Symmetry TFT for Subsystem Symmetry

Qiang Jia

arxiv:2310.01474
East Asia Joint Workshop on Fields and Strings 2023
KIAS
with Weiguang Cao (IPMU)

Symmetries and Dualities

- Symmetries often serve as guiding principles for theoretical explorations
- Given a (generalized) symmetry, there exist various symmetry operations such as gauging and stacking invertible phases onto a given system
- e.x. 2D theory with \mathbb{Z}_{2} Symmetry has the following dualities

Symmetry TFT*

- A d-dim theory \mathfrak{T}_{S} on \mathcal{M}_{d} with finite symmetry S can be expanded as
- A (d+1)-dim TFT \mathfrak{T}_{S} on $[0,1] \times M_{d}$
- A topological boundary $\mathfrak{B}_{S}^{\text {sym }}$. It encodes the symmetry S.
- A dynamical boundary $\mathfrak{B}_{\mathfrak{T}_{S}}^{\text {phys }}$. It depends on the details of \mathfrak{T}_{S}
- Dualities in \mathfrak{T}_{S} are interpreted as changing topological boundary $\mathfrak{B}_{S}^{\text {sym }}$ while fixing dynamical boundary $\mathfrak{B}_{\mathfrak{T}_{S}}^{\text {phys }}$.

[^0]
Example: \mathbb{Z}_{2} symmetry in 2 D

- The SymTFT $\mathfrak{Z}_{\mathbb{Z}_{2}}$ is 3D BF theory with level 2

$$
S_{\overline{J Z}_{2}}=\frac{2}{2 \pi} \int_{[0,1] \times M_{2}} \hat{A} \wedge d A,
$$

- For any 1-cycle, one can construct electric/magnetic line operators (anyons)

$$
U[\Gamma]=\exp \left[i \oint_{\Gamma} A\right], \quad \hat{U}[\Gamma]=\exp \left[i \oint_{\Gamma} \hat{A}\right]
$$

with $U[\Gamma]^{2}=1, \hat{U}[\Gamma]^{2}=1$ and Γ is a 1 -cycle.

- They generate two copies of $\mathbb{Z}_{2} 1$-form symmetries with a mixed 't Hooft anomaly.

Topological boundary state $\mathfrak{Z}_{\mathbb{Z}_{2}}$

- Assume $M_{2}=T^{2}$ and $\gamma \in H^{1}\left(T^{2}, \mathbb{Z}\right)=\mathbb{Z} \oplus \mathbb{Z}$. The Wilson loops satisfy the following algebra when restricted on T^{2},

$$
U_{\gamma} \hat{U}_{\gamma^{\prime}}=(-1)^{\int \gamma \wedge \gamma^{\prime}} \hat{U}_{\gamma^{\prime}} U_{\gamma}
$$

where $U_{\gamma} \equiv U\left[\Gamma_{\gamma}\right]$ with Γ_{γ} the Poincare dual of γ.

- The quantum algebra induce a Hilbert space. There exists three sets of maximally commuting set of operators

$$
\begin{array}{c|c|c}
\text { Operators } & \left|\mathfrak{B}_{\mathbb{Z}_{2}}^{\text {sym }}\right\rangle & \mathbb{Z}_{2} \text { generator } \\
U_{\gamma} & U_{\gamma}|a\rangle=(-1)^{\int \gamma \wedge a}|a\rangle & \hat{U}_{\gamma}|a\rangle=|a+\gamma\rangle \\
\hat{U}_{\gamma} & \left.\hat{U}_{\gamma}|\hat{a}\rangle=(-1)^{\int \gamma \wedge \hat{a}|a|}\right\rangle & U_{\gamma}|\hat{a}\rangle=|\hat{a}+\gamma\rangle \\
U_{F, \gamma} \equiv U_{\gamma} \hat{U}_{\gamma} & U_{F, \gamma}|s\rangle=(-1)^{\operatorname{Arf}(s+\gamma)}|s\rangle & U_{\gamma}|s\rangle=|s+\gamma\rangle
\end{array}
$$

where $|a\rangle=\left|a_{1}, a_{2}\right\rangle,|\hat{a}\rangle=\left|\hat{a}_{1}, \hat{a}_{2}\right\rangle,|s\rangle=\left|s_{1}, s_{2}\right\rangle$.

