Symmetry TFT for Subsystem Symmetry

Qiang Jia

arxiv:2310.01474 East Asia Joint Workshop on Fields and Strings 2023 KIAS with Weiguang Cao (IPMU)

Symmetries and Dualities

- Symmetries often serve as guiding principles for theoretical explorations
- Given a (generalized) symmetry, there exist various symmetry operations such as gauging and stacking invertible phases onto a given system
- e.x. 2D theory with \mathbb{Z}_2 Symmetry has the following dualities

Symmetry TFT*

- A d-dim theory \mathfrak{T}_S on \mathcal{M}_d with finite symmetry S can be expanded as
 - A (d+1)-dim TFT \mathfrak{T}_S on $[0, 1] \times M_d$
 - A topological boundary $\mathfrak{B}_{S}^{\text{sym}}$. It encodes the symmetry S.
 - A dynamical boundary $\mathfrak{B}^{phys}_{\mathfrak{T}_{S}}$. It depends on the details of \mathfrak{T}_{S}
- ► Dualities in \mathfrak{T}_S are interpreted as changing topological boundary $\mathfrak{B}_S^{\text{sym}}$ while fixing dynamical boundary $\mathfrak{B}_{\mathfrak{T}_S}^{\text{phys}}$.

^{*}For a recent review, see Lakshya Bhardwaj, Sakura Schäfer-Nameki. 2023

Example: Z₂ symmetry in 2D
▶ The SymTFT 3_{Z₂} is 3D BF theory with level 2

$$S_{\mathfrak{Z}_2}=rac{2}{2\pi}\int_{[0,1] imes M_2}\hat{A}\wedge dA,$$

 For any 1-cycle, one can construct electric/magnetic line operators (anyons)

$$U[\Gamma] = \exp\left[i\oint_{\Gamma}A
ight], \quad \hat{U}[\Gamma] = \exp\left[i\oint_{\Gamma}\hat{A}
ight]$$

with $U[\Gamma]^2 = 1$, $\hat{U}[\Gamma]^2 = 1$ and Γ is a 1-cycle.

► They generate two copies of Z₂ 1-form symmetries with a mixed 't Hooft anomaly.

Topological boundary state $\mathfrak{Z}_{\mathbb{Z}_2}$

Assume $M_2 = T^2$ and $\gamma \in H^1(T^2, \mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z}$. The Wilson loops satisfy the following algebra when restricted on T^2 ,

$$U_{\gamma}\hat{U}_{\gamma'} = (-1)^{\int \gamma \wedge \gamma'}\hat{U}_{\gamma'}U_{\gamma}$$

where $U_{\gamma} \equiv U[\Gamma_{\gamma}]$ with Γ_{γ} the Poincare dual of γ .

► The quantum algebra induce a Hilbert space. There exists three sets of maximally commuting set of operators

2D Dualities

• Topological boundary states $|\mathfrak{B}_{\mathbb{Z}_2}^{\text{sym}}\rangle$: $|a\rangle, |\hat{a}\rangle, |s\rangle$ with,

$$\begin{cases} |\hat{a}\rangle = \frac{1}{2} \sum_{a \in H^1(T^2, \mathbb{Z}_2)} (-1)^{\int a \wedge \hat{a}} |a\rangle \\ |s\rangle = \frac{1}{2} \sum_{a \in H^1(T^2, \mathbb{Z}_2)} (-1)^{\operatorname{Arf}(s+a)} |a\rangle \end{cases}$$

► Given any 2D bosonic theory \$\mathcal{T}_{\mathcal{Z}_2}\$ with \$\mathcal{Z}_2\$ symmetry, the dynamical boundary state \$|\mathcal{B}_{\mathcal{T}_{\mathcal{Z}_2}}^{phys}\$ is constructed as,

$$|\mathfrak{B}_{\mathfrak{T}_{\mathbb{Z}_2}}^{\mathrm{phys}}
angle = rac{1}{2}\sum_{a_1,a_2\in\mathbb{Z}_2}Z[a_1,a_2]|a_1,a_2
angle$$

- Changing topological boundary state implements the duality,
 - Original theory : $Z_{\mathfrak{T}_{\mathbb{Z}_2}}[a] = \langle a | \mathfrak{B}_{\mathfrak{T}_{\mathbb{Z}_2}}^{phys} \rangle$
 - KW-transformation : $Z_{\hat{\mathfrak{T}}_{\mathbb{Z}_2}}[\hat{a}] = \langle \hat{a} | \mathfrak{B}_{\mathfrak{T}_{\mathbb{Z}_2}}^{\text{phys}} \rangle$
 - JW-transformation : $Z_{\mathfrak{T}_{\mathbb{Z}_2,F}}[s] = \langle s | \mathfrak{B}_{\mathfrak{T}_{\mathbb{Z}_2}}^{phys} \rangle$

