Wilson-loop One-point Functions in ABJM Theory

Jun-Bao Wu
Center for Joint Quantum Studies Tianjin University

Based on Yunfeng Jiang, JW and Peihe Yang, JHEP09(2023)047, [arxiv: 2306.05773]
East Asia Joint Workshop on Fields and Strings 2023
Northwest University, Xi'an, China

Nov. 16, 2023

Introduction

- AdS/CFT correspondence plays an important role in the study of theoretical physics in the since 1997. [Maldacena, 97][Gubser, Klebanov, Polyakov, 98][Witten, 98]
- In many cases, this correspondence is a strong-weak duality.
- So we can use weakly coupled gravity/string theory to compute quantities in strongly coupled gauge theory in the large N limit.
- The quantities include amplitudes, correlation functions of local operators, vacuum expectation values of loop operators, entanglement entropy, etc.

Introduction

- However, this also makes it hard to confirm this correspondences, since we need to compute quantities in the gauge theory side non-perturbatively.
- The non-perturbative tools in the field theory side of gauge/gravity correspondence include integrability, supersymmetric localization, conformal bootstrap...
- Integrability makes people be able to compute many quantities in the large N limit, even beyond the BPS sectors.

Integrability in $A d S_{5} / C F T_{4}$

- Minahan and Zarembo (02) found that the planar one-loop anomalous dimension matrix in the $S O(6)$ sector of $\mathcal{N}=4$ SYM can be mapped to an integrable Hamiltonian on a spin chain!
- Then the eigenvalues of this anomalous dimension matrix can be computed using intergrability.
- This was later generalized to the full sector at planar all-loop level (in the asymptotic sense). [Beisert, Kistjansen, Staudacher, 03][Beisert, Staudacher, 04] ...
- Benna, Polchinski and Roiban (03) found that the worldsheet theory of IIB superstring on $A d S_{5} \times S^{5}$ in the free limit is a two-dimensional integrable field theory.
- Integrability is an important non-pertubative tool in $A d S_{5} / C F T_{4}$ correspondence.

Integrability in $A d S_{4} / C F T_{3}$

- Three dimensional $\mathcal{N}=6 U(N)_{k} \times U(N)_{-k}$ super-Chern-Simons theory is dual to IIA string theory on $A d S_{4} \times \mathbf{C P}^{3}$.
- The integrable structure was also found in this $A d S_{4} / C F T_{3}$ correspondence. [Minahan, Zarembo, 08][Bak, Rey, 08][Gromov, Vieira, 08]
- Almost every aspect of integrability in this case is more complicated and difficult.

Integrable boundary state (IBS)

- Integrable boundary states play important role in both quantum quench dynamics and AdS/CFT correspondence. [Piroli, Pozsgay, Vernier, 17]
- IBS appears in the one-point functions of a single-trace operator with a domain wall [de Leeuw, Kristjansen, Zarembo, 15]/Wilson loop [Jiang, Komatsu, Vescovi, to appear]/'t Hooft loop [Kristjansen, Zarembo, 23], and three point functions of two BPS determinant operators and one single-trace operator in $\mathcal{N}=4$ SYM theory [Jiang, Komatsu, Vescovi, 19].

IBS in ABJM theory

- In ABJM theory, IBS also appears in similar three-point functions [Yang, Jiang, Komatsu, JW, 21] and domain wall one-point functions [Kristjansen, Vu, Zarembo, 21].
- One aim of this talk is to show that IBS also appears in some BPS Wilson-loop one-point functions in ABJM theory.

Heisenberg XXX spin chain

- The Hilbert space of a closed XXX spin chain,

$$
\begin{equation*}
\mathcal{H}=\otimes_{i=1}^{L} \mathcal{H}_{i}, \mathcal{H}_{i} \cong \mathbf{C}^{2} . \tag{1}
\end{equation*}
$$

- We consider the Hamiltonian

$$
\begin{equation*}
H=J \sum_{j=1}^{L}\left(S_{j}^{x} S_{j+1}^{x}+S_{j}^{y} S_{j+1}^{y}+S_{j}^{z} S_{j+1}^{z}\right) \tag{2}
\end{equation*}
$$

with periodic boundary condition,

$$
\begin{equation*}
S_{L+1}^{\alpha}=S_{1}^{\alpha}, \alpha=x, y, z \tag{3}
\end{equation*}
$$

