EAST ASIA JOINT WORKSHOP ON FIELDS AND STRINGS 2023 NOVEMBER 12-18, 2023

New aspects in orientifold planes

Sung-Soo Kim (University of Electronic Science and Technology of China) 2023-11-14

with Hirotaka Hayashi, Kimyeong Lee, Futoshi Yagi [2306.11631] Hee-Cheol Kim, Minsung Kim, Gabi Zafrir [2307.03231] Xiaobin Li, Satoshi Nawata, Futoshi Yagi [in progress]

I will talk about 5d $\mathcal{N} = 1$ supersymmetric theories.

Yesterday, we had two interesting talks [Piljin, Yi-Nan] with a very well summarized introduction on 5d SCFTs.

This talk will be a continuation of 5d SCFT story from Type IIB branes

I would like to report an interesting observation, two different classes of gauge theories can be connected, not as a duality nor as a Higgsing.

This observation is based on Type IIB 5-brane descriptions involving an orientifold 7-plane ($O7^-$ or $O7^+$).

M-theory constructions

M-theory on non-compact Calabi-Yau 3 fold (CY3)

[Yi-Nan's talk]

M2 wrapping compact 2-cycles <==> BPS particle mass = vol(2-cycles)

M5 wrapping compact 4-cycles <==> monopole string tension = vol(4-cycles)

Type IIB brane (p,q) 5-brane

Theories with 8 supercharges are described by D-branes and NS5-branes.

Type IIB brane (p,q) 5-brane

Theories with 8 supercharges are described by D-branes and NS5-branes.

 $\pi_4(\mathrm{SU}(2)) = \mathbb{Z}_2$ [Piljin's talk]

 $SU(2)_0$

Type IIB brane (p,q) 5-brane

Theories with 8 supercharges are described by D-branes and NS5-branes.

 $SU(2)_0$

 $SU(2)_{\pi}$

Matter (hypermultiplets)

- Fundamental hypers (F) can be described by introducing D7s

SU(3)₁ + 8**F**

- Antisymmetric hypers (AS) : half NS5 on an 07⁻

- Symmetric hypers (Sym) : half NS5 on an 07⁺

5-brane webs with O7-plane

With orientifold planes, 5-brane webs can describe SU(*N*) + **AS** or **Sym** and also Sp / SO gauge theories

An observation

07-plane

[2306.11631] Hirotaka Hayashi, SSK, Kimyeong Lee, Futoshi Yagi

07^{-} vs. 07^{+}

It is well known that the monodromy of $O7^- + 8D7$ is the same as $O7^+$

$$O7^- + 8D7 \quad \longleftrightarrow \quad O7^+$$

Monodromy:
$$\begin{pmatrix} -1 & 4 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 8 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & -4 \\ 0 & -1 \end{pmatrix}$$

It is also well known that their brane charges are the same

$$O7^- + 8D7 \quad \longleftrightarrow \quad O7^+$$

It is tempting to think that there may be some intriguing relations...

SU(<i>N</i>)+1 AS +8 F		SU(N)+1 Sym
Sp(N)+8 F	\longleftrightarrow	SO(2N)

From 5-brane webs

5-branes also suggest an interplay between $O7^+$ and $O7^- + 8D7$

SU(2*N*) +1**AS** + 8**F** vs.

SU(2N) +1**Sym**

Sp(*N*) + 8**F**

VS.

SO(2N)

Cubic prepotential

On Coulomb branch

• Prepotential characterizing the abelian low energy effective theory

$$\mathcal{F} = \frac{1}{2g_0^2} h_{ij} \phi^i \phi^j + \frac{\kappa}{6} d_{ijk} \phi^i \phi^j \phi^k + \frac{1}{12} \left(\sum_{\text{Roots}} |R \cdot \phi|^3 - \sum_f \sum_{w \in W_f} |w \cdot \phi + m_f|^3 \right)$$
$$h_{ij} = \text{Tr}(T_i T_j), \ d_{abc} = \frac{1}{2} \text{Tr} T_a(T_b T_c + T_c T_b), \quad W_f = \text{Weight of } G \text{ in the rep. } r_f \qquad \text{[96 Morrison-Seiberg]}$$

