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Introduction

AdS/CFT correspondence plays an important role in the study of
theoretical physics in the since 1997. [Maldacena, 97][Gubser,
Klebanov, Polyakov, 98][Witten, 98]
In many cases, this correspondence is a strong-weak duality.
So we can use weakly coupled gravity/string theory to compute
quantities in strongly coupled gauge theory in the large N limit.
The quantities include amplitudes, correlation functions of local
operators, vacuum expectation values of loop operators,
entanglement entropy, etc.
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Introduction

However, this also makes it hard to confirm this correspondences,
since we need to compute quantities in the gauge theory side
non-perturbatively.
The non-perturbative tools in the field theory side of gauge/gravity
correspondence include integrability, supersymmetric localization,
conformal bootstrap...
Integrability makes people be able to compute many quantities in
the large N limit, even beyond the BPS sectors.
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Integrability in AdS5/CFT4

Minahan and Zarembo (02) found that the planar one-loop
anomalous dimension matrix in the SO(6) sector of N = 4 SYM
can be mapped to an integrable Hamiltonian on a spin chain!
Then the eigenvalues of this anomalous dimension matrix can be
computed using intergrability.
This was later generalized to the full sector at planar all-loop level
(in the asymptotic sense). [Beisert, Kistjansen, Staudacher,
03][Beisert, Staudacher, 04] ...
Benna, Polchinski and Roiban (03) found that the worldsheet
theory of IIB superstring on AdS5 × S5 in the free limit is a
two-dimensional integrable field theory.
Integrability is an important non-pertubative tool in AdS5/CFT4
correspondence.
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Integrability in AdS4/CFT3

Three dimensional N = 6 U(N)k × U(N)−k super-Chern-Simons
theory is dual to IIA string theory on AdS4 ×CP3.
The integrable structure was also found in this AdS4/CFT3
correspondence. [Minahan, Zarembo, 08][Bak, Rey, 08][Gromov,
Vieira, 08]
Almost every aspect of integrability in this case is more
complicated and difficult.
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Integrable boundary state (IBS)

Integrable boundary states play important role in both quantum
quench dynamics and AdS/CFT correspondence. [Piroli, Pozsgay,
Vernier, 17]
IBS appears in the one-point functions of a single-trace operator
with a domain wall [de Leeuw, Kristjansen, Zarembo, 15]/Wilson
loop [Jiang, Komatsu, Vescovi, to appear]/’t Hooft loop
[Kristjansen, Zarembo, 23], and three point functions of two BPS
determinant operators and one single-trace operator in N = 4
SYM theory [Jiang, Komatsu, Vescovi, 19].
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IBS in ABJM theory

In ABJM theory, IBS also appears in similar three-point functions
[Yang, Jiang, Komatsu, JW, 21] and domain wall one-point
functions [Kristjansen, Vu, Zarembo, 21].
One aim of this talk is to show that IBS also appears in some BPS
Wilson-loop one-point functions in ABJM theory.
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Heisenberg XXX spin chain

The Hilbert space of a closed XXX spin chain,

H = ⊗L
i=1Hi, Hi

∼= C2 . (1)

We consider the Hamiltonian

H = J

L∑
j=1

(
Sx
j S

x
j+1 + Sy

j S
y
j+1 + Sz

jS
z
j+1

)
, (2)

with periodic boundary condition,

Sα
L+1 = Sα

1 , α = x, y, z. (3)
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Conserved charges of Heisenberg XXX spin chain

This Hamiltonian is integrable.
It has infinity many conserved charges, Qj , j = 1, 2, · · ·
The generating function of these Q’s can be chosen as

T (u) = U exp

( ∞∑
n=1

un

n!
Qn+1

)
, (4)

Here U = T (0) = Q1 is a shift operator.
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IBS for XXX chain

The definition of IBS [Piroli, Pozsgay, Vernier, 17] for XXX chain is
that the state |B⟩ satisfying

Q2l+1|B⟩ = 0, l = 1, 2, · · · (5)