2D Dualities

- Topological boundary states $\left|\mathfrak{B}_{\mathbb{Z}_{2}}^{\text {sym }}\right\rangle:|a\rangle,|\hat{a}\rangle,|s\rangle$ with,

$$
\left\{\begin{array}{l}
|\hat{a}\rangle=\frac{1}{2} \sum_{a \in H^{1}\left(T^{2}, \mathbb{Z}_{2}\right)}(-1)^{\int a \wedge \hat{\wedge} \mid}|a\rangle \\
|s\rangle=\frac{1}{2} \sum_{a \in H^{1}\left(T^{2}, \mathbb{Z}_{2}\right)}(-1)^{\operatorname{Arf}(s+a)}|a\rangle
\end{array}\right.
$$

- Given any 2D bosonic theory $\mathfrak{T}_{\mathbb{Z}_{2}}$ with \mathbb{Z}_{2} symmetry, the dynamical boundary state $\left|\mathfrak{B}_{\mathfrak{T}_{\mathbb{Z}_{2}}}^{\text {phys }}\right\rangle$ is constructed as,

$$
\left|\mathfrak{B}_{\mathfrak{Z}_{2}}^{\text {phy }}\right\rangle=\frac{1}{2} \sum_{a_{1}, a_{2} \in \mathbb{Z}_{2}} Z\left[a_{1}, a_{2}\right]\left|a_{1}, a_{2}\right\rangle
$$

- Changing topological boundary state implements the duality,
- Original theory : $Z_{\mathbb{I}_{z_{2}}}[a]=\left\langle a \mid \mathfrak{B}_{\mathfrak{Z}_{2}}^{\text {phys }}\right\rangle$
- KW-transformation : $Z_{\hat{\mathfrak{T}}_{\mathbb{Z}_{2}}}[\hat{a}]=\left\langle\hat{a} \mid \mathfrak{B}_{\mathfrak{T}_{\mathbb{Z}_{2}}}^{\text {phys }}\right\rangle$
- JW-transformation : $Z_{\mathfrak{T}_{\mathbb{Z}_{2}, F}}[s]=\left\langle s \mid \mathfrak{B}_{\mathfrak{T}_{\mathbb{Z}_{2}}}^{\text {phys }}\right\rangle$

Motivation of this work

- Symmetry TFT depends only on the Symmetry group G
- Possible generalization of the discrete group G

Symmetry	Codimension	Invertibility	Topologicalness
Ordinary	$=1$	Yes	Yes
Higher-form	>1	Yes	Yes
Non-invertible	$=1$	No	Yes
Subsystem	$=1$	Yes	Restricted

- Some examples of the corresponding SymTFT:
- \mathbb{Z}_{N} k-form symmetry : BF-theory $\frac{N}{2 \pi} \int A_{k+1} \wedge d B_{D-k-2}$
- Non-Invertible: Turaev-Viro theory ${ }^{\dagger}$
- ...
- However, the SymTFT for Subsystem symmetry is still absent and we wish to fill this gap

[^1]
Subsystem Symmetry

- Subsystem symmetries are related to fracton model
- Let's consider the ($2+1$)-lattice as a concrete model. The spatial lattice is $L_{x} \times L_{y}$ periodic lattice, and on each site there is a spin-1/2 state $|s\rangle_{i, j}$. Denote the Pauli matrices on each site as $X_{i, j}, Y_{i, j}, Z_{i, j}$ such that,

$$
X_{i, j}|s\rangle_{i, j}=|-s\rangle_{i, j}, \quad Z_{i, j}|s\rangle_{i, j}=s|s\rangle_{i, j}
$$

