An Observable in Classical Pure AdS₃ Gravity: the Twist along a Geodesic

Jie-qiang Wu (ITP, CAS)

based on an on-going work with Xiao-shuai Wang

East Asia Joint Workshop on Fields and Strings 2023

Nov 14th, 2023

- In this work, we study a diffeomorphism invariant observable in the classical pure AdS₃, namely the twist along a geodesic
- The motivation to study the twist is that the twist only supports on the geodesic so may be a candidate element in the center
- We study the properties of the twist in the Hamiltonian formalism, and we get the following two results:
 - First, we get the system's evolution generated by the twist, which, under a proper gauge choice, exhibits a relative shift along the geodesic
 - Second, we show that the twist commutes with the length of the same geodesic, which supports our proposal that the twist is a candidate element in the center

Motivation: the Hilbert space of gravity

- We first introduce the motivation
- The construction of the Hilbert space of gravity is a long-standing problem, but is far from fully solved even in perturbative level
- One difficulty in solving this problem is from the gravitational constraints, because of which, the Hilbert space of the system is not tensor factorizable
- For example, in the right figure, we divide the whole system into two subsystems R and R^c; while, the Hilbert space of the whole system H cannot be written as a tensor product of the Hilbert spaces of the individual subsystems as H ≠ H_R ⊗ H_{R^c}

The Hilbert space structure for a system with constraints

- We believe that the Hilbert space of gravity should be very similar as the ones of the gauge theories Casini, Huerta, Rosabal, 1312.1183
 - Here, we first introduce the notion of the **center**, which is formed by a set of commutative operators supporting on the interface
 - Based on the center, the Hilbert space can be decomposed into a set of sub-Hilbert spaces, each of which is tensor factorizable
 - In particular, we represent the Hilbert space as $\mathcal{H} = \oplus_a \mathcal{H}_{R,a} \otimes \mathcal{H}_{R^c,a}$

The importance of the center

- Clearly, the center plays an important role in the previous Hilbert space decomposition
- However, in gravity, our knowledge for the center is very limited
- The only known element in the center is the HRT-area

The HRT-area as an element in the center

- The HRT-area A appears in the RT formula and the JLMS formula as
 - RT formula: $S_{EE} = \langle \frac{A}{4G} \rangle + S_{EE,g}$

Ryu, Takayanagi, hep-th/0603001

Ryu, Takayanagi, hep-th/0605073

Hubeny, Rangamaini, Takayanagi, 0705.0016

• JLMS formula: $K = \frac{A}{4G} + K_g$

Jafferis, Lewkowycz, Maldacena, Suh, 1512.06431

• It is in the JLMS formula that the HRT-area A is treated as an operator in gravity and furthermore viewed as an element in the center

Jafferis, Lewkowycz, Maldacena, Suh, 1512.06431

Harlow, 1607.03901

Motivation Definition System's evolution Bracket Summary

The kink transformation generated by the HRT-area

- Further studies have also been performed on the HRT-area in the aspect of viewing it as an operator of gravity
- One interesting result is that the system's evolution generated by the HRT-area A exhibits a kink transformation along the HRT-surface as illustrated in the figures below

Bousso, Chandrasekaran, Shahbazi-Moghaddam, 1906.05299

Bousso, Chandrasekaran, Rath, Shahbazi-Moghaddam, 2007.00230

Kaplan, Marolf, 2203.04270

Other elements in the center

- Besides the HRT-area, we expect there should be some other operators in the center. And these operators should also support on the HRT-surface
- Moreover, assuming that we can indeed construct some operators in the center, we would like to study their properties in the following aspects:
 - First, inspired from the story of the HRT-area, we would like to study the system's evolutions generated by these operators
 - Second, to verify that these operators are really elements in the center, we would like to compute the commutators both between these operators themselves and between these operators with the HRT-area

The classical pure AdS₃ gravity

- As a preliminary attempt, we focus on a simple model in this work: the classical pure AdS_3 gravity
- In this model,
 - extremal surfaces reduce to geodesics
 - operators' commutators reduce to observables' brackets
- In particular, we only consider one observable that supports on a geodesic: **the twist along the geodesic**
- And we would like to study its properties, including its generated evolution and the brackets with it

The definition twist along a geodesic

• We now provide the definition of the twist along a geodesic

Castro, Detournay, Iqbal, Perlmutter, 1405.2792

- Here, we need to introduce two normal frames to the geodesic, denoted by $(\hat{\tau}^{(1)}, \hat{n}^{(1)}), (\hat{\tau}^{(2)}, \hat{n}^{(2)})$, which are constructed in the following two steps:
 - First, at each geodesic endpoint, we construct a normal frame by inheriting the frame of the asymptotic boundary
 - Second, by a parallel transport, we extend the definition of the two normal frames to the whole geodesic

- We point out that the two normal frames are different by a relative boost $\hat{\tau}^{(2)} = \cosh \zeta \hat{\tau}^{(1)} - \sinh \zeta \hat{n}^{(1)}$ $\hat{n}^{(2)} = -\sinh \zeta \hat{\tau}^{(1)} + \cosh \zeta \hat{n}^{(1)}$ where the rapidity ζ is a constant along the geodesic
- We then define this constant rapidity ζ as the twist along the geodesic