This is equivalent to

ΠT (u)Π|B⟩ = T (u)|B⟩ . (6)

where Π is the reflection operator:

Π|i1, i2, · · · , iL⟩ = |iL, iL−1, · · · , i1⟩. (7)

For ABJM theory, since there are two sets of conserved charges,
the definition of the integrable boundary states is a bit different.
(More on this later.)
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Properties of IBS

Eigenstates of integrable Hamiltonian can be labelled by Bethe
roots, solutions to certain Bethe ansatz equations (BAEs).
There exists a selection rule for the overlap between an integrable
boundary state and a Bethe state. The overlap is nonzero only
when the Bethe roots satisfy certain pairing conditions.
When this selection rule is satisfied, the overlap can often be
expressed as a product of a Gaudin determinant detG+ and a
prefactor. Great simplification!
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ABJM theory

Aharony-Bergman-Jafferis-Maldacena (ABJM) theory is a 3d
N = 6 Chern-Simons-matter theory.
The gauge group is U(N)× U(N) with CS levels (k,−k).
The gauge fields are denoted by Aµ and Âµ, respectively.
The matter fields include complex scalars Y A and spinors ψA

(A = 1, · · · , 4) in the bi-fundamental representation of the gauge
group.
This theory should be low energy effective theory of N M2-branes
putting at the tip of C4/Zk.
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Holographic duals

When N ≫ k5, this theory is dual to M-theory on AdS4 × S7/Zk.
When k ≪ N ≪ k5, a better description is in terms of IIA
superstring theory on AdS4 ×CP3.
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Bosonic 1/6-BPS circular WLs

We consider the Wilson loops (WLs) along
xµ(τ) = (R cos τ,R sin τ, 0), τ ∈ [0, 2π].
The construction is the following,

WB
1/6 = TrP exp

(
−i
∮
dτAB

1/6(τ)

)
, (8)

ŴB
1/6 = TrP exp

(
−i
∮
dτÂB

1/6(τ)

)
, (9)

AB
1/6 = Aµẋ

µ +
2π

k
R J

I Y IY †
J |ẋ| , (10)

ÂB
1/6 = Âµẋ

µ +
2π

k
RJ

IY
†
J Y

I |ẋ| , (11)

with RI
J = diag(i, i,−i,−i). [Drukker, Plefka, Young, 08][Chen,

JW, 08][Rey, Suyama, Yamaguchi, 08]
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Half-BPS WLs

Drukker and Trancanelli found the half-BPS WLs in 2009 by
including the fermions in the construction.

W1/2 = TrP exp

(
−i
∮
dτL1/2(τ)

)
, L1/2 =

(
A f̄1
f2 Â

)
,

A = Aµẋ
µ +

2π

k
U J
I Y IY †

J |ẋ| , f̄1 =

√
2π

k
ᾱζ̄ψ1|ẋ| , (12)

Â = Âµẋ
µ +

2π

k
U J
I Y †

J Y
I |ẋ| , f2 =

√
2π

k
ψ†1ηβ|ẋ| , (13)

with ᾱβ = i, and U J
I = diag(i,−i,−i,−i).
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Fermionic 1/6-BPS WL

We found various fermionic 1/6-BPS WLs along a circle [Ouyang,
JW, Zhang, 15], [My talk @ EAJW16].
Here we focus on a class of fermionic 1/6-BPS WLs:

WF
1/6 = TrP exp

(
−i
∮
dτLF

1/6(τ)

)
, LF

1/6 =

(
A f̄1
f2 Â

)
,

A = Aµẋ
µ +

2π

k
U J
I Y IY †

J |ẋ| , f̄1 =

√
2π

k
ᾱζ̄ψ1|ẋ| , (14)

Â = Âµẋ
µ +

2π

k
U J
I Y †

J Y
I |ẋ| , f2 =

√
2π

k
ψ†1ηβ|ẋ| , (15)

with U J
I = diag(i, i− 2ᾱβ,−i,−i).