- The generators of subsystem \mathbb{Z}_{2} global symmetry are line operators acting on each row and column

$$
U_{j}^{x}=\prod_{i=1}^{L_{x}} X_{i, j}, \quad U_{i}^{y}=\prod_{j=1}^{L_{y}} X_{i, j}, \quad\left(U_{j}^{x}\right)^{2}=\left(U_{i}^{y}\right)^{2}=1
$$

- Only $L_{x}+L_{y}-1$ operators are independent,

$$
\prod_{j=1}^{L_{y}} U_{j}^{x} \prod_{i=1}^{L_{x}} U_{i}^{y}=1
$$

Twist sectors

- If we put the subsystem \mathbb{Z}_{2} line defects along the time direction, they change the boundary condition of each column and row,

$$
\left|s_{i+L_{x}, j}\right\rangle=\left|(-1)^{t_{j}^{\psi}} S_{i, j}\right\rangle, \quad\left|s_{i, j+L_{y}}\right\rangle=\mid(-1)^{\left.t_{i}^{v} s_{i, j}\right\rangle}
$$

and also

$$
\left|s_{i+L_{x}, i+L_{y}}\right\rangle=\left|(-1)^{t^{n+}+t_{j}+l_{i}^{z}} s_{i, j}\right\rangle,
$$

with

$$
t_{i+L_{x}}^{y}=t_{i}^{y}+t^{x y}, \quad t_{j+L_{y}}^{x}=t_{j}^{x}+t^{x y} .
$$

- The Hamiltonian with subsystem \mathbb{Z}_{2} symmetry depends only on the combinations $w_{j+\frac{1}{2}}^{x}, w_{i+\frac{1}{2}}^{y}$,

$$
w_{j+\frac{1}{2}}^{x} \equiv t_{j}^{x}+t_{j+1}^{x}, \quad w_{i+\frac{1}{2}}^{y} \equiv t_{i}^{y}+t_{i+1}^{y}, \quad \sum_{j=1}^{L_{y}} w_{i+\frac{1}{2}}^{y}=\sum_{i=1}^{L_{x}} w_{j+\frac{1}{2}}^{x}=t^{x y} .
$$

- There are also $L_{x}+L_{y}-1$ of them.

SymTFT for (2+1)D subsystem symmetry

 We want to explore the Symmetry TFT for subsystem symmetry, there are several questions we need to answer.- What is the corresponding (3+1)D topological field theory?
- What are the gauge invariant operators
- What are the possible topological boundary states?
- How they implement the dualities

Symmetry: SymTFT:
Operators:
Top. Boundary
KW duality
JW duality

Ordinary 2D \mathbb{Z}_{2}
3D level-2 BF theory
Wilson loop $U(\Gamma)$ and $\hat{U}[\Gamma]$
$(2+1) \mathrm{D}$ subsystem
?
?
Eigenstates of U or \hat{U} or $U \hat{U}$?
$U \leftrightarrow \hat{U}$
$U \leftrightarrow U \hat{U}$
?
?

SymTFT for (2+1)D subsystem symmetry

- We find the candidate for subsystem SymTFT of our interest is the $(3+1) \mathrm{d} 2$-foliated BF theory with level 2^{\ddagger},

$$
S_{2 \text {-foliated }}=\frac{2}{2 \pi} \int b \wedge d c+\sum_{k=1,2} d B^{k} \wedge C^{k} \wedge d x^{k}+\sum_{k=1,2} b \wedge C^{k} \wedge d x^{k}
$$

and it is equivalent to the exotic tensor theory,

$$
\begin{aligned}
S_{\text {exotic }}=\frac{N}{2 \pi} \int & {\left[A^{\tau}\left(\partial_{z} \hat{A}^{x y}-\partial_{x} \partial_{y} \hat{A}^{z}\right)-A^{z}\left(\partial_{\tau} \hat{A}^{x y}-\partial_{x} \partial_{y} \hat{A}^{\tau}\right)\right.} \\
& \left.-A^{x y}\left(\partial_{\tau} \hat{A}^{z}-\partial_{z} \hat{A}^{\tau}\right)\right]
\end{aligned}
$$

- In the exotic theory, there exists a naive $\operatorname{SL}\left(2, \mathbb{Z}_{N}\right)$ symmetry

$$
\begin{array}{lll}
S: & A \rightarrow \hat{A}, & \hat{A} \rightarrow-A \\
T: & A \rightarrow A, & \hat{A} \rightarrow \hat{A}+A
\end{array}
$$

where $A=\left(A_{x y}, A_{z}, A_{\tau}\right)$ and $\hat{A}=\left(\hat{A}_{x y}, \hat{A}_{z}, \hat{A}_{\tau}\right)$.

