The renormalization structure of Gross-Neveu Model

Qingjun Jin 靳庆军

Graduate School of China Academy of Engineering Physics

East Asia Joint WorkShop on Fields and Strings

Nov 13, 2023, Xi'an

In collaboration with Rijun Huang and Yi Li

• Gross-Neveu model is a 2-d renormalizable theory with 4-fermion interactions [Gross, Neveu 1974] :

$$L = \bar{\Psi}_i (i \partial - m) \Psi^i - \frac{g}{2} (\bar{\Psi}_i \Psi^i)^2 . \qquad (1)$$

・ロト ・回ト ・ヨト ・ヨト

- Similar to QCD, the Gross-Neveu model is asymptotic free. Fermion mass can be generated by dynamic symmetry breaking, and the massless theory is unstable.
- Connected to higher spin fields in AdS [Giombi 2016].
- In the large N limit, Gross-Neveu model has a UV completion in 4-d, which is Gross-Neveu-Yukawa model [Fei, Giombi, Klebanov 2014] :

$$L_{\rm GNY} = \bar{\Psi}_i (i \partial - m) \Psi^i - \frac{1}{2} (\partial \sigma)^2 - g \sigma \bar{\Psi}_i \Psi^i - \frac{h}{4!} \sigma^4 .$$
⁽²⁾

• In the $N \to 0$ limit, Gross-Neveu model describes the physics of random bond Ising model[Dotsenko 1981].

Evanescent operators

• Besides $(\bar{\Psi}_i \Psi^i)^2$, there are also other 4-fermion operators

$$L = \bar{\Psi}_i (i \not\partial - m) \Psi^i - \frac{1}{4} \sum_{n=0}^{\infty} g_n O_n, \ O_n = \frac{1}{n!} (\bar{\Psi}_i \gamma^{\mu_1 \cdots \mu_n} \Psi^i) (\bar{\Psi}_i \gamma_{\mu_1 \cdots \mu_n} \Psi^i) .$$
(3)

- O_n are evanescent operators when $n \ge 3$, but their contribution cannot be neglected in dimensional regularization.
- In fact, the original Gross-Neveu model is not renormalizable in dimensional regularization. A divergence proportional to O_3 first appear at 3-loop [Vasil'ev 1997]:

$$\langle \Psi \Psi \bar{\Psi} \bar{\Psi} \rangle^{(3)} \sim \frac{(4-3\zeta_3)g^4}{\epsilon} O_3 + \cdots$$
 (4)

・ロト ・回ト ・ヨト ・ヨト

• At 4-loop, a divergence proportional to O_4 appears [Gracey 2016].

East Asia Joint WorkShop on Fields and Strings The Renormalization Structure of Gross-Neveu Model O_n divergence appear at n-loop?

• *n*-loop 4-fermion correlation function has the following structure :

Figure 1: A 4 loop Feynman diagram contributing to 4 fermion amplitude.

• O_n appears if we anti-symmetrize the fermion chain, and perform a PV reduction :

$$(\bar{u}_{3}[\underline{l}_{1}\cdots\underline{l}_{n}]u_{1})(\bar{u}_{4}[\underline{l}_{1}\cdots\underline{l}_{n}]u_{2})$$

$$=\frac{1}{(n!)^{2}}\delta^{\mu_{1}\cdots\mu_{n}}_{l_{1}\cdots l_{n}}\delta^{\nu_{1}\cdots\nu_{n}}_{l_{1}\cdots l_{n}}(\bar{u}_{3}\gamma^{\mu_{1}\cdots\mu_{n}}u_{1})(\bar{u}_{4}\gamma^{\nu_{1}\cdots\nu_{n}}u_{2})$$

$$\rightarrow\frac{(-1)^{n}}{(-d)_{n}}G(l_{1},\cdots,l_{n})(\bar{u}_{3}\gamma^{\mu_{1}\cdots\mu_{n}}u_{1})(\bar{u}_{4}\gamma_{\mu_{1}\cdots\mu_{n}}u_{2})$$

$$\rightarrow\frac{(-1)^{n}}{(-d)_{n}}G(l_{1},\cdots,l_{n})O_{n}$$
(6)