Jun-Bao Wu TJU



Fermionic 1/6-BPS WLs

When ᾱ = β = 0, these fermionic 1/6-BPS WLs become
(essentially) the bosonic 1/6-BPS WLs.
When ᾱβ = i, these fermionic 1/6-BPS WLs become half-BPS
WLs.
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Local operators

We are interested in the tree-level correlation function of a BPS
WL along xµ(τ) = (R cos τ,R sin τ, 0) and a local operator OC at
the origin.
The definition of OC is OC = CJ1···JL

I1···IL tr(Y I1Y †
J1

· · ·Y ILY †
JL
).

When C is symmetric and traceless, OC is a chiral primary
operator.
Here we take OC to be a generic local operator which is
eigen-operator of the planar two-loop anomalous dimension
matrix.
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ABJM spin chain

The operator OC = CJ1···JL
I1···IL Tr(Y I1Y †

J1
· · ·Y ILY †

JL
) can be mapped

to a state |C⟩ := CJ1···JL
I1···IL |I1J̄1 · · · ILJ̄L⟩ on an alternating closed

SU(4) spin chain with length 2L.
The Hilbert space of this chain is C8L = ⊗2L

i=1C
4.

The odd site of the chain is in the 4 representation of SU(4), while
the even site is in the 4̄ representation.
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The spin chain Hamiltonian

The planar two-loop anomalous dimension matrix can be map to
the following Hamiltonian on the above chain ([Minahan, Zarembo,
08][Bak, Rey, 08]),

H =
λ2

2

2L∑
l=1

(2− 2Pl,l+2 + Pl,l+2Kl,l+1 +Kl,l+1Pl,l+2) , (16)

where Pab and Kab are permutation and trace operators acting on
the a-th and b-th sites. We denote the set of orthonormal basis of
the Hilbert space at each site by |i⟩, i = 1, · · · , 4. These two
operators act as

P|i⟩ ⊗ |j⟩ = |j⟩ ⊗ |i⟩, K|i⟩ ⊗ |j⟩ = δij

4∑
k=1

|k⟩ ⊗ |k⟩ . (17)
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Integrability

Using algebraic Bethe ansatz method one can constructed two
transfer matrices τ(u) and τ̄(u), satisfying

[τ(u), τ(v)] = [τ(u), τ̄(v)] = [τ̄(u), τ̄(v)] = 0 . (18)

They are generating functions of commuting conserved charges,
among whom there is the Hamiltonian.
This proves the integrability of two-loop ABJM spin chain.
[Minahan, Zarembo, 08][Bak, Rey, 08]
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Bethe roots

Eigenstates of H can be constructed using algebraic Bethe ansatz
and the states are parameterized by three set of Bethe roots,

u1, · · · , uKu , (19)

v1, · · · , vKv , (20)

w1, · · · , wKw . (21)
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Bethe ansatz equations

These Bethe roots should satisfy the following Bethe ansatz
equations,

1 =

(
uj +

i
2

uj − i
2

)L Ku∏
k=1
k ̸=j

S (uj , uk)

Kw∏
k=1

S̃ (uj , wk) , (22)

1 =

Kw∏
k=1
k ̸=j

S (wj , wk)

Ku∏
k=1

S̃ (wj , uk)

Kv∏
k=1

S̃ (wj , vk) , (23)

1 =

(
vj +

i
2

vj − i
2

)L Kv∏
k=1
k ̸=j

S (vj , vk)

Kw∏
k=1

S̃ (vj , wk) , (24)
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Bethe ansatz equations

In the previous page, the S-matrices S(u, v) and S̃(u, v) are given
by

S(u, v) ≡ u− v − i

u− v + i
, S̃(u, v) ≡

u− v + i
2

u− v − i
2

. (25)

The cyclicity property of the single trace operator is equivalent to
the zero momentum condition

1 =

Ku∏
j=1

uj +
i
2

uj − i
2

Kv∏
j=1

vj +
i
2

vj − i
2

. (26)