[^2]
Operators and Algebras

- Assume the boundary $M_{3}=T^{2} \times S^{1}$ parametrized by (x, y, z), where z is the "time" direction. The gauge invariant operators restricting to M_{3} are line/strip operators,

$$
\begin{aligned}
& W(x, y)=\exp \left(i \oint d z A^{z}\right) \\
& W\left(x_{1}, x_{2}\right)=\exp \left(i \int_{x_{1}}^{x_{2}} d x \oint d y A^{x y}\right), \\
& W\left(y_{1}, y_{2}\right)=\exp \left(i \int_{y_{1}}^{y_{2}} d y \oint d x A^{x y}\right),
\end{aligned}
$$

for A and $\hat{W}(x, y), \hat{W}\left(x_{1}, x_{2}\right), \hat{W}\left(y_{1}, y_{2}\right)$ for \hat{A}. All W, \hat{W} satisfy $W^{2}=\hat{W}^{2}=1$.

- The quantum algebras are

$$
\begin{array}{ll}
W\left(x_{1}, x_{2}\right) \hat{W}(x, y)=-\hat{W}(x, y) W\left(x_{1}, x_{2}\right), & \text { if } x_{1}<x<x_{2}, \\
W\left(y_{1}, y_{2}\right) \hat{W}(x, y)=-\hat{W}(x, y) W\left(y_{1}, y_{2}\right), & \text { if } y_{1}<y<y_{2}
\end{array}
$$

- Using EOM, we can decompose $W(x, y)$ (or $\hat{W}(x, y)$) as,

$$
W(x, y)=W_{z, y}(x) W_{z, x}(y)
$$

Electric topological boundary

Eigenstates of W-operators: $|\mathbf{w}\rangle=\left|w_{z, x ; j}, w_{z, y ; i}, w_{x ; j+\frac{1}{2}}, w_{y ; i+\frac{1}{2}}\right\rangle$, where and the electric operators W are diagonalized as

$$
\left\{\begin{array}{l}
W_{z, x}\left(y_{j}\right)|\mathbf{w}\rangle=(-1)^{w_{z, x ; j}}|\mathbf{w}\rangle \\
W_{z, y}\left(x_{i}\right)|\mathbf{w}\rangle=(-1)^{w_{z, y ; i}}|\mathbf{w}\rangle \\
W\left(y_{j}, y_{j+1}\right)|\mathbf{w}\rangle=(-1)^{w_{x ; j+\frac{1}{2}}}|\mathbf{w}\rangle \\
W\left(x_{i}, x_{i+1}\right)|\mathbf{w}\rangle=(-1)^{w_{y ; i+\frac{1}{2}}}|\mathbf{w}\rangle
\end{array}\right.
$$

- On the other hand, the magnetic operators \hat{W} conjugate to electric operators W will shift the eigenvalues when acting on the state $|\mathbf{w}\rangle$