Not all O_n divergence appear

- Although integrals proportional to O_n appear at *n*-loop, these integral may not be divergent. For example, O_1 and O_2 do not appear up to 4-loop [Gracey 2016].
- O_5 does not appear at 5 loop [Huang, QJ, Li, to appear].
- There seems to be a pattern:

$$\begin{split} \mathcal{L} &= \bar{\Psi}_i (i \not\partial - m) \Psi^i - \frac{g}{4} O_0 - \frac{g^4 Z_3}{4} O_3 - \frac{g^5 Z_4}{4} O_4 \\ &- \frac{g^8 Z_7}{4} O_7 - \frac{g^9 Z_8}{4} O_8 - \frac{g^{12} Z_{11}}{4} O_{11} - \frac{g^{13} Z_{12}}{4} O_{12} + \cdots \end{split}$$
(7)

• Why some operators appear, while others do not? Is this pattern governed by a symmetry?

• By introducing a series of auxiliary tensor fields $\sigma_{\mu_1 \dots \mu_n}$, the Lagragian can be rewritten as,

$$L = \bar{\Psi}_i (i \not\partial - m) \Psi^i + \frac{1}{2n!} \sum_{n=0}^{\infty} \sigma_{\mu_1 \cdots \mu_n} \left[\sigma^{\mu_1 \cdots \mu_n} - \sqrt{2g_n} \bar{\Psi}_i \gamma^{\mu_1 \cdots \mu_n} \Psi^i \right]$$
(8)

• The new Feynman rule only contain a $\sigma\bar\Psi\Psi$ 3-vertex :

Figure 2: New Feynman rules with auxiliary fields.

• Each $n\Psi - n\bar{\Psi}$ Feynman diagram contains *n* fermion chains and several fermion loops. These fermion chains and fermion loops are connected by auxiliary fields.

Figure 3: A Feynman diagram with 4 external fermions.

• The fermion chain connecting $\Psi_1 - \bar{\Psi}_3$ produces the integral

$$F_{1} = \frac{\bar{u}_{3}\Gamma^{\mu_{1}}_{(n_{1})} \not l_{1}\Gamma^{\mu_{2}}_{(n_{2})} \not l_{2} \cdots \Gamma^{\mu_{k}}_{(n_{k})} \not l_{k}\Gamma^{\mu_{k+1}}_{(n_{k+1})} u_{1}}{l_{1}^{2}l_{2}^{2} \cdots l_{k}^{2}}$$
(9)

・ロト ・四ト ・ヨト ・ヨト

in which $\Gamma^{\mu_i}_{(n_i)} \equiv \gamma^{\mu_{i1}\cdots\mu_{in_i}}$ is from the $\sigma \bar{\Psi} \Psi$ 3-vertex.

Fermion chain

• After integral reduction, and anti-symmetrization of gamma matrices,

$$F_1 \to \sum_m c_m \bar{u}_3 \gamma_{\nu_1 \cdots \nu_m} u_1 \tag{10}$$

- Since gamma matrices contract in pairs, the number of gamma matrices stays even (odd) if the original integral contains even (odd) of gamma matrices.
- $\bullet\,$ This means m satisfies

$$(-1)^{k-m+\sum_{i=1}^{k+1} n_i} = 1 \tag{11}$$

East Asia Joint WorkShop on Fields and Strings The Renormalization Structure of Gross-Neveu Model The reversed fermion chain

• Let us interchange the position of Ψ_1 and $\overline{\Psi}_3$ in the diagram, and reverse the direction of fermion chain connecting them. The other parts of the Feynman diagram remain unchanged:

Figure 4: The reversed fermion chain.

$$F_{2} = \frac{\bar{u}_{3}\Gamma^{\mu_{k+1}}_{(n_{k+1})}(-\not\!\!\!l_{k})\Gamma^{\mu_{k}}_{(n_{k})}\cdots(-\not\!\!\!l_{2})\Gamma^{\mu_{2}}_{(n_{2})}(-\not\!\!\!l_{1})\Gamma^{\mu_{1}}_{(n_{1})}u_{1}}{l_{1}^{2}l_{2}^{2}\cdots l_{k}^{2}}$$
(12)