The eigenvalues of τ(u), τ̄(u),H on the Bethe state |u,v,w⟩ can
be expressed in terms of the Bethe roots, u,v,w.
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Numerical solution

The BAEs and zero momentum condition can be solved using
rational Q-system. [Marboe, Volin, 16][Gu, Jiang, Sperling, 22].
The Bethe states can be constructed using the algorithm in [Yang,
Jiang, JW, Komatsu, 21] based on coordinate Bethe ansatz.
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Wick contractions

We plan to study the tree-level correlation function of a BPS WL
and a local operator. We take W (C)B1/6 as an example. At
tree-level, the correlator ⟨W (C)B1/6OC(0)⟩ only gets contributions
from

∮
· · ·
∮
dτ1>2>···>L

(
2π

k

)L

⟨tr(RJ̃1
Ĩ1
Y Ĩ1(x1)Y

†
J̃1
(x1) · · ·

RJ̃L
ĨL
Y ĨL(xL)Y

†
J̃L
(xL))C

J1···JL
I1···IL tr(Y I1(0)Y †

J1
(0) · · ·

Y IL(0)Y †
JL
(0))⟩ , (27)

where xi = (R cos τi, R sin τi, 0), i = 1, · · · , L, and∮
· · ·
∮
dτ1>2>···>L =

∫ 2π

0
dτ1

∫ τ1

0
dτ2 · · ·

∫ τL−1

0
dτL . (28)
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Wick contractions

One can easily obtain

⟨W (C)B1/6OC(0)⟩ =
λ2LkL

(L− 1)!(2R)2L
CJ1···JL
I1···IL R

IL
JL

· · ·RI1
J1
. (29)

Here λ ≡ N
k is the ’t Hooft coupling of ABJM theory and we have

used the tree-level propagators of the scalar fields

⟨Y Iα
β̄(x)Y

† γ̄
J ρ(y)⟩ =

δIJδ
α
ρ δ

γ̄

β̄

4π|x− y|
. (30)
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Boundary state

In the spin chain language, we can introduce the following
boundary state

|BB
1/6⟩ = |BR⟩ , (31)

where, for a four-dimensional matrix M , we define the boundary
state |BM ⟩ through

⟨BM | ≡M I1
J1
M I2

J2
· · ·M IL

JL
⟨I1, J1, · · · , IL, JL| =

(
M I

J⟨I, J |
)⊗L

,
(32)

which is a two-site state.
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The overlap

Then the above correlation function can be expressed as

⟨W (C)B1/6OC(0)⟩ =
λ2LkL

(L− 1)!(2R)2L
⟨BB

1/6|OC⟩ , (33)

where |OC⟩ is the spin chain state corresponding to the operator OC .
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The norm

Let us define the normalization factor NO using the two-point
function of O and O† as

⟨O(x)O†(y)⟩ = NO
|x− y|2∆O

, (34)

where ∆O is the conformal dimension of O.
At tree level and the planar limit, we have

NO =

(
N

4π

)2L

L⟨O|O⟩ . (35)
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WL one-point function

We define the Wilson-loop one-point function as

⟨⟨O⟩⟩W (C) ≡
⟨W (C)O⟩√

NO
. (36)

Then for WB
1/6 we have

⟨⟨O⟩⟩W (C)B
1/6

=
πLλL

R2L(L− 1)!
√
L

⟨BB
1/6|O⟩√
⟨O|O⟩

. (37)

The computation of the Wilson loop one-point function thus
amounts to the calculation of

⟨BB
1/6|O⟩√
⟨O|O⟩

, (38)

which will be performed by integrability in some cases.
Jun-Bao Wu TJU



Boundary states from other WLs

For Ŵ (C)B1/6, the boundary state is

⟨B̂B
1/6| = RI1

JL
RI2

J1
· · ·RIL

JL−1
⟨I1, J1, · · · , IL, JL| . (39)

We can rewrite |B̂B
1/6⟩ as

|B̂B
1/6⟩ = Ueven|BB

1/6⟩ (40)

where Ueven is the shift operator which shifts all even site to the left
by two units and leave the odd sites untouched.
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Boundary states from other WLs

