An Observable in Classical Pure AdS_{3} Gravity: the Twist along a Geodesic

Jie-qiang Wu (ITP, CAS)
based on an on-going work with Xiao-shuai Wang
East Asia Joint Workshop on Fields and Strings 2023

Nov 14th, 2023

- In this work, we study a diffeomorphism invariant observable in the classical pure AdS_{3}, namely the twist along a geodesic
- The motivation to study the twist is that the twist only supports on the geodesic so may be a candidate element in the center
- We study the properties of the twist in the Hamiltonian formalism, and we get the following two results:
- First, we get the system's evolution generated by the twist, which, under a proper gauge choice, exhibits a relative shift along the geodesic
- Second, we show that the twist commutes with the length of the same geodesic, which supports our proposal that the twist is a candidate element in the center

Motivation: the Hilbert space of gravity

- We first introduce the motivation
- The construction of the Hilbert space of gravity is a long-standing problem, but is far from fully solved even in perturbative level
- One difficulty in solving this problem is from the gravitational constraints, because of which, the Hilbert space of the system is not tensor factorizable
- For example, in the right figure, we divide the whole system into two subsystems R and R^{c}; while, the Hilbert space of the whole system \mathcal{H} cannot be written as a tensor product of the
 Hilbert spaces of the individual subsystems as $\mathcal{H} \neq \mathcal{H}_{R} \otimes \mathcal{H}_{R^{c}}$

The Hilbert space structure for a system with constraints

- We believe that the Hilbert space of gravity should be very similar as the ones of the gauge theories Casini, Huerta, Rosabal, 1312.1183
- Here, we first introduce the notion of the center, which is formed by a set of commutative operators supporting on the interface
- Based on the center, the Hilbert space can be
 decomposed into a set of sub-Hilbert spaces, each of which is tensor factorizable
- In particular, we represent the Hilbert space as
$\mathcal{H}=\oplus_{a} \mathcal{H}_{R, a} \otimes \mathcal{H}_{R^{c}, a}$

The importance of the center

- Clearly, the center plays an important role in the previous Hilbert space decomposition
- However, in gravity, our knowledge for the center is very limited
- The only known element in the center is the HRT-area
- The HRT-area A appears in the RT formula and the JLMS formula as
- RT formula: $S_{E E}=\left\langle\frac{A}{4 G}\right\rangle+S_{E E, g}$ Ryu, Takayanagi, hep-th/0603001 Ryu, Takayanagi, hep-th/0605073 Hubeny, Rangamaini, Takayanagi, 0705.0016
- JLMS formula: $K=\frac{A}{4 G}+K_{g}$ Jafferis, Lewkowycz, Maldacena, Suh, 1512.06431
- It is in the JLMS formula that the HRT-area A is treated as an operator in gravity and furthermore viewed as an element in the center

Jafferis, Lewkowycz, Maldacena, Suh, 1512.06431
Harlow, 1607.03901

The kink transformation generated by the HRT-area

- Further studies have also been performed on the HRT-area in the aspect of viewing it as an operator of gravity
- One interesting result is that the system's evolution generated by the HRT-area A exhibits a kink transformation along the HRT-surface as illustrated in the figures below

Bousso, Chandrasekaran, Shahbazi-Moghaddam, 1906.05299
Bousso, Chandrasekaran, Rath, Shahbazi-Moghaddam, 2007.00230
Kaplan, Marolf, 2203.04270

Other elements in the center

- Besides the HRT-area, we expect there should be some other operators in the center. And these operators should also support on the HRT-surface
- Moreover, assuming that we can indeed construct some operators in the center, we would like to study their properties in the following aspects:
- First, inspired from the story of the HRT-area, we would like to study the system's evolutions generated by these operators
- Second, to verify that these operators are really elements in the center, we would like to compute the commutators both between these operators themselves and between these operators with the HRT-area
- As a preliminary attempt, we focus on a simple model in this work: the classical pure AdS_{3} gravity
- In this model,
- extremal surfaces reduce to geodesics
- operators' commutators reduce to observables' brackets
- In particular, we only consider one observable that supports on a geodesic: the twist along the geodesic
- And we would like to study its properties, including its generated evolution and the brackets with it