Conserved charges of Heisenberg XXX spin chain

- This Hamiltonian is integrable.
- It has infinity many conserved charges, $Q_{j}, j=1,2, \ldots$
- The generating function of these Q 's can be chosen as

$$
\begin{equation*}
T(u)=U \exp \left(\sum_{n=1}^{\infty} \frac{u^{n}}{n!} Q_{n+1}\right) \tag{4}
\end{equation*}
$$

- Here $U=T(0)=Q_{1}$ is a shift operator.

IBS for XXX chain

- The definition of IBS [Piroli, Pozsgay, Vernier, 17] for XXX chain is that the state $|B\rangle$ satisfying

$$
\begin{equation*}
Q_{2 l+1}|B\rangle=0, l=1,2, \cdots \tag{5}
\end{equation*}
$$

- This is equivalent to

$$
\begin{equation*}
\Pi T(u) \Pi|B\rangle=T(u)|B\rangle \tag{6}
\end{equation*}
$$

where Π is the reflection operator:

$$
\begin{equation*}
\Pi\left|i_{1}, i_{2}, \cdots, i_{L}\right\rangle=\left|i_{L}, i_{L-1}, \cdots, i_{1}\right\rangle . \tag{7}
\end{equation*}
$$

- For ABJM theory, since there are two sets of conserved charges, the definition of the integrable boundary states is a bit different. (More on this later.)

Properties of IBS

- Eigenstates of integrable Hamiltonian can be labelled by Bethe roots, solutions to certain Bethe ansatz equations (BAEs).
- There exists a selection rule for the overlap between an integrable boundary state and a Bethe state. The overlap is nonzero only when the Bethe roots satisfy certain pairing conditions.
- When this selection rule is satisfied, the overlap can often be expressed as a product of a Gaudin determinant $\operatorname{det} G_{+}$and a prefactor. Great simplification!

ABJM theory

- Aharony-Bergman-Jafferis-Maldacena (ABJM) theory is a $3 d$ $\mathcal{N}=6$ Chern-Simons-matter theory.
- The gauge group is $U(N) \times U(N)$ with CS levels $(k,-k)$.
- The gauge fields are denoted by A_{μ} and \hat{A}_{μ}, respectively.
- The matter fields include complex scalars Y^{A} and spinors ψ_{A} ($A=1, \cdots, 4$) in the bi-fundamental representation of the gauge group.
- This theory should be low energy effective theory of N M2-branes putting at the tip of $\mathbf{C}^{4} / \mathbf{Z}_{k}$.

Holographic duals

- When $N \gg k^{5}$, this theory is dual to M-theory on $\operatorname{AdS} S_{4} \times S^{7} / Z_{k}$.
- When $k \ll N \ll k^{5}$, a better description is in terms of IIA superstring theory on $A d S_{4} \times \mathbf{C P}^{3}$.

Bosonic 1/6-BPS circular WLs

- We consider the Wilson loops (WLs) along $x^{\mu}(\tau)=(R \cos \tau, R \sin \tau, 0), \tau \in[0,2 \pi]$.
- The construction is the following,

$$
\begin{gather*}
W_{1 / 6}^{B}=\operatorname{Tr} \mathcal{P} \exp \left(-i \oint d \tau \mathcal{A}_{1 / 6}^{B}(\tau)\right), \tag{8}\\
\hat{W}_{1 / 6}^{B}=\operatorname{Tr} \mathcal{P} \exp \left(-i \oint d \tau \hat{\mathcal{A}}_{1 / 6}^{B}(\tau)\right), \tag{9}\\
\mathcal{A}_{1 / 6}^{B}=A_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k} R_{I}{ }^{J} Y^{I} Y_{J}^{\dagger}|\dot{x}| \tag{10}\\
\hat{\mathcal{A}}_{1 / 6}^{B}=\hat{A}_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k} R_{I}^{J} Y_{J}^{\dagger} Y^{I}|\dot{x}| \tag{11}
\end{gather*}
$$

with $R^{I}{ }_{J}=\operatorname{diag}(i, i,-i,-i)$. [Drukker, Plefka, Young, 08][Chen, JW, 08][Rey, Suyama, Yamaguchi, 08]