• We define an operator \mathcal{R} , which reverse the order of gamma matrix products,

$$F_{2} = (-1)^{k+\sum_{i=1}^{k+1} \frac{n_{i}(n_{i}-1)}{2}} \frac{\bar{u}_{3}\mathcal{R}\left(\Gamma_{(n_{1})}^{\mu_{1}} \not l_{1}\Gamma_{(n_{2})}^{\mu_{2}} \not l_{2}\cdots\Gamma_{(n_{k})}^{\mu_{k}} \not l_{k}\Gamma_{(n_{k+1})}^{\mu_{k+1}}\right) u_{1}}{l_{1}^{2}l_{2}^{2}\cdots l_{k}^{2}}$$
(13)

 $\bullet\,$ The operator ${\cal R}$ commutes with gamma matrix algebra:

$$F_{2} \rightarrow (-1)^{k+\sum_{i=1}^{k+1} \frac{n_{i}(n_{i}-1)}{2}} \sum_{m} c_{m} \bar{u}_{3} \mathcal{R} \gamma_{\nu_{1} \cdots \nu_{m}} u_{1}$$

$$= \sum_{m} (-1)^{k+\frac{m(m-1)}{2} + \sum_{i=1}^{k+1} \frac{n_{i}(n_{i}-1)}{2}} c_{m} \bar{u}_{3} \gamma_{\nu_{1} \cdots \nu_{m}} u_{1}$$

$$= \sum_{m} (-1)^{\frac{m(m+1)}{2} + \sum_{i=1}^{k+1} \frac{n_{i}(n_{i}+1)}{2}} c_{m} \bar{u}_{3} \gamma_{\nu_{1} \cdots \nu_{m}} u_{1}$$
(14)

• The total contribution of two fermion chains reads

$$F_1 + F_2 = \sum_m \left[1 + (-1)^{\frac{m(m+1)}{2} + \sum_{i=1}^{k+1} \frac{n_i(n_i+1)}{2}} \right] c_m \bar{u}_3 \gamma_{\nu_1 \cdots \nu_m} u_1 \tag{15}$$

• The coefficient of $\bar{u}_3 \gamma_{\nu_1 \cdots \nu_m} u_1$ is non-zero only if

$$(-1)^{\frac{m(m+1)}{2}} = (-1)^{\sum_{i=1}^{k+1} \frac{n_i(n_i+1)}{2}}$$
(16)

イロト イヨト イヨト イヨト

- When we reverse the fermion chain, the factor $(-1)^{\frac{n(n+1)}{2}}$ is produced by $\bar{\Psi}_i \gamma^{\mu_1 \cdots \mu_n} \Psi^i$.
- The same factor can be produced by charge conjugation:

$$\mathcal{C}\bar{\Psi}_i\gamma^{\mu_1\cdots\mu_n}\Psi^i = (-1)^{\frac{n(n+1)}{2}}\bar{\Psi}_i\gamma^{\mu_1\cdots\mu_n}\Psi^i \tag{17}$$

- C-even : $n = 0, 3, 4, 7, 8, \cdots$.
- C-odd : $n = 1, 2, 5, 6, 9, 10, \cdots$.
- \bullet A ${\mathcal C}\text{-}{\rm odd}$ (even) fermion chain only produces ${\mathcal C}\text{-}{\rm odd}$ (even) divergent terms:

$$(-1)^{\frac{m(m+1)}{2}} = (-1)^{\sum_{i=1}^{k+1} \frac{n_i(n_i+1)}{2}}$$
(18)

 $\bullet~\mathcal{C}\text{-}\mathrm{odd}$ fermion loops vanish :

$$F_1 + F_2 \propto 1 + (-1)^{\sum_i \frac{n_i(n_i+1)}{2}}$$
(19)