The system's evolution generated by the twist

- Having provided the definition of the twist ζ , we now study its properties
- \bullet We start from studying the system's evolution generated by the twist ζ
- By saying "the system's evolution generated by the twist ζ ", we mean that we view the twist ζ as the Hamiltonian and use it to evolve the system

data with the twist ζ

The computation of the brackets

- By definition, the twist ζ is a functional of the metric, which in turn can be viewed as a functional of the set of initial data (σ_{ab}, K_{ab})
- Here, we directly provide the expression of the variation of the twist ζ with respect to the variation of the set of initial data as $\delta \zeta = \int ds \left(-e^a n^b \delta K_{ab} + \frac{1}{2} e^m n^n K_{mn} n^a n^b \delta \sigma_{ab} \right)$
- By applying the previous expression to the chain rule $\{\cdot,\zeta\} = \int d^2 x \{\cdot,\sigma_{ab}(t_0,x)\} \frac{\delta\zeta}{\delta\sigma_{ab}(t_0,x)} + \{\cdot,K_{ab}(t_0,x)\} \frac{\delta\zeta}{\delta K_{ab}(t_0,x)}$ and also by taking use of the Poisson bracket $\{\sigma_{ab}(t,x),\sigma_{cd}(t,y)\} = 0$ $\{\sigma_{ab}(t,x),K_{cd}(t,y)\} = 8\pi G(\sigma_{ac}\sigma_{bd} + \sigma_{ad}\sigma_{bd} - 2\sigma_{ab}\sigma_{cd}) \frac{1}{\sqrt{\sigma}} \delta^2(x-y)$ $\{K_{ab}(t,x),K_{cd}(t,y)\} = 8\pi G(\sigma_{ab}K_{cd} - K_{ab}\sigma_{cd}) \frac{1}{\sqrt{\sigma}} \delta^2(x-y) ,$ we can compute the following two brackets $\{\sigma_{ab},\zeta\} = -8\pi G\lambda\delta(\rho)(e_an_b + n_ae_b)$ $\{K_{ab},\zeta\} = -8\pi GK_{mn}e^m n^n\delta(\rho)n_an_b$

The relative shift along the geodesic

- And we then get the system's evolution generated by the twist ζ as $\Delta \sigma_{ab} = -8\pi G\lambda \delta(\rho)(e_a n_b + n_a e_b) + o(\lambda)$ $\Delta K_{ab} = -8\pi G K_{mn} e^m n^n \delta(\rho) n_a n_b + o(\lambda)$ which is precisely what we want
- From the first equation, we know that the system's evolution is precisely a relative shift along the geodesic for the two sides of the geodesic as the figure illustrated below

The bracket between the length and the twist

- So far we have studied the system's evolution generated by the twist ζ, and we now switch to the second topic to compute the brackets with the twist ζ
- In particular, we only compute the bracket between the geodesic's length and the twist {A, ζ}
- Remember that our original motivation to study the twist ζ is that it may be a candidate element in the center
- But being an element in the center requires the twist ζ at least to be commutative with the HRT-area (which is the geodesic length A in this setup)

- The computation of the bracket {A, ζ} is similar as the previous one: we view both the geodesic length A and the twist ζ as functionals of the set of initial data and compute their bracket by applying the chain rule
- In the first sight, we may expect a divergent result in the bracket $\{A, \zeta\}$, since both the geodesic length A and the twist ζ are defined on the geodesic $\delta A = \int ds \frac{1}{2} e^a e^b \delta \sigma_{ab}$ $\delta \zeta = \int ds (-e^a n^b \delta K_{ab} + \frac{1}{2} e^m n^n K_{mn} n^a n^b \delta \sigma_{ab})$

- But with a careful computation, we show that the bracket indeed vanishes as
 {A, η} = ∫ d²x0 · δ(ρ)² = 0
 Here, the δ(ρ)² reflects the fact that both of the two
 observables are defined on the geodesic. And we believe that
 the 0 beats the δ(ρ)² and leads to a zero in the integral
- Accepting this computation, we then show that the twist ζ indeed commutes with the geodesic's length so can be a candidate element in the center

Summary

- So far, we have introduced all of our results
- We now provide a short summary:
 - First, we get the system's evolution generated by the twist, which exhibits a relative shift along the geodesic
 - Second, we show that the twist commutes with the length of the same geodesic, which supports our proposal that the twist is a candidate element in the center

The relation to the original motivation

- Remember that our original motivation is to construct the Hilbert space of gravity
- While, the study of this work and also the previous study on the HRT-area should be viewed as some exploratory attempts for this problem
- Generally speaking, the approach that we want to take here is to first study the properties of the operators and then use these properties to construct the Hilbert space
- And to pursue further along this approach, we need to construct more operators and study their properties

Motivation Definition System's evolution Bracket Summary

Operators defined on a geodesic network

• Partially inspired from the tensor network model of holography, we would like to focus on the operators defined on a geodesic network, for example the one illustrated in the figure below

- Given a geodesic network like this, we can define diffeomorphism invariant operators by measuring the length and the twist along each geodesic segment
- As what we did in this work, we can furthermore study the properties of these operators, including their generated evolutions and their brackets

The Hilbert space of gravity

- Holding these operators, we may try to study the Hilbert space of gravity in some level
 - Among these operators, we may have a set of operators which commute with each other. We view these operators as the center and use them to take Hilbert space decomposition
 - We may also have sets of operators, where the operators in each set form a subalgebra and are commutative with the operators in the center or in other sets. We use the representations of these subalgebras to construct the Hilbert space
- The final goal of this approach is to generalize the discussion to a sufficient fine-grained geodesic network, which may be viewed as a lattice like gravity
- However, we have to admit that this proposal is too vague

Other open questions

- Besides the previous vague proposal, there are also many other interesting open questions
 - For example, we can try to generalize the discussion to systems with matter fields or in higher dimension
 - For example, we can also try to generalize the discussion to systems with finite cutoff which is suggested to correspond to the $T\bar{T}$ deformed CFT₂
 - For example, we may try to study the field theory dual of the twist

Thanks for your attention!

Jie-qiang Wu An Observable in Classical Pure AdS₃ Gravity: the Twist along a