Half-BPS WLs

- Drukker and Trancanelli found the half-BPS WLs in 2009 by including the fermions in the construction.

$$
\begin{align*}
& W_{1 / 2}=\operatorname{Tr} \mathcal{P} \exp \left(-i \oint d \tau L_{1 / 2}(\tau)\right), \quad L_{1 / 2}=\left(\begin{array}{cc}
\mathcal{A} & \bar{f}_{1} \\
f_{2} & \hat{\mathcal{A}}
\end{array}\right) \\
& \mathcal{A}=A_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k} U_{I}^{J} Y^{I} Y_{J}^{\dagger}|\dot{x}|, \quad \bar{f}_{1}=\sqrt{\frac{2 \pi}{k}} \bar{\alpha} \bar{\zeta} \psi_{1}|\dot{x}| \tag{12}\\
& \hat{\mathcal{A}}=\hat{A}_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k} U_{I}^{J} Y_{J}^{\dagger} Y^{I}|\dot{x}|, \quad f_{2}=\sqrt{\frac{2 \pi}{k}} \psi^{\dagger 1} \eta \beta|\dot{x}| \tag{13}
\end{align*}
$$

with $\bar{\alpha} \beta=i$, and $U_{I}{ }^{J}=\operatorname{diag}(i,-i,-i,-i)$.

Fermionic 1/6-BPS WL

- We found various fermionic 1/6-BPS WLs along a circle [Ouyang, JW, Zhang, 15], [My talk @ EAJW16].
- Here we focus on a class of fermionic 1/6-BPS WLs:

$$
\begin{align*}
& W_{1 / 6}^{F}=\operatorname{Tr} \mathcal{P} \exp \left(-i \oint d \tau L_{1 / 6}^{F}(\tau)\right), \quad L_{1 / 6}^{F}=\left(\begin{array}{cc}
\mathcal{A} & \bar{f}_{1} \\
f_{2} & \hat{\mathcal{A}}
\end{array}\right) \\
& \mathcal{A}=A_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k} U_{I}^{J} Y^{I} Y_{J}^{\dagger}|\dot{x}|, \quad \bar{f}_{1}=\sqrt{\frac{2 \pi}{k}} \bar{\alpha} \bar{\zeta} \psi_{1}|\dot{x}| \tag{14}\\
& \hat{\mathcal{A}}=\hat{A}_{\mu} \dot{x}^{\mu}+\frac{2 \pi}{k} U_{I}^{J} Y_{J}^{\dagger} Y^{I}|\dot{x}|, \quad f_{2}=\sqrt{\frac{2 \pi}{k}} \psi^{\dagger 1} \eta \beta|\dot{x}| \tag{15}
\end{align*}
$$

with $U_{I}{ }^{J}=\operatorname{diag}(i, i-2 \bar{\alpha} \beta,-i,-i)$.

Fermionic 1/6-BPS WLs

- When $\bar{\alpha}=\beta=0$, these fermionic $1 / 6$-BPS WLs become (essentially) the bosonic $1 / 6$-BPS WLs.
- When $\bar{\alpha} \beta=i$, these fermionic $1 / 6$-BPS WLs become half-BPS WLs.

Local operators

- We are interested in the tree-level correlation function of a BPS WL along $x^{\mu}(\tau)=(R \cos \tau, R \sin \tau, 0)$ and a local operator \mathcal{O}_{C} at the origin.
- The definition of \mathcal{O}_{C} is $\mathcal{O}_{C}=C_{I_{1} \cdots I_{L}}^{J_{1} \cdots J_{L}} t r\left(Y^{I_{1}} Y_{J_{1}}^{\dagger} \cdots Y^{I_{L}} Y_{J_{L}}^{\dagger}\right)$.
- When C is symmetric and traceless, \mathcal{O}_{C} is a chiral primary operator.
- Here we take \mathcal{O}_{C} to be a generic local operator which is eigen-operator of the planar two-loop anomalous dimension matrix.