[97 Intriligator-Morrison-Seiberg]

By specially tuning mass parameters (freezing)

$$O7^+$$
 $O7^- + 8D7$

$$\mathcal{F}_{\mathrm{SU}(N)_{\kappa}+1\mathbf{Sym}} = \mathcal{F}_{\mathrm{SU}(N)_{\kappa}+8\mathbf{F}+1\mathbf{AS}}$$

$$\mathcal{F}_{\mathrm{SO}(2N)} = \mathcal{F}_{\mathrm{Sp}(N)+8\mathbf{F}}$$

Chern-Simons level shifts

Along RG flows or decouplings of hypermultiplets, the Chern-Simons level is shifted:

CS level shifts:

$$\kappa \rightarrow \kappa \pm \frac{1}{2} I^{(3)}$$

Cubic Dynkin Index $I^{(3)}$

Hypermultiplet	$I^{(3)}$
\mathbf{F}	1
\mathbf{AS}	N-4
\mathbf{Sym}	N+4

$$I_{\mathbf{Sym}}^{(3)} = I_{\mathbf{AS}}^{(3)} + 8I_{\mathbf{F}}^{(3)}$$

Observation

From the monodromy, prepotential, 5-brane webs, and CS level shifts,

$O7^+ \leftarrow O7^- + 8D7s$

It is done by tuning masses of flavors by special values.

So far, it seems to work, at least perturbatively or by accident(?).

What about non-perturbatively?

Beyond perturbative level

Seiberg-Witten (SW) curves

From dual diagram or generalized toric diagram, we can compute SW curves.

Simple example: E_0 theory (or local \mathbb{P}^2)

$$wt + u + w^{-1} + t^{-1} = 0$$

We developed a systematic procedure for obtaining SW curves of theories associated with O7-planes

$$O7^- + 8D7 \longrightarrow O7^+$$

$$SW_{SU+1\mathbf{AS}+8\mathbf{F}} = (w - w^{-1})^2 SW_{SU+1\mathbf{Sym}}$$

$$SW_{Sp(N)+8\mathbf{F}} = (w - w^{-1})^2 SW_{SO(2N)}$$

Other observables ?

We also checked the instanton partition functions also works.

[SSK-Li-Nawata-Yagi, in progres]

$$\begin{split} &Z_{\mathrm{SU}(N),k}^{\mathrm{vec}} Z_{\mathrm{SU}(N),k}^{\mathrm{sym}}(m) \\ = &Z_{\mathrm{SU}(N),k}^{\mathrm{vec}} Z_{\mathrm{SU}(N),k}^{\mathrm{anti}}(m) Z_{\mathrm{SU}(N),k}^{\mathrm{fund}} \left(\frac{\epsilon_{+} \pm m}{2}, \frac{\epsilon_{+} \pm m}{2} + \pi i, \frac{\epsilon_{-} \pm m}{2}, \frac{\epsilon_{-} \pm m}{2} + \pi i\right) \\ & Freezing \end{split}$$

And superconformal index also works.

[Hee-Cheol Kim, Minsung Kim-SSK-Zafrir '23]

This is an intriguing relation...

but now.. what is good for?

Applying this relation to rank-1 case, SU(2) gauge theory,

 $SU(2)+1AS(O7^{-}) = SU(2)$, because AS is singlet,

 $SU(2)_{\theta} + 1$ Sym $(O7^+) = SU(2)_{\theta} + 1$ Adj, because Sym of SU(2) is Adj,

M-string on a circle ($\theta = 0$)

A₂ theory with \mathbb{Z}_2 outer automorphism twist ($\theta = \pi$)

we get non-Lagrangian theory:

 $\mathbb{P}^2 + 1 \mathbf{Adj} \text{ (or } SU(2)_{\pi} + 1 \mathbf{Adj} - 1 \mathbf{F})$ [Bhardwaj '19]