The definition twist along a geodesic

- We now provide the definition of the twist along a geodesic

Castro, Detournay, Iqbal, Perlmutter, 1405.2792

- Here, we need to introduce two normal frames to the geodesic, denoted by $\left(\hat{\tau}^{(1)}, \hat{n}^{(1)}\right),\left(\hat{\tau}^{(2)}, \hat{n}^{(2)}\right)$, which are constructed in the following two steps:
- First, at each geodesic endpoint, we construct a normal frame by inheriting the frame of the asymptotic boundary
- Second, by a parallel transport, we extend
 the definition of the two normal frames to the whole geodesic
- We point out that the two normal frames are different by a relative boost $\hat{\tau}^{(2)}=\cosh \zeta \hat{\tau}^{(1)}-\sinh \zeta \hat{n}^{(1)}$
$\hat{n}^{(2)}=-\sinh \zeta \hat{\tau}^{(1)}+\cosh \zeta \hat{n}^{(1)}$
where the rapidity ζ is a constant along the geodesic
- We then define this constant rapidity ζ as the twist along the geodesic

The system's evolution generated by the twist

- Having provided the definition of the twist ζ, we now study its properties
- We start from studying the system's evolution generated by the twist ζ
- By saying "the system's evolution generated by the twist ζ ", we mean that we view the twist ζ as the Hamiltonian and use it to evolve the system
- Moreover, since the classical system is completely captured by the set of initial data ($\sigma_{a b}, K_{a b}$) on a given Cauchy surface, we can represent the system's evolution as the evolution of the set of initial data by the following Poisson equation
$\Delta \sigma_{a b}\left(t_{0}, x\right)=\lambda\left\{\sigma_{a b}\left(t_{0}, x\right), \zeta\right\}+o(\lambda)$
$\Delta K_{a b}\left(t_{0}, x\right)=\lambda\left\{K_{a b}\left(t_{0}, x\right), \zeta\right\}+o(\lambda)$
Here, λ is an infinitesimal evolution parameter. And we see that the key point is to compute the brackets of the initial data with the twist ζ

The computation of the brackets

- By definition, the twist ζ is a functional of the metric, which in turn can be viewed as a functional of the set of initial data $\left(\sigma_{a b}, K_{a b}\right)$
- Here, we directly provide the expression of the variation of the twist ζ with respect to the variation of the set of initial data as $\delta \zeta=\int d s\left(-e^{a} n^{b} \delta K_{a b}+\frac{1}{2} e^{m} n^{n} K_{m n} n^{a} n^{b} \delta \sigma_{a b}\right)$
- By applying the previous expression to the chain rule $\{\cdot, \zeta\}=\int d^{2} x\left\{\cdot, \sigma_{a b}\left(t_{0}, x\right)\right\}_{\frac{\delta \zeta}{\delta \sigma_{a b}\left(t_{0}, x\right)}}+\left\{\cdot, K_{a b}\left(t_{0}, x\right)\right\}_{\frac{\delta \zeta}{\delta K_{a b}\left(t_{0}, x\right)}}$ and also by taking use of the Poisson bracket $\left\{\sigma_{a b}(t, x), \sigma_{c d}(t, y)\right\}=0$
$\left\{\sigma_{a b}(t, x), K_{c d}(t, y)\right\}=8 \pi G\left(\sigma_{a c} \sigma_{b d}+\sigma_{a d} \sigma_{b d}-2 \sigma_{a b} \sigma_{c d}\right) \frac{1}{\sqrt{\sigma}} \delta^{2}(x-y)$
$\left\{K_{a b}(t, x), K_{c d}(t, y)\right\}=8 \pi G\left(\sigma_{a b} K_{c d}-K_{a b} \sigma_{c d}\right) \frac{1}{\sqrt{\sigma}} \delta^{2}(x-y)$,
we can compute the following two brackets
$\left\{\sigma_{a b}, \zeta\right\}=-8 \pi G \lambda \delta(\rho)\left(e_{a} n_{b}+n_{a} e_{b}\right)$
$\left\{K_{a b}, \zeta\right\}=-8 \pi G K_{m n} e^{m} n^{n} \delta(\rho) n_{a} n_{b}$