ABJM spin chain

- The operator $\mathcal{O}_{C}=C_{I_{1} \cdots I_{L}}^{J_{1} \cdots J_{L}} \operatorname{Tr}\left(Y^{I_{1}} Y_{J_{1}}^{\dagger} \cdots Y^{I_{L}} Y_{J_{L}}^{\dagger}\right)$ can be mapped to a state $|C\rangle:=C_{I_{1} \cdots I_{L}}^{J_{1} \cdots J_{L}}\left|I_{1} \bar{J}_{1} \cdots I_{L} \bar{J}_{L}\right\rangle$ on an alternating closed $S U(4)$ spin chain with length $2 L$.
- The Hilbert space of this chain is $\mathbf{C}^{8 L}=\otimes_{i=1}^{2 L} \mathbf{C}^{4}$.
- The odd site of the chain is in the 4 representation of $S U(4)$, while the even site is in the $\overline{4}$ representation.

The spin chain Hamiltonian

- The planar two-loop anomalous dimension matrix can be map to the following Hamiltonian on the above chain ([Minahan, Zarembo, 08][Bak, Rey, 08]),

$$
\begin{equation*}
\mathbb{H}=\frac{\lambda^{2}}{2} \sum_{l=1}^{2 L}\left(2-2 \mathrm{P}_{l, l+2}+\mathrm{P}_{l, l+2} \mathrm{~K}_{l, l+1}+\mathrm{K}_{l, l+1} \mathrm{P}_{l, l+2}\right) \tag{16}
\end{equation*}
$$

where $\mathrm{P}_{a b}$ and $\mathrm{K}_{a b}$ are permutation and trace operators acting on the a-th and b-th sites. We denote the set of orthonormal basis of the Hilbert space at each site by $|i\rangle, i=1, \cdots, 4$. These two operators act as

$$
\begin{equation*}
\mathrm{P}|i\rangle \otimes|j\rangle=|j\rangle \otimes|i\rangle, \quad \mathrm{K}|i\rangle \otimes|j\rangle=\delta_{i j} \sum_{k=1}^{4}|k\rangle \otimes|k\rangle . \tag{17}
\end{equation*}
$$

Integrability

- Using algebraic Bethe ansatz method one can constructed two transfer matrices $\tau(u)$ and $\bar{\tau}(u)$, satisfying

$$
\begin{equation*}
[\tau(u), \tau(v)]=[\tau(u), \bar{\tau}(v)]=[\bar{\tau}(u), \bar{\tau}(v)]=0 . \tag{18}
\end{equation*}
$$

- They are generating functions of commuting conserved charges, among whom there is the Hamiltonian.
- This proves the integrability of two-loop ABJM spin chain. [Minahan, Zarembo, 08][Bak, Rey, 08]

Bethe roots

- Eigenstates of \mathbb{H} can be constructed using algebraic Bethe ansatz and the states are parameterized by three set of Bethe roots,

$$
\begin{gather*}
u_{1}, \cdots, u_{K_{\mathbf{u}}} \tag{19}\\
v_{1}, \cdots, v_{K_{\mathbf{v}}} \tag{20}\\
w_{1}, \cdots, w_{K_{\mathbf{w}}} \tag{21}
\end{gather*}
$$

Bethe ansatz equations

- These Bethe roots should satisfy the following Bethe ansatz equations,

$$
\begin{align*}
1 & =\left(\frac{u_{j}+\frac{i}{2}}{u_{j}-\frac{i}{2}}\right)^{L} \prod_{\substack{k=1 \\
k \neq j}}^{K_{\mathrm{u}}} S\left(u_{j}, u_{k}\right) \prod_{k=1}^{K_{\mathrm{w}}} \tilde{S}\left(u_{j}, w_{k}\right) \tag{22}\\
1 & =\prod_{\substack{k=1 \\
k \neq j}}^{K_{\mathrm{w}}} S\left(w_{j}, w_{k}\right) \prod_{k=1}^{K_{\mathrm{u}}} \tilde{S}\left(w_{j}, u_{k}\right) \prod_{k=1}^{K_{\mathrm{v}}} \tilde{S}\left(w_{j}, v_{k}\right) \tag{23}\\
1 & =\left(\frac{v_{j}+\frac{i}{2}}{v_{j}-\frac{i}{2}}\right)^{L} \prod_{\substack{k=1 \\
k \neq j}}^{K_{\mathrm{v}}} S\left(v_{j}, v_{k}\right) \prod_{k=1}^{K_{\mathrm{w}}} \tilde{S}\left(v_{j}, w_{k}\right) \tag{24}
\end{align*}
$$