$$
\left\{\begin{array}{l}
\hat{W}\left(y_{j^{\prime}-\frac{1}{2}}, y_{j^{\prime}+\frac{1}{2}}\right)|\mathbf{w}\rangle=\left|w_{z, x ; j}+\delta_{j, j^{\prime}}, w_{z, y ; i}, w_{x ; j+\frac{1}{2}}, w_{y ; i+\frac{1}{2}}\right\rangle \\
\hat{W}\left(x_{i^{\prime}-\frac{1}{2}}, x_{i^{\prime}+\frac{1}{2}}\right)|\mathbf{w}\rangle=\left|w_{z, x ; j}, w_{z, y ; i}+\delta_{i, i^{\prime}}, w_{x ; j+\frac{1}{2}}, w_{y ; i+\frac{1}{2}}\right\rangle \\
\hat{W}_{z, x}\left(y_{j^{\prime}+\frac{1}{2}}\right)|\mathbf{w}\rangle=\left|w_{z, x ; j}, w_{z, y ; i}, w_{x ; j+\frac{1}{2}}+\delta_{j, j^{\prime}}, w_{y ; i+\frac{1}{2}}\right\rangle \\
\hat{W}_{z, y}\left(x_{i^{\prime}+\frac{1}{2}}\right)|\mathbf{w}\rangle=\left|w_{z, x ; j}, w_{z, y ; i}, w_{x ; j+\frac{1}{2}}, w_{y ; i+\frac{1}{2}}+\delta_{i, i^{\prime}}\right\rangle
\end{array}\right.
$$

- \hat{W} operators generate the subsystem symmetry

Magnetic topological boundary

- Eigenstates of \hat{W}-operators: $|\hat{\mathbf{w}}\rangle=\left|\hat{w}_{z, x ; j+\frac{1}{2}}, \hat{w}_{z, y ; i+\frac{1}{2}}, \hat{w}_{x ; j}, \hat{w}_{y ; i}\right\rangle$ where \hat{W} operators are diagonalized as,

$$
\left\{\begin{array}{l}
\hat{W}_{z, x}\left(y_{j+\frac{1}{2}}\right)|\hat{\mathbf{w}}\rangle=(-1)^{\hat{w}_{z, x ; j+\frac{1}{2}}}|\hat{\mathbf{w}}\rangle \\
\hat{W}_{z, y}\left(x_{i+\frac{1}{2}}\right)|\hat{\mathbf{w}}\rangle=(-1)^{\hat{w}_{z, y ; i+\frac{1}{2}}}|\hat{\mathbf{w}}\rangle \\
\hat{W}\left(y_{j-\frac{1}{2}}, y_{j+\frac{1}{2}}\right)|\hat{\mathbf{w}}\rangle=(-1)^{\hat{w}_{x ; j}}|\hat{\mathbf{w}}\rangle \\
\hat{W}\left(x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}\right)|\hat{\mathbf{w}}\rangle=(-1)^{\hat{w}_{y ; i}}|\hat{\mathbf{w}}\rangle
\end{array}\right.
$$

- The electric operators W will serve as symmetry generator instead,

$$
\left\{\begin{array}{l}
W\left(y_{j^{\prime}}, y_{j^{\prime}+1}\right)|\hat{\mathbf{w}}\rangle=\left|\hat{w}_{z, x ; j+\frac{1}{2}}+\delta_{j, j^{\prime}}, \hat{w}_{z, y ; i+\frac{1}{2}}, \hat{w}_{x ; j}, \hat{w}_{y ; i}\right\rangle \\
W\left(x_{i^{\prime}}, x_{i^{\prime}+1}\right)|\hat{\mathbf{w}}\rangle=\left|\hat{w}_{z, x ; j+\frac{1}{2}}, \hat{w}_{z, y ; i+\frac{1}{2}}+\delta_{i, i^{\prime}}, \hat{w}_{x ; j}, \hat{w}_{y ; i}\right\rangle \\
W_{z, x}\left(y_{j^{\prime}}\right)|\hat{\mathbf{w}}\rangle=\left|\hat{w}_{z, x ; j+\frac{1}{2}}, \hat{w}_{z, y ; i+\frac{1}{2}}, \hat{w}_{x ; j}+\delta_{j, j^{\prime}}, \hat{w}_{y ; i}\right\rangle \\
W_{z, y}\left(x_{i^{\prime}}\right)|\hat{\mathbf{w}}\rangle=\left|\hat{w}_{z, x ; j+\frac{1}{2}}, \hat{w}_{z, y ; i+\frac{1}{2}}, \hat{w}_{x ; j}, \hat{w}_{y ; i}+\delta_{i, i^{\prime}}\right\rangle
\end{array}\right.
$$