Applying this relation to rank-1 case, SU(2) gauge theory,

 $SU(2)+1AS(O7^{-}) = SU(2)$, because AS is singlet,

 $SU(2)_{\theta} + 1$ Sym $(O7^+) = SU(2)_{\theta} + 1$ Adj, because Sym of SU(2) is Adj,

M-string on a circle ($\theta = 0$) A₂ theory with \mathbb{Z}_2 outer automorphism twist ($\theta = \pi$)

we get non-Lagrangian theory:

$$\mathbb{P}^2 + 1\mathbf{Adj} \text{ (or } SU(2)_{\pi} + 1\mathbf{Adj} - 1\mathbf{F})$$
 [Bhardwaj '19]

by replacing 1Adj (or 1Sym) with 1AS + 8F $SU(2)_{\pi} + 1\text{Adj} - 1\text{F} \rightarrow SU(2)_{\pi} + 1\text{AS} + 8\text{F} - \text{F}$ = SU(2) + 7F

Seiberg-Witten curve for $\mathbb{P}^2 + 1\mathbf{Adj}$

$$\begin{split} & w^5(t-M)^3 \\ & -M^3 w^4(t-M)^2(t-M^{-5}) \\ & -2w^3(t-M) \left(t^2 + (M-U/2)t + M^2\right) \\ & -2w^2(1-Mt) \left(1 + (M-U/2)t + M^2t^2\right) \\ & -M^3 w (1-Mt)^2 (1-M^{-5}t) \\ & + (1-Mt)^3 = 0 \end{split}$$

U: Coulomb branch parameter

 ${\cal M}\,$: mass of Symmetric hyper

Mass tuning:
$$M_0 = \widetilde{M}^{-1}$$
, $M_{1,2,3} = \widetilde{M}$, $M_{4,5,6,7} = -\widetilde{M}$

$$y^2 = 4x^3 - g_2x - g_3 ,$$

where

$$\begin{split} g_2 &= \frac{1}{12} u^4 - \frac{4}{3} \left(3\chi_1^2 + 52\chi_1 + 1164 \right) u^2 \\ &- \left(2\chi_1^4 + 48\chi_1^3 - 336\chi_1^2 - 7488\chi_1 - 115168 \right) u \\ &+ 16\chi_1^5 + 288\chi_1^4 + 3200\chi_1^3 - \frac{16640}{3}\chi_1^2 - 201472\chi_1 - 2401792, \\ g_3 &= \frac{1}{216} u^6 - 4u^5 - \frac{1}{9} \left(3\chi_1^2 - 92\chi_1 - 7764 \right) u^4 \\ &- \frac{1}{6} \left(\chi_1^4 - 72\chi_1^3 - 744\chi_1^2 + 12000\chi_1 + 503824 \right) u^3 \\ &+ \frac{4}{9} \left(3\chi_1^5 - 18\chi_1^4 - 4776\chi_1^3 - 33616\chi_1^2 + 323184\chi_1 + 9487968 \right) u^2 \\ &- \frac{4}{3} \left(15\chi_1^6 + 236\chi_1^5 - 1212\chi_1^4 - 92256\chi_1^3 - 553968\chi_1^2 + 3339968\chi_1 + 80170944 \right) u \\ &+ \chi_1^8 + 64\chi_1^7 + \frac{4912}{3}\chi_1^6 + 15488\chi_1^5 - \frac{95584}{3}\chi_1^4 - \frac{63023104}{27}\chi_1^3 \\ &- \frac{39014656}{3}\chi_1^2 + \frac{148920320}{3}\chi_1 + 1084823808. \end{split}$$

Conclusion

• $O7^+ \leftarrow O7^- + 8D7s$

- Questions and Future directions
 - other dimensions? 4d reductions or 6d uplifts 3d S^3 partition functions: Sp(*N*)+(*N*_f+2)**F** vs. SO(2N)+*N*_f**F**
 - Other physical observables or quantum curves?