Bethe ansatz equations

- In the previous page, the S-matrices $S(u, v)$ and $\tilde{S}(u, v)$ are given by

$$
\begin{equation*}
S(u, v) \equiv \frac{u-v-i}{u-v+i}, \quad \tilde{S}(u, v) \equiv \frac{u-v+\frac{i}{2}}{u-v-\frac{i}{2}} . \tag{25}
\end{equation*}
$$

- The cyclicity property of the single trace operator is equivalent to the zero momentum condition

$$
\begin{equation*}
1=\prod_{j=1}^{K_{\mathrm{u}}} \frac{u_{j}+\frac{i}{2}}{u_{j}-\frac{i}{2}} \prod_{j=1}^{K_{\mathbf{v}}} \frac{v_{j}+\frac{i}{2}}{v_{j}-\frac{i}{2}} . \tag{26}
\end{equation*}
$$

- The eigenvalues of $\tau(u), \bar{\tau}(u), \mathbb{H}$ on the Bethe state $|\mathbf{u}, \mathbf{v}, \mathbf{w}\rangle$ can be expressed in terms of the Bethe roots, $\mathbf{u}, \mathbf{v}, \mathbf{w}$.

Numerical solution

- The BAEs and zero momentum condition can be solved using rational Q-system. [Marboe, Volin, 16][Gu, Jiang, Sperling, 22].
- The Bethe states can be constructed using the algorithm in [Yang, Jiang, JW, Komatsu, 21] based on coordinate Bethe ansatz.

Wick contractions

- We plan to study the tree-level correlation function of a BPS WL and a local operator. We take $W(\mathcal{C})_{1 / 6}^{B}$ as an example. At tree-level, the correlator $\left\langle W(\mathcal{C})_{1 / 6}^{B} \mathcal{O}_{C}(0)\right\rangle$ only gets contributions from

$$
\begin{align*}
& \oint \cdots \oint d \tau_{1>2>\cdots>L}\left(\frac{2 \pi}{k}\right)^{L}\left\langle\operatorname { t r } \left(R_{\tilde{I}_{1}}^{\tilde{J}_{1}} Y^{\tilde{I}_{1}}\left(x_{1}\right) Y_{\tilde{J}_{1}}^{\dagger}\left(x_{1}\right) \cdots\right.\right. \\
& \left.R_{\tilde{I}_{L}}^{\tilde{J}_{L}} Y^{\tilde{I}_{L}}\left(x_{L}\right) Y_{\tilde{J}_{L}}^{\dagger}\left(x_{L}\right)\right) C_{I_{1} \cdots I_{L}}^{J_{1} \cdots J_{L}} \operatorname{tr}\left(Y^{I_{1}}(0) Y_{J_{1}}^{\dagger}(0) \cdots\right. \\
& \left.\left.Y^{I_{L}}(0) Y_{J_{L}}^{\dagger}(0)\right)\right\rangle \tag{27}
\end{align*}
$$

- where $x_{i}=\left(R \cos \tau_{i}, R \sin \tau_{i}, 0\right), i=1, \cdots, L$, and

$$
\begin{equation*}
\oint \cdots \oint d \tau_{1>2>\cdots>L}=\int_{0}^{2 \pi} d \tau_{1} \int_{0}^{\tau_{1}} d \tau_{2} \cdots \int_{0}^{\tau_{L-1}} d \tau_{L} \tag{28}
\end{equation*}
$$

Wick contractions

- One can easily obtain

$$
\begin{equation*}
\left\langle W(\mathcal{C})_{1 / 6}^{B} \mathcal{O}_{C}(0)\right\rangle=\frac{\lambda^{2 L} k^{L}}{(L-1)!(2 R)^{2 L}} C_{I_{1} \cdots I_{L}}^{J_{1} \cdots J_{L}} R_{J_{L}}^{I_{L}} \cdots R_{J_{1}}^{I_{1}} . \tag{29}
\end{equation*}
$$