KW-duality ${ }^{\S}$

- Given any $(2+1)$ D theory $\mathfrak{T}_{\text {sub }}$ with subsystem symmetry, the dynamical boundary state is constructed as,

$$
\left|\mathfrak{B}_{\mathfrak{T}_{\text {sub }}}^{\text {phys }}\right\rangle=\sum_{\mathbf{w}} Z_{\mathfrak{T}_{\text {sub }}}[\mathbf{w}]|\mathbf{w}\rangle
$$

- The original theory is $Z_{\mathfrak{T}_{\text {sub }}}[\mathbf{w}]=\left\langle\mathbf{w} \mid \mathfrak{B}_{\mathfrak{T}_{\text {sub }}}^{\text {phys }}\right\rangle$
- The KW-dual is given by $Z_{\hat{\mathfrak{T}}_{\text {sub }}}[\hat{\mathbf{w}}]=\left\langle\hat{\mathbf{w}} \mid \mathfrak{B}_{\mathfrak{T}_{\text {sub }}}^{\text {phys }}\right\rangle$

$$
\begin{aligned}
Z_{\hat{\mathfrak{T}}_{\text {sub }}}[\hat{\mathbf{w}}]= & \frac{1}{2^{\left(L_{x}+L_{y}-1\right)}} \sum_{\mathbf{w} \in M_{v}}(-1)^{\sum_{i}\left(\hat{w}_{z, y ; i+\frac{1}{2}} w_{y, i+\frac{1}{2}}+\hat{w}_{y ; i} w_{z, y ; i}\right)} \\
& \times(-1)^{\sum_{j}\left(\hat{w}_{z, x ; j+\frac{1}{2}} w_{x ; j+\frac{1}{2}}+\hat{w}_{x ; j} w_{z, x ; j}\right)} Z_{\mathfrak{T}_{\text {sub }}}[\mathbf{w}]
\end{aligned}
$$

[^3]
JW transformation ${ }^{\text {II }}$

- The fermionic state $|\mathbf{s}\rangle=\left|s_{z, x ; j}, s_{z, y ; i, i}, s_{x ; j+\frac{1}{2}}, s_{y ; i+\frac{1}{2}}\right\rangle$ is diagonalized by,

$$
\left\{\begin{array}{l}
\hat{W}_{z, x}\left(y_{j-\frac{1}{2}}\right) W_{z, x}\left(y_{j}\right) \hat{W}_{z, x}\left(y_{j+\frac{1}{2}}\right)|\mathbf{s}\rangle=(-1)^{s_{z, x ; j}}|\mathbf{s}\rangle \\
W_{z, y}\left(x_{i}\right)|\mathbf{s}\rangle=(-1)^{s_{z, y ; i}|\mathbf{s}\rangle} \\
\hat{W}\left(y_{j-\frac{1}{2}}, y_{j+\frac{1}{2}}\right) W\left(y_{j}, y_{j+1}\right) \hat{W}\left(y_{j+\frac{1}{2}}, y_{j+\frac{3}{2}}\right)|\mathbf{s}\rangle=(-1)^{s_{x ; j+\frac{1}{2}}}|\mathbf{s}\rangle \\
W\left(x_{i}, x_{i+1}\right)|\mathbf{s}\rangle=(-1)^{s_{y, i+\frac{1}{2}}}|\mathbf{s}\rangle
\end{array}\right.
$$

- The fermionic subsystem \mathbb{Z}_{2} parity symmetry is generated by magnetic operators \hat{W}