The boundary state from WF
1/6 is

|BF
1/6⟩ = (1 + Ueven)|BU ⟩ , (41)

with U = diag(i, i− 2ᾱ1β1,−i,−i).
The boundary state from W1/2 is

|B1/2⟩ = |BF
1/6⟩|ᾱ1β1=i (42)
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IBS from WLs

Partly based on [Piroli, Pozsgay, Vernier, 17], we proved that the
boundary state |B⟩ from a bosonic 1/6-BPS WL or a half-BPS WL
statisfies the following twisted integrable condition,

τ(−u− 2)|B⟩ = τ(u)|B⟩. (43)

This leads to the pairing condition which states that ⟨B|u,v,w⟩ is
non-zero only when the selection rule

u = −v , w = −w (44)

is satisfied.
Here u,v,w are three sets of Bethe roots.
Another selection rule for ⟨B|u,v,w⟩ being nonzero is that
Ku = Kv = Kw = L.
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Non-integrable boundary states

In our paper, we also showed that the boundary state from a
generic(∗) fermionic 1/6-BPS WL is not integrable.
∗ By ‘generic’, we mean that this WL is neither half-BPS nor
essentially bosonic 1/6-BPS.

Jun-Bao Wu TJU



Overlaps

We obtained the following formula for the normalized overlap
between |BR

1/6⟩ and a Bethe state,

|⟨BR
1/6|u,v,w⟩|2

⟨u,v,w|u,v,w⟩
=

Kw/2∏
i=1

w2
i

w2
i + 1/4

× detG+

detG− . (45)

Here the Bethe roots satisfy the pairing condition, G+ and G− are
Gaudin matrices depending on u,v,w. The definition of these
matrices can be found in [Yang, Jiang, Komatsu, JW, 21]
This result was obtained using [Gombor, Bajnok, 20][Gombor,
Kristjansen, 22] and passed non-trivial checks based on
numerical computations.
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Overlaps

For another bosonic 1/6-BPS WL, we have

⟨B̂R
1/6|u,v,w⟩√

⟨u,v,w|u,v,w⟩
=

Ku∏
j=1

uj + i/2

uj − i/2

⟨BR|u,v,w⟩√
⟨u,v,w|u,v,w⟩

. (46)

Hence there is a relative phase between these two boundary
state.
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Overlaps

For half-BPS WLs, we have

|⟨B1/2|u,−u,w⟩|2

⟨u,−u,w|u,−u,w⟩
=

∣∣∣∣∣1 +
Ku∏
j=1

(
uj + i/2

uj − i/2

)2
∣∣∣∣∣
2

|⟨BU |u,−u,w⟩|2

⟨u,−u,w|u,−u,w⟩
.

(47)

|⟨BU |u,−u,w⟩|2

⟨u,−u,w|u,−u,w⟩
= (−1)L

Ku∏
i=1

(
u2i +

1

4

) [Kw/2]∏
j=1

1

w2
i (w

2
i + 1/4)

detG+

detG−
.

(48)
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Summary

By studying WL one-point function at tree level, we found that
bosonic 1/6-BPS and half-BPS WLs lead to integrable boundary
states (in the scalar sector).
For generic fermionic 1/6-BPS WLs, the corresponding boundary
states are not integrable.
We computed the norm of the overlap of the integrable boundary
states from WLs and the Bethe states.
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Outlook

Compute the phases of the overlaps when the boundary states
from WLs are integrable.
Are boundary states from bosonic 1/6-BPS and half-BPS WLs
integrable in the full sector and at higher loop level?
Possible all loop overlaps in the asymptotic sense.
And finite size effects from TBA.
Integrable boundary states from circular WLs in higher
dimensional representations of a suitable (super-)group? How
about the case of more complicated WLs?
Correlators of BPS WLs and CPOs from localization and/or
holography.
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Thanks for Your Attention !
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