- Here $\lambda \equiv \frac{N}{k}$ is the 't Hooft coupling of ABJM theory and we have used the tree-level propagators of the scalar fields

$$
\begin{equation*}
\left\langle Y^{I \alpha}{ }_{\bar{\beta}}(x) Y_{J}^{\dagger}{ }_{\rho}{ }_{\rho}(y)\right\rangle=\frac{\delta_{J}^{I} \delta_{\rho}^{\alpha} \delta_{\bar{\beta}}^{\bar{\gamma}}}{4 \pi|x-y|} . \tag{30}
\end{equation*}
$$

Boundary state

- In the spin chain language, we can introduce the following boundary state

$$
\begin{equation*}
\left|\mathcal{B}_{1 / 6}^{B}\right\rangle=\left|\mathcal{B}_{R}\right\rangle \tag{31}
\end{equation*}
$$

where, for a four-dimensional matrix M, we define the boundary state $\left|\mathcal{B}_{M}\right\rangle$ through

$$
\begin{equation*}
\left\langle\mathcal{B}_{M}\right| \equiv M_{J_{1}}^{I_{1}} M_{J_{2}}^{I_{2}} \cdots M_{J_{L}}^{I_{L}}\left\langle I_{1}, J_{1}, \cdots, I_{L}, J_{L}\right|=\left(M_{J}^{I}\langle I, J|\right)^{\otimes L} \tag{32}
\end{equation*}
$$

which is a two-site state.

The overlap

Then the above correlation function can be expressed as

$$
\begin{equation*}
\left\langle W(\mathcal{C})_{1 / 6}^{B} \mathcal{O}_{C}(0)\right\rangle=\frac{\lambda^{2 L} k^{L}}{(L-1)!(2 R)^{2 L}}\left\langle\mathcal{B}_{1 / 6}^{B} \mid \mathcal{O}_{C}\right\rangle \tag{33}
\end{equation*}
$$

where $\left|\mathcal{O}_{C}\right\rangle$ is the spin chain state corresponding to the operator \mathcal{O}_{C}.

The norm

- Let us define the normalization factor $\mathcal{N}_{\mathcal{O}}$ using the two-point function of \mathcal{O} and \mathcal{O}^{\dagger} as

$$
\begin{equation*}
\left\langle\mathcal{O}(x) \mathcal{O}^{\dagger}(y)\right\rangle=\frac{\mathcal{N}_{\mathcal{O}}}{|x-y|^{2 \Delta_{\mathcal{O}}}}, \tag{34}
\end{equation*}
$$

where $\Delta_{\mathcal{O}}$ is the conformal dimension of \mathcal{O}.

- At tree level and the planar limit, we have

$$
\begin{equation*}
\mathcal{N}_{\mathcal{O}}=\left(\frac{N}{4 \pi}\right)^{2 L} L\langle\mathcal{O} \mid \mathcal{O}\rangle \tag{35}
\end{equation*}
$$

WL one-point function

- We define the Wilson-loop one-point function as

$$
\begin{equation*}
\langle\langle\mathcal{O}\rangle\rangle_{W(\mathcal{C})} \equiv \frac{\langle W(\mathcal{C}) \mathcal{O}\rangle}{\sqrt{\mathcal{N}_{\mathcal{O}}}} . \tag{36}
\end{equation*}
$$

- Then for $W_{1 / 6}^{B}$ we have

$$
\begin{equation*}
\langle\langle\mathcal{O}\rangle\rangle_{W(\mathcal{C})_{1 / 6}^{B}}=\frac{\pi^{L} \lambda^{L}}{R^{2 L}(L-1)!\sqrt{L}} \frac{\left\langle\mathcal{B}_{1 / 6}^{B} \mid \mathcal{O}\right\rangle}{\sqrt{\langle\mathcal{O} \mid \mathcal{O}\rangle}} . \tag{37}
\end{equation*}
$$

- The computation of the Wilson loop one-point function thus amounts to the calculation of

$$
\begin{equation*}
\frac{\left\langle\mathcal{B}_{1 / 6}^{B} \mid \mathcal{O}\right\rangle}{\sqrt{\langle\mathcal{O} \mid \mathcal{O}\rangle}} \tag{38}
\end{equation*}
$$

which will be performed by integrability in some cases.