$$
\left\{\begin{array}{l}
\hat{W}\left(y_{j^{\prime}-\frac{1}{2}}, y_{j^{\prime}+\frac{1}{2}}\right)|\mathbf{s}\rangle=\left|s_{z, x ; j}+\delta_{j, j^{\prime}}, s_{z, y ; i}, s_{x ; j+\frac{1}{2}}, s_{y ; i+\frac{1}{2}}\right\rangle \\
\hat{W}\left(x_{i^{\prime}-\frac{1}{2}}, x_{i^{\prime}+\frac{1}{2}}\right)|\mathbf{s}\rangle=\left|s_{z, x ; j}, s_{z, y ; i}+\delta_{i, i^{\prime}}, s_{x ; j+\frac{1}{2}}, s_{y ; i+\frac{1}{2}}\right\rangle \\
\hat{W}_{z, x}\left(y_{j^{\prime}+\frac{1}{2}}\right)|\mathbf{s}\rangle=\left|s_{z, x ; j}, s_{z, y ; i}, s_{x ; j+\frac{1}{2}}+\delta_{j, j^{\prime}}, s_{y ; i+\frac{1}{2}}\right\rangle \\
\hat{W}_{z, y}\left(x_{i^{\prime}+\frac{1}{2}}\right)|\mathbf{s}\rangle=\left|s_{z, x ; j}, s_{z, y ; i}, s_{x ; j+\frac{1}{2}}, s_{y ; i+\frac{1}{2}}+\delta_{i, i^{\prime}}\right\rangle
\end{array}\right.
$$

${ }^{\text {II}}$ Weiguang Cao, Masahito Yamazaki, Yunqin Zheng. 2022

- There exists another fermionic state $\left|\mathbf{s}^{\prime}\right\rangle=\left|s_{z, x ; j}^{\prime}, s_{z, y ; i}^{\prime}, s_{x ; j+\frac{1}{2}}^{\prime}, s_{y ; i+\frac{1}{2}}^{\prime}\right\rangle$ which diagonalizes the line operators,

$$
W_{z, x}\left(y_{j}\right), \quad \hat{W}_{z, y}\left(x_{i-\frac{1}{2}}\right) W_{z, y}\left(x_{i}\right) \hat{W}_{z, y}\left(x_{i+\frac{1}{2}}\right),
$$

and strip operators,

$$
W\left(y_{j}, y_{j+1}\right), \quad \hat{W}\left(x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}\right) W\left(x_{i}, x_{i+1}\right) \hat{W}\left(x_{i+\frac{1}{2}}, x_{i+\frac{3}{2}}\right),
$$

where $W_{z, y}\left(x_{i}\right), W\left(x_{i}, x_{i+1}\right)$ are sandwiched by a pair of \hat{W} operators instead.

- Choosing different topological boundary states give two fermionic theories $\mathfrak{T}_{F, x, \text { sub }}$ and $\mathfrak{T}_{F, y, \text { sub }}$ whose partition functions are,

$$
Z_{\mathfrak{T}_{F, x, \text { sub }}}[\mathbf{s}]=\left\langle\mathbf{s} \mid \mathfrak{B}_{\mathfrak{T}_{\text {sub }}}^{\text {phys }}\right\rangle, \quad Z_{\mathfrak{T}_{F, y, \text { sub }}}\left[\mathbf{s}^{\prime}\right]=\left\langle\mathbf{s}^{\prime} \mid \mathfrak{B}_{\mathfrak{T}_{\text {sub }}}^{\text {phys }}\right\rangle
$$

They are related to the bosonic theory $\mathfrak{T}_{\text {sub }}$ by performing the subsystem JW transformations along x and y directions respectively.

Dualities in Subsystem Symmetry

Conclusion

- We propose that the SymTFT of ($2+1$)D subsystem symmetry is the 2-foliated BF theory
- We construct the bosonic/fermionic topological boundary states
- By studying the SymTFT, we obtain a duality web connecting different theories.

Future work

- Extend the study of subsystem SymTFT to other models, like \mathbb{Z}_{N} subsystem symmetry.
- Study models with subsystem symmetry in higher dimensions, for example, the (3+1)D X-cube model.

Thank you!

[^0]: *For a recent review, see Lakshya Bhardwaj, Sakura Schäfer-Nameki. 2023

[^1]: ${ }^{\dagger}$ See Justin Kaidi, Kantaro Ohmori, Yunqin Zheng. 2022 for a physical construction.

[^2]: ${ }^{*}$ Kantaro Ohmori, Shutaro Shimamura. 2022

[^3]: ${ }^{\S}$ Weiguang Cao,Linhao Li, Masahito Yamazaki, Yunqin Zheng, 2023.