Motivation of this work

- Symmetry TFT depends only on the Symmetry group G
- Possible generalization of the discrete group G

Symmetry	Codimension	Invertibility	Topologicalness
Ordinary	=1	Yes	Yes
Higher-form	>1	Yes	Yes
Non-invertible	=1	No	Yes
Subsystem	=1	Yes	Restricted

Some examples of the corresponding SymTFT:

- Z_N k-form symmetry : BF-theory N/2π ∫ A_{k+1} ∧ dB_{D-k-2}
 Non-Invertible : Turaev-Viro theory[†]

• • • •

► However, the SymTFT for Subsystem symmetry is still absent and we wish to fill this gap

[†]See Justin Kaidi, Kantaro Ohmori, Yunqin Zheng. 2022 for a physical construction.

Subsystem Symmetry

- Subsystem symmetries are related to fracton model
- ► Let's consider the (2+1)-lattice as a concrete model. The spatial lattice is $L_x \times L_y$ periodic lattice, and on each site there is a spin-1/2 state $|s\rangle_{i,j}$. Denote the Pauli matrices on each site as $X_{i,j}, Y_{i,j}, Z_{i,j}$ such that,

$$X_{i,j}|s\rangle_{i,j} = |-s\rangle_{i,j}, \quad Z_{i,j}|s\rangle_{i,j} = s|s\rangle_{i,j}.$$

► The generators of subsystem Z₂ global symmetry are line operators acting on each row and column

$$U_j^x = \prod_{i=1}^{L_x} X_{i,j}, \quad U_i^y = \prod_{j=1}^{L_y} X_{i,j}, \quad (U_j^x)^2 = (U_i^y)^2 = 1.$$

• Only $L_x + L_y - 1$ operators are independent,

$$\prod_{j=1}^{L_y} U_j^x \prod_{i=1}^{L_x} U_i^y = 1$$

Twist sectors

► If we put the subsystem Z₂ line defects along the time direction, they change the boundary condition of each column and row,

$$|s_{i+L_x,j}\rangle = |(-1)^{t_j^x} s_{i,j}\rangle, \quad |s_{i,j+L_y}\rangle = |(-1)^{t_j^y} s_{i,j}\rangle$$

and also

$$|s_{i+L_x,i+L_y}\rangle = |(-1)^{t^{xy}+t_j^x+t_i^y}s_{i,j}\rangle,$$

with

$$t_{i+L_x}^y = t_i^y + t^{xy}, \quad t_{j+L_y}^x = t_j^x + t^{xy}.$$

► The Hamiltonian with subsystem \mathbb{Z}_2 symmetry depends only on the combinations $w_{j+\frac{1}{2}}^x, w_{i+\frac{1}{2}}^y$,

$$w_{j+\frac{1}{2}}^{x} \equiv t_{j}^{x} + t_{j+1}^{x}, \quad w_{i+\frac{1}{2}}^{y} \equiv t_{i}^{y} + t_{i+1}^{y},$$

$$\sum_{j=1}^{L_{y}} w_{i+\frac{1}{2}}^{y} = \sum_{i=1}^{L_{x}} w_{j+\frac{1}{2}}^{x} = t^{xy}.$$

• There are also $L_x + L_y - 1$ of them.

SymTFT for (2+1)D subsystem symmetry We want to explore the Symmetry TFT for subsystem symmetry,

there are several questions we need to answer.

- ▶ What is the corresponding (3+1)D topological field theory?
- What are the gauge invariant operators
- ► What are the possible topological boundary states?
- ► How they implement the dualities

Symmetry:	Ordinary 2D \mathbb{Z}_2	(2+1)D subsystem
SymTFT:	3D level-2 BF theory	?
Operators:	Wilson loop $U(\Gamma)$ and $\hat{U}[\Gamma]$?
Top. Boundary	Eigenstates of U or \hat{U} or $U\hat{U}$?
KW duality	$U \leftrightarrow \hat{U}$?
JW duality	$U \leftrightarrow U \hat{U}$?