Boundary states from other WLs

- For $\hat{W}(\mathcal{C})_{1 / 6}^{B}$, the boundary state is

$$
\begin{equation*}
\left\langle\hat{\mathcal{B}}_{1 / 6}^{B}\right|=R_{J_{L}}^{I_{1}} R_{J_{1}}^{I_{2}} \cdots R_{J_{L-1}}^{I_{L}}\left\langle I_{1}, J_{1}, \cdots, I_{L}, J_{L}\right| . \tag{39}
\end{equation*}
$$

- We can rewrite $\left|\hat{\mathcal{B}}_{1 / 6}^{B}\right\rangle$ as

$$
\begin{equation*}
\left|\hat{\mathcal{B}}_{1 / 6}^{B}\right\rangle=U_{\text {even }}\left|\mathcal{B}_{1 / 6}^{B}\right\rangle \tag{40}
\end{equation*}
$$

where $U_{\text {even }}$ is the shift operator which shifts all even site to the left by two units and leave the odd sites untouched.

Boundary states from other WLs

- The boundary state from $W_{1 / 6}^{F}$ is

$$
\begin{equation*}
\left|\mathcal{B}_{1 / 6}^{F}\right\rangle=\left(1+U_{\text {even }}\right)\left|\mathcal{B}_{U}\right\rangle \tag{41}
\end{equation*}
$$

with $U=\operatorname{diag}\left(i, i-2 \bar{\alpha}^{1} \beta_{1},-i,-i\right)$.

- The boundary state from $W_{1 / 2}$ is

$$
\begin{equation*}
\left|\mathcal{B}_{1 / 2}\right\rangle=\left.\left|\mathcal{B}_{1 / 6}^{F}\right\rangle\right|_{\bar{\alpha}^{1} \beta_{1}=i} \tag{42}
\end{equation*}
$$

IBS from WLs

- Partly based on [Piroli, Pozsgay, Vernier, 17], we proved that the boundary state $|\mathcal{B}\rangle$ from a bosonic $1 / 6$-BPS WL or a half-BPS WL statisfies the following twisted integrable condition,

$$
\begin{equation*}
\tau(-u-2)|\mathcal{B}\rangle=\tau(u)|\mathcal{B}\rangle \tag{43}
\end{equation*}
$$

- This leads to the pairing condition which states that $\langle\mathcal{B} \mid \mathbf{u}, \mathbf{v}, \mathbf{w}\rangle$ is non-zero only when the selection rule

$$
\begin{equation*}
\mathbf{u}=-\mathbf{v}, \quad \mathbf{w}=-\mathbf{w} \tag{44}
\end{equation*}
$$

is satisfied.

- Here $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are three sets of Bethe roots.
- Another selection rule for $\langle\mathcal{B} \mid \mathbf{u}, \mathbf{v}, \mathbf{w}\rangle$ being nonzero is that $K_{\mathbf{u}}=K_{\mathbf{v}}=K_{\mathbf{w}}=L$.

Non-integrable boundary states

- In our paper, we also showed that the boundary state from a generic $\left(^{*}\right)$ fermionic $1 / 6-\mathrm{BPS}$ WL is not integrable.
- * By 'generic', we mean that this WL is neither half-BPS nor essentially bosonic $1 / 6$-BPS.

Overlaps

- We obtained the following formula for the normalized overlap between $\left|\mathcal{B}_{1 / 6}^{R}\right\rangle$ and a Bethe state,

$$
\begin{equation*}
\frac{\left|\left\langle\mathcal{B}_{1 / 6}^{R} \mid \mathbf{u}, \mathbf{v}, \mathbf{w}\right\rangle\right|^{2}}{\langle\mathbf{u}, \mathbf{v}, \mathbf{w} \mid \mathbf{u}, \mathbf{v}, \mathbf{w}\rangle}=\prod_{i=1}^{K_{\mathbf{w}} / 2} \frac{w_{i}^{2}}{w_{i}^{2}+1 / 4} \times \frac{\operatorname{det} G^{+}}{\operatorname{det} G^{-}} \tag{45}
\end{equation*}
$$

- Here the Bethe roots satisfy the pairing condition, G^{+}and G^{-}are Gaudin matrices depending on $\mathbf{u}, \mathbf{v}, \mathbf{w}$. The definition of these matrices can be found in [Yang, Jiang, Komatsu, JW, 21]
- This result was obtained using [Gombor, Bajnok, 20][Gombor, Kristjansen, 22] and passed non-trivial checks based on numerical computations.

