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• Entropy has played a significant role in recent developments in our
understandings of holography and quantum gravity. Since the seminal
proposal of holographic entanglement entropy in Ryu and Takayanagi,
2006, there have been many generalizations and applications.

• In particular, a generalized version of the entropy may follow the Page
curve of the black hole entropy during the Hawking radiation process,
see Zhenbin Yang, Masamichi Miyaji’s talks. These significant progress
appear to be getting close toward a consensus on the resolution of the
famous black hole information paradox.

• The thermal mixed state in a quantum system can be obtained as
the reduced state by tracing over one party in a thermofield double
(TFD) state, which is a pure quantum state entangled between two
similar systems. The von Neumann entropy of the thermal state is the
entanglement entropy of the TFD state.

• The use of TFD states has been instrumental in our understandings of
holography with two boundaries, as well as in the study of von Neumann
algebra. (See e.g. some of Maldacena, Witten’s papers)



• Let 0 < λ1 ≤ λ2 ≤ · · · denote the eigenvalues of a Hamiltonian. For a

thermal state, the probability at an excited state is pi = 1
Ze
−βλi, where

β ≡ 1
kBT

is the inverse temperature and Z =
∑
i e
−βλi is the partition

function. The von Neumann entropy can be written as

S = −
∞∑
i=1

pi log(pi) = log(Z)+
β

Z

∑
i

λie
−βλi = log(Z)+T∂T log(Z). (1)

• For example, as a warm-up exercise, for the simple case of a harmonic

oscillator Ĥ = p̂2

2 + ω2x̂2

2 , it is not difficult compute the von Neumann

entropy of a thermal state exactly (set ~ = 1)

S =
βω

eβω − 1
− log(1− e−βω). (2)

• It is well known that one can couple two harmonic oscillators together

with a quadratic interaction, then the ground state of the combined

system is a TFD state Srednicki:1993.



• We will be interested in the high temperature limit where the probability

is more evenly distributed between all excited states, so the entropy

should be maximized. For the harmonic oscillator

S ∼ log(T ), T ∼ ∞. (3)

• More generally, we will use the number of states defined by

N(λ) = #{j ∈ N : λj < λ}. (4)

• The partition function can be computed by

Z =
∫ ∞

0
e−βλdN(λ). (5)

To compute the asymptotic behavior of the entropy, we only need the

asymptotic behavior of N(λ). For the harmonic oscillator, the number

of states goes like N(λ) ∼ λ, so we have Z ∼ T in the high temperature

limit and the first term in (1) dominates. We recover the result (3).



Calabi-Yau Quantum Mechanics

• We consider quantum systems derived from toric Calabi-Yau geome-
tries, where the Hamiltonians are exponential functions of the position
and momentum operators, e.g.

Ĥ = ex̂ + e−x̂ + ep̂ + e−p̂, P1 × P1 model,

Ĥ = ex̂ + ep̂ + e−x̂−p̂, P2 model.
(6)

• The perturbative quantization conditions are given by the Nekrasov-
Shatashvili limit of refined topological string theory.

• Furthermore, based on some works on numerical calculations of the
quantum spectrum Kallen and Marino, arXiv:1308.6485; MH and Wang,
arXiv:1406.6178, the exact quantization conditions including all non-
perturbative effects were conjectured in Grassi, Hatsuda, and Marino,
arXiv:1410.3382; X. Wang, Zhang, and MH, arXiv:1505.05360, where
the two seemingly different proposals turned out to be related by the
blowup equations Grassi and J. Gu, arXiv:1609.05914.



• Now known as the TS/ST (Topological String/Spectral Theory) cor-

respondence, it has attracted the attentions of many mathematicians

as well, with some promising results toward a proof of the conjecture.

• Some nice mathematical results on the asymptotics of the energy eigen-

values were proven in Laptev, Schimmer, and Takhtajan, 2016, 2019.

• The the number of states grow like

N(λ) ∼ log2(λ), λ ∼ ∞ (7)

where we have neglected the coefficient factor which depends on spe-

cific models.

• We see that the logarithmic growth is much slower than the linear

growth of the harmonic oscillator. As a result, the inverse Hamiltonian

Ĥ−1 is a trace class operator for the Calabi-Yau models, while it is not

for the harmonic oscillator, by checking the divergence of
∫∞ dN(λ)

λ .



• In the high temperature limit, the partition function is

Z ∼
∫ ∞

1
e−βλ

log(λ)

λ
dλ. (8)

This integral can be represented by the Meijer G-function. Using its

series expansion as well as some alternative elementary calculations, we

find the leading asymptotic behavior

Z ∼ log2(T ), T ∼ ∞. (9)

• So as in the harmonic oscillator case, the first term in (1) dominates

and we have

S ∼ log(Z) ∼ log(log(T )), T ∼ ∞. (10)

So the entropy grow much slower than the harmonic oscillator in the

high temperature limit.



Another Class of Models

• We consider a different class of models with polynomial potentials

Ĥ = ep̂ + e−p̂ +W (x̂), (11)

where W (x) = x2N + · · · is chosen to be an even degree 2N polynomial,
so that we have a confining potential and an infinite discrete spectrum.

• The mathematical result for the asymptotics of the number of states

N(λ) ∼ λ
1

2N log(λ), λ ∼ ∞. (12)

The growth is faster than the Calabi-Yau models in the previous section,
but slower than the standard harmonic oscillator.

• Similarly, we find the asymptotic behavior of the partition function
Z ∼ T

1
2N log(T ) and the asymptotic entropy

S ∼ log(Z) ∼ log(T ), T ∼ ∞. (13)

So the scaling behavior is actually the same as the standard harmonic
oscillator.



