + \delta q) \ge 0$?

WCCC and 2nd Law

Assuming first order variation optimally done: 2nd law satisfied marginally

$$\delta S = \frac{\partial S}{\partial m} \delta m + \frac{\partial S}{\partial q} \delta q = 0$$

gives (for c_4)

$$\delta m = \left(1 - \epsilon - \frac{64(2 + 1098\epsilon)c_4^2}{7m^4}\right)\delta q + \mathcal{O}(\epsilon^2)$$

▶ For extremal black holes $\epsilon = 0$, up to linear order $\delta S \ge 0$ guarantees WCCC always satisfied (with all c_i 's present), consistent with Sorce-Wald approach Chen-Lin-BN-Chen 2021

WCCC and 2nd Law

Second order variations due to infalling matter should satisfy $\delta^2 {\it S} \geq 0$, giving

$$\begin{split} \delta^2 m &\geq & \left(\frac{1-\epsilon}{m} + \frac{256(1655 - 17372\epsilon + 33099\epsilon^2)c_4^2}{21m^5}\right) (\delta q)^2 \\ &+ \left(1-\epsilon + \frac{\epsilon^2}{2} - \frac{64(2 + 1098\epsilon - 8815\epsilon^2)c_4^2}{7m^4}\right) \delta^2 q \end{split}$$

$$W(\lambda) \geq \left(\epsilon \left(\frac{256c_4^2}{21m^3} - m\right) + \lambda \left(1 + \frac{211072c_4^2}{21m^4}\right)\delta q\right)^2 + \mathcal{O}(c_4^3, \epsilon^3, \lambda^3)$$

positive definite, hence WCCC satisfied!

- ▶ all c_i cases and $c_2 + c_4$ case checked, successfully
- Kerr-Newman BHs with spin also consistent with Sorce-Wald 2017

WCCC and 1st Law

Sorce-Wald formalism based on 1st law

$$\delta^{n} m_{\text{ADM}} - \Phi_{\text{H}}(\delta^{n} q_{\text{H}} + \delta^{n} q_{B}) - T_{\text{H}} \delta^{n} S_{B}$$

$$= \delta_{n,2} \mathcal{E}_{\Sigma}(\phi; \delta\phi, \mathcal{L}_{\xi}\phi) - \int_{\mathcal{H}} \xi^{a} \epsilon_{ebcd} \delta^{n} T_{a}^{e} \geq \delta_{n,2} \mathcal{E}_{\Sigma}(\phi; \delta\phi, \mathcal{L}_{\xi}\phi)$$

fails to yield WCCC in higher derivative gravity:

$$W(\lambda) \geq \left(\epsilon \Big(rac{161024c_4^2}{21m^3} + m\Big) - \lambda \Big(1 - rac{165248c_4^2}{21m^4}\Big)\delta q \Big)^2 - rac{15360\epsilon^2 c_4^2}{m^2}$$

NOT positive definite.

General proof of WCCC from 1st law

Condition for extremal solution not become singular:

$$\delta M - \left(\frac{dM}{dQ}\right)_{\rm ext} \ge 0$$

On the other hand, 1st law $\delta M = T \delta S + \Phi_{\rm H} \delta Q$ shows for $T \to 0$

$$\left(\frac{dM}{dQ}\right)_{\rm ext} = \Phi_{\rm H}$$

then Wald's linear order variational identity

$$\delta \mathbf{M} - \Phi_{\mathsf{H}} \delta \mathbf{Q} \geq 0$$

gives rise to non-singular condition hence WCC.

General proof of WCCC from 2nd law

For $\mu = m - m_{ex}(q_i)$ in an open neighborhood of 0, horizon radius should behave like

$$r_h(\mu, q_j) = R(q_j) + \sqrt{\mu} \rho(q_j, \sqrt{\mu})$$

start from configuration $(\mu, q_j) = (\epsilon^2, q_{j0})$ and deviation

$$\mu = \epsilon^2 + \delta \mu \lambda + \delta^2 \mu \frac{\lambda^2}{2} , \qquad q_j = q_{j0} + \delta q_j \lambda + \delta^2 q_j \frac{\lambda^2}{2}$$

up to leading order

$$\left. \frac{dS}{d\lambda} \right|_{\lambda=0} = \left. \frac{\partial S}{\partial r_h} \frac{\rho}{2\epsilon} \delta \mu \right.$$

finiteness requires $\delta\mu\sim\epsilon$,

$$\frac{d^2 S}{d\lambda^2}\Big|_{\lambda=0} = \frac{\rho}{2\epsilon^3} \left(\epsilon^2 \delta^2 \mu - \frac{1}{2} \delta \mu^2\right) \frac{\partial S}{\partial r_h}$$

finiteness requires $\ \delta^2 \mu \ = \ {\delta \mu^2 \over 2\epsilon^2}$, hence

$$\mu = \epsilon^2 + \delta\mu\lambda + \frac{\lambda^2\delta\mu^2}{4\epsilon^2} = \left(\epsilon + \frac{\delta\mu\lambda}{2\epsilon}\right)^2,$$

ensures μ positive and WCCC holds.

Conclusion

The second law of black hole thermodynamics ensures WCCC in general higher derivative gravity.

Conclusion

The second law of black hole thermodynamics ensures WCCC in general higher derivative gravity.

Thanks for Your Attention!