The relative shift along the geodesic

- And we then get the system's evolution generated by the twist ζ as
$\Delta \sigma_{a b}=-8 \pi G \lambda \delta(\rho)\left(e_{a} n_{b}+n_{a} e_{b}\right)+o(\lambda)$
$\Delta K_{a b}=-8 \pi G K_{m n} e^{m} n^{n} \delta(\rho) n_{a} n_{b}+o(\lambda)$
which is precisely what we want
- From the first equation, we know that the system's evolution is precisely a relative shift along the geodesic for the two sides of the geodesic as the figure illustrated below

The bracket between the length and the twist

- So far we have studied the system's evolution generated by the twist ζ, and we now switch to the second topic to compute the brackets with the twist ζ
- In particular, we only compute the bracket between the geodesic's length and the twist $\{A, \zeta\}$
- Remember that our original motivation to study the twist ζ is that it may be a candidate element in the center
- But being an element in the center requires the twist ζ at least to be commutative with the HRT-area (which is the geodesic length A in this setup)
- The computation of the bracket $\{A, \zeta\}$ is similar as the previous one: we view both the geodesic length A and the twist ζ as functionals of the set of initial data and compute their bracket by applying the chain rule
- In the first sight, we may expect a divergent result in the bracket $\{A, \zeta\}$, since both the geodesic length A and the twist ζ are defined on the geodesic
$\delta A=\int d s \frac{1}{2} e^{a} e^{b} \delta \sigma_{a b}$

$\delta \zeta=\int d s\left(-e^{a} n^{b} \delta K_{a b}+\frac{1}{2} e^{m} n^{n} K_{m n} n^{a} n^{b} \delta \sigma_{a b}\right)$
- But with a careful computation, we show that the bracket indeed vanishes as
$\{A, \eta\}=\int d^{2} x 0 \cdot \delta(\rho)^{2}=0$
Here, the $\delta(\rho)^{2}$ reflects the fact that both of the two observables are defined on the geodesic. And we believe that the 0 beats the $\delta(\rho)^{2}$ and leads to a zero in the integral
- Accepting this computation, we then show that the twist ζ indeed commutes with the geodesic's length so can be a candidate element in the center

Summary

- So far, we have introduced all of our results
- We now provide a short summary:
- First, we get the system's evolution generated by the twist, which exhibits a relative shift along the geodesic
- Second, we show that the twist commutes with the length of the same geodesic, which supports our proposal that the twist is a candidate element in the center

The relation to the original motivation

- Remember that our original motivation is to construct the Hilbert space of gravity
- While, the study of this work and also the previous study on the HRT-area should be viewed as some exploratory attempts for this problem
- Generally speaking, the approach that we want to take here is to first study the properties of the operators and then use these properties to construct the Hilbert space
- And to pursue further along this approach, we need to construct more operators and study their properties

Operators defined on a geodesic network

- Partially inspired from the tensor network model of holography, we would like to focus on the operators defined on a geodesic network, for example the one illustrated in the figure below

- Given a geodesic network like this, we can define diffeomorphism invariant operators by measuring the length and the twist along each geodesic segment
- As what we did in this work, we can furthermore study the properties of these operators, including their generated evolutions and their brackets

The Hilbert space of gravity

- Holding these operators, we may try to study the Hilbert space of gravity in some level
- Among these operators, we may have a set of operators which commute with each other. We view these operators as the center and use them to take Hilbert space decomposition
- We may also have sets of operators, where the operators in each set form a subalgebra and are commutative with the operators in the center or in other sets. We use the representations of these subalgebras to construct the Hilbert space
- The final goal of this approach is to generalize the discussion to a sufficient fine-grained geodesic network, which may be viewed as a lattice like gravity
- However, we have to admit that this proposal is too vague

Other open questions

- Besides the previous vague proposal, there are also many other interesting open questions
- For example, we can try to generalize the discussion to systems with matter fields or in higher dimension
- For example, we can also try to generalize the discussion to systems with finite cutoff which is suggested to correspond to the $T \bar{T}$ deformed CFT_{2}
- For example, we may try to study the field theory dual of the twist

Thanks for your attention!