 $\mathcal C\text{-}\mathrm{even}$ Gross-Neveu model

- $\bullet\,$ Suppose a Feynman diagram only contains $\mathcal{C}\text{-even}$ vertices, then the UV divergence is also $\mathcal{C}\text{-even}.$
- Therefore, if we only add C-even vertices to the Lagrangian, the Gross-Neveu model is still renormalizable:

$$L = \bar{\Psi}_i (i \not\partial - m) \Psi^i - \frac{g}{4} O_0 - \frac{g^4 Z_3}{4} O_3 - \frac{g^5 Z_4}{4} O_4 - \frac{g^8 Z_7}{4} O_7 - \frac{g^9 Z_8}{4} O_8 - \frac{g^{12} Z_{11}}{4} O_{11} - \frac{g^{13} Z_{12}}{4} O_{12} + \cdots$$
(20)

- This explains why we did not find O_1 , O_2 and O_5 divergences.
- New divergent terms proportional to O_7 may appear at 7-loop.

- Towards 7-loop computations
 - Almost all techniques which are useful at computing lower loop Feynman integrals, including IBP reduction, PV reduction, differential equation, UV subtraction, are not efficient at 7-loop. Simple tasks like generating Feynman diagrams become very challenging at 7-loop.
 - Each $\sigma \in S_{n+1}$ corresponds to a *n*-loop 4-fermion Feynman diagram:

Figure 5: The Feynman diagrams corresponding to [1234] and [1342].

• The integral corresponding to σ will be denoted by $I_{\sigma}N_{\sigma}$. I_{σ} are the denominators, and N_{σ} are numerators produced by fermion chains.

Towards 7-loop computations

• If we set all external momenta to 0, the numerator N_{σ} becomes

$$N_{\sigma} = \operatorname{sign}(\sigma)(\bar{u}_2[\not_1 \cdots \not_n]u_1)(\bar{u}_4[\not_1 \cdots \not_n]u_3)$$
(21)

All Feynman diagrams have the same numerators!

• After tensor reduction

$$N_{\sigma} = \frac{(-1)^n}{(-d)_n} \operatorname{sign}(\sigma) G(l_1, \cdots, l_n) O_n$$
(22)

・ロト ・四ト ・ヨト ・ヨト

• Using dimensional shift [Tarasov 1996], *n*-loop vacuum integrals with a $G(l_1, \dots, l_n)$ factor can be related to d + 2 dimension integrals without this factor:

$$\sum_{\sigma \in S_{n+1}} I_{\sigma} N_{\sigma} \Big|_{p_i=0} = \left(-\frac{1}{2}\right)^n O_n \sum_{\sigma \in S_{n+1}} \operatorname{sign}(\sigma) I_{\sigma} \Big|_{p_i=0, d=4}$$
(23)

Towards 7-loop computations

• Now let us retrieve the external momenta on both sides of the equation:

$$\sum_{\sigma \in S_{n+1}} I_{\sigma} N_{\sigma} \sim \left(-\frac{1}{2}\right)^n O_n \sum_{\sigma \in S_{n+1}} \operatorname{sign}(\sigma) I_{\sigma}\Big|_{d=4}$$
(24)

- While the local divergence is unaltered by this "retrieve p_i " operation, the total UV divergence will be changed. But we have proved that in this case, the total UV divergences of two sides are still the same!
- Now $I_{\sigma}\Big|_{d=4}$ are 4-d integrals without numerators. They are actually 4-point integrals in the ϕ^4 theory, and can be computed using graphical functions [Schnetz 2021]:

$$= \frac{1}{18\epsilon} \left(36 + 9z + 9\bar{z} + 4z\bar{z} - (18 + 9z + 9\bar{z} + 6z\bar{z}) \ln z \right) + \frac{1}{108} \left(864 - 38z\bar{z} + (-216 + 54z\bar{z}) \ln z - (54 + 27z + 27\bar{z} + 18z\bar{z}) \ln^2 z \right)$$
(25)
+ $\mathcal{O}(\epsilon)$

Towards 7-loop computations

- The graphical functions was used to compute the 7-loop beta functions in ϕ^4 theory [Schnetz 2022].
- We have correctly reproduced 3 and 4 loop renormalization factors in Gross-Neveu model using graphical functions. 7 loop computations should finish in 1 or 2 days!
- It would be the first time to obtain a beyong-5-loop beta function in a model with non-zero spin.
- Thank you for your attention!