No Finite Bound for Entropy

• We consider whether it is possible to have a finite upper bound for ther-
mal entropy in the infinite temperature limit T →∞ for some quantum
systems.

• We assume that the Hilbert space is infinite dimensional where the
energy eigenvalues can be shifted to be all positive.
Further assume the sum in the partition function is convergent for any
finite temperature, so the partition function Z(T ) is well defined for any
T , i.e. there is no exponential growth of the number of states N(λ) as
in string theory.

• It is easy to check by taking derivative that both Z(T ) and S(T ) are
monotonically increasing functions of T

S(T ) = log(Z) + T∂T log(Z) > log(Z). (14)

Since the Hilbert space is infinite dimensional, the partition function
Z(T ) tends to infinity as T → ∞, therefore the entropy also tends to
infinity and there is no finite upper bound.



Some Discussions

• Although we focus on simple quantum systems, our study may provide

some useful experience for relevant questions in quantum gravity.

• In the context of the influential Swampland Program Vafa:2005, some

recent works have studied the species scale, the emergence string pro-

posal and their thermodynamics. In certain limit e.g. near boundary

of the moduli space, a tower of infinite number of string states may

become light.

• Another way to explore such emergence is the high temperature limit

considered here, where the highly excited states become equally prob-

able. Of course, it is well known that string theory has a Hagedorn

temperature, inverse proportional to the string length, where the par-

tition function diverges. In those contexts, the high temperature limit

should probably mean a temperature approaching the Hagedorn tem-

perature.



• A folklore of quantum gravity is the finiteness of entropy, in contrast
to its divergence in generic calculations in quantum field theory.

• Of course, the dimension of Hilbert space is infinite in perturbative
string theory but this is not necessarily in conflict with the folklore.
In a countable (separable) infinite dimensional Hilbert space, the von
Neumann entropy of a mixed state of trace class would be generically
still finite except in some very contrived circumstances.

• For example, for a probability distribution that scales as power law
pn ∼ n−α among an orthogonal basis of states, the convergence of the
sum

∑∞
n=1 pn is equivalent to α > 1, in which case the von Neumann

entropy −
∑∞
n=1 pn log(pn) is also finite.

• We may consider a more contrived probability distribution pn ∼ 1
n logα(n).

For α ≤ 1 the sum
∑∞
n=1 pn is divergent, while for α > 2 both sums∑∞

n=1 pn and −
∑∞
n=1 pn log(pn) are convergent. So in this case in a

limited range 1 < α ≤ 2 we can have a probability distribution where
the entropy is infinite.



• An important source of motivation comes from the finite horizon area of
de Sitter space, which appears to be the current state of our universe.
(cosmological horizon area ∼ entropy, Gibbons and Hawking, 1977.)
Some discussions of dark energy.

• Consider a 4d de Sitter space with a cosmological constant Λ > 0.
Some physical quantities (set ~ = c = 1)

The horizon size r ∼ Λ−
1
2,

The vacuum energy density ρvac ∼ m2
pΛ,

where mp ∼ l−1
p is the Planck mass.

• Astrophysical observations suggest

ρvac

m4
p
∼

Λ

m2
p
∼
l2p

r2
∼ 10−120 (15)

• The famous cosmological constant problem “why it is so small” can
be rephrased as:
Why the entropy of our universe is so big S ∼ r2

l2p
∼ 10120?



• Adding matters in a de Sitter space decreases the horizon area, so the

empty de Sitter is a state of maximal entropy.

E. Witten, arXiv:2308.03663: “... it is natural to think of the Hartle-

Hawking no boundary state as a universal state of maximum entropy,

...”, “... it is something like the infinite temperature limit of the ther-

mofield double state.”

• In the quantum models we studied, the entropy is indeed finite at a finite

temperature, but tends to infinity in the infinite temperature limit.

• Although we are not successful in calculating the entropy of our uni-

verse, it is useful to learn some lessons from these models and pose

the question for future research.

• Is it possible to get a finite maximal entropy in a similar natural limit

in some other situations?



• A similar situation appeared in our earlier study of the entropy of

Berenstein-Maldacena-Nastase (BMN) strings Huang:2019. In that

case, the pp-wave spacetime background is infinitely curved, the strings

become effectively infinitely long and tensionless with degenerate spec-

tra, so the Hagedorn temperature is zero.

• Instead, a real non-negative genus counting parameter in the dual BMN

double scaling limit becomes the effective string coupling g, playing a

similar role of temperature as in the current context.

• Due to the structure of dual free CFT correlators, we are only accessing

a countable infinite dimensional subspace of the whole Hilbert space of

excited string states.



• It was found that at finite coupling g, the entropy is indeed also finite,

while it is naively expected that as g → ∞, the probability would be

evenly distributed among the infinite dimensional Hilbert subspace, so

the entropy should likely tend to infinity, which by itself does not seem

to violate any fundamental principle of quantum gravity.

• Nevertheless, it would be a pleasant surprise if it turns out that the

entropy of BMN strings does have a finite upper bound as g → ∞,

strongly confirming a folklore of quantum gravity in an implausible

fashion. (Previously I proved S < (2 + ε) log g.)

Such a bound may be related to the entropy of our current universe

S ∼ 10120, thus could provide a natural estimate of the cosmological

constant.

• An encouraging hint is that for the Calabi-Yau models, which are re-

lated to topological string theory, a toy version of quantum gravity, the

entropy does grow much slower (10) than the conventional models. It

would be interesting to settle this issue in the future.
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