Overlaps

- For another bosonic $1 / 6$-BPS WL, we have

$$
\begin{equation*}
\frac{\left\langle\widehat{\mathcal{B}}_{1 / 6}^{R} \mid \mathbf{u}, \mathbf{v}, \mathbf{w}\right\rangle}{\sqrt{\langle\mathbf{u}, \mathbf{v}, \mathbf{w} \mid \mathbf{u}, \mathbf{v}, \mathbf{w}\rangle}}=\prod_{j=1}^{K_{\mathbf{u}}} \frac{u_{j}+i / 2}{u_{j}-i / 2} \frac{\left\langle\mathcal{B}_{R} \mid \mathbf{u}, \mathbf{v}, \mathbf{w}\right\rangle}{\sqrt{\langle\mathbf{u}, \mathbf{v}, \mathbf{w} \mid \mathbf{u}, \mathbf{v}, \mathbf{w}\rangle}} \tag{46}
\end{equation*}
$$

- Hence there is a relative phase between these two boundary state.

Overlaps

For half-BPS WLs, we have

$$
\begin{gather*}
\frac{\left|\left\langle\mathcal{B}_{1 / 2} \mid \mathbf{u},-\mathbf{u}, \mathbf{w}\right\rangle\right|^{2}}{\langle\mathbf{u},-\mathbf{u}, \mathbf{w} \mid \mathbf{u},-\mathbf{u}, \mathbf{w}\rangle}=\left|1+\prod_{j=1}^{K_{\mathbf{u}}}\left(\frac{u_{j}+i / 2}{u_{j}-i / 2}\right)^{2}\right|^{2} \frac{\left|\left\langle\mathcal{B}_{U} \mid \mathbf{u},-\mathbf{u}, \mathbf{w}\right\rangle\right|^{2}}{\langle\mathbf{u},-\mathbf{u}, \mathbf{w} \mid \mathbf{u},-\mathbf{u}, \mathbf{w}\rangle} \tag{47}\\
\frac{\left|\left\langle\mathcal{B}_{U} \mid \mathbf{u},-\mathbf{u}, \mathbf{w}\right\rangle\right|^{2}}{\langle\mathbf{u},-\mathbf{u}, \mathbf{w} \mid \mathbf{u},-\mathbf{u}, \mathbf{w}\rangle}=(-1)^{L} \prod_{i=1}^{K_{\mathbf{u}}}\left(u_{i}^{2}+\frac{1}{4}\right) \prod_{j=1}^{\left[K_{\mathbf{w}} / 2\right]} \frac{1}{w_{i}^{2}\left(w_{i}^{2}+1 / 4\right)} \frac{\operatorname{det} G_{+}}{\operatorname{det} G_{-}} \tag{48}
\end{gather*}
$$

Summary

- By studying WL one-point function at tree level, we found that bosonic $1 / 6$-BPS and half-BPS WLs lead to integrable boundary states (in the scalar sector).
- For generic fermionic $1 / 6$-BPS WLs, the corresponding boundary states are not integrable.
- We computed the norm of the overlap of the integrable boundary states from WLs and the Bethe states.

Outlook

- Compute the phases of the overlaps when the boundary states from WLs are integrable.
- Are boundary states from bosonic $1 / 6$-BPS and half-BPS WLs integrable in the full sector and at higher loop level?
- Possible all loop overlaps in the asymptotic sense.
- And finite size effects from TBA.
- Integrable boundary states from circular WLs in higher dimensional representations of a suitable (super-)group? How about the case of more complicated WLs?
- Correlators of BPS WLs and CPOs from localization and/or holography.

Thanks for Your Attention!