SymTFT for (2+1)D subsystem symmetry

We find the candidate for subsystem SymTFT of our interest is the (3 + 1)d 2-foliated BF theory with level 2[‡],

$$S_{2 ext{-foliated}} = rac{2}{2\pi}\int b\wedge dc + \sum_{k=1,2} dB^k\wedge C^k\wedge dx^k + \sum_{k=1,2} b\wedge C^k\wedge dx^k$$

and it is equivalent to the exotic tensor theory,

$$S_{\text{exotic}} = \frac{N}{2\pi} \int \left[A^{\tau} (\partial_z \hat{A}^{xy} - \partial_x \partial_y \hat{A}^z) - A^z (\partial_\tau \hat{A}^{xy} - \partial_x \partial_y \hat{A}^{\tau}) - A^{xy} (\partial_\tau \hat{A}^z - \partial_z \hat{A}^{\tau}) \right]$$

▶ In the exotic theory, there exists a naive $SL(2, \mathbb{Z}_N)$ symmetry

$$S: A \to \hat{A}, \quad \hat{A} \to -A,$$

$$T: A \to A, \quad \hat{A} \to \hat{A} + A.$$

where
$$A = (A_{xy}, A_z, A_\tau)$$
 and $\hat{A} = (\hat{A}_{xy}, \hat{A}_z, \hat{A}_\tau)$.

[‡]Kantaro Ohmori, Shutaro Shimamura. 2022

Operators and Algebras

Assume the boundary $M_3 = T^2 \times S^1$ parametrized by (x, y, z), where z is the "time" direction. The gauge invariant operators restricting to M_3 are line/strip operators,

$$W(x, y) = \exp\left(i\oint dzA^{z}\right),$$

$$W(x_{1}, x_{2}) = \exp\left(i\int_{x_{1}}^{x_{2}}dx\oint dyA^{xy}\right),$$

$$W(y_{1}, y_{2}) = \exp\left(i\int_{y_{1}}^{y_{2}}dy\oint dxA^{xy}\right),$$

for *A* and $\hat{W}(x, y)$, $\hat{W}(x_1, x_2)$, $\hat{W}(y_1, y_2)$ for \hat{A} . All *W*, \hat{W} satisfy $W^2 = \hat{W}^2 = 1$.

► The quantum algebras are

$$W(x_1, x_2)\hat{W}(x, y) = -\hat{W}(x, y)W(x_1, x_2), \quad \text{if } x_1 < x < x_2, W(y_1, y_2)\hat{W}(x, y) = -\hat{W}(x, y)W(y_1, y_2), \quad \text{if } y_1 < y < y_2,$$

▶ Using EOM, we can decompose W(x, y) (or $\hat{W}(x, y)$) as,

$$W(x, y) = W_{z,y}(x)W_{z,x}(y)$$

Electric topological boundary

Eigenstates of *W*-operators: $|\mathbf{w}\rangle = |w_{z,x;j}, w_{z,y;i}, w_{x;j+\frac{1}{2}}, w_{y;i+\frac{1}{2}}\rangle$, where and the electric operators *W* are diagonalized as

$$W_{z,x}(y_j)|\mathbf{w}\rangle = (-1)^{w_{z,xij}}|\mathbf{w}\rangle$$

$$W_{z,y}(x_i)|\mathbf{w}\rangle = (-1)^{w_{z,y;i}}|\mathbf{w}\rangle$$

$$W(y_j, y_{j+1})|\mathbf{w}\rangle = (-1)^{w_{x;j+\frac{1}{2}}}|\mathbf{w}\rangle$$

$$W(x_i, x_{i+1})|\mathbf{w}\rangle = (-1)^{w_{y;i+\frac{1}{2}}}|\mathbf{w}\rangle$$

► On the other hand, the magnetic operators Ŵ conjugate to electric operators W will shift the eigenvalues when acting on the state |w⟩

$$\begin{split} \hat{W}(y_{j'-\frac{1}{2}}, y_{j'+\frac{1}{2}}) |\mathbf{w}\rangle &= |w_{z,x;j} + \delta_{j,j'}, w_{z,y;i}, w_{x;j+\frac{1}{2}}, w_{y;i+\frac{1}{2}} \rangle \\ \hat{W}(x_{i'-\frac{1}{2}}, x_{i'+\frac{1}{2}}) |\mathbf{w}\rangle &= |w_{z,x;j}, w_{z,y;i} + \delta_{i,i'}, w_{x;j+\frac{1}{2}}, w_{y;i+\frac{1}{2}} \rangle \\ \hat{W}_{z,x}(y_{j'+\frac{1}{2}}) |\mathbf{w}\rangle &= |w_{z,x;j}, w_{z,y;i}, w_{x;j+\frac{1}{2}} + \delta_{j,j'}, w_{y;i+\frac{1}{2}} \rangle \\ \hat{W}_{z,y}(x_{i'+\frac{1}{2}}) |\mathbf{w}\rangle &= |w_{z,x;j}, w_{z,y;i}, w_{x;j+\frac{1}{2}}, w_{y;i+\frac{1}{2}} + \delta_{i,i'} \rangle \end{split}$$

• \hat{W} operators generate the subsystem symmetry

Magnetic topological boundary

Eigenstates of \hat{W} -operators: $|\hat{\mathbf{w}}\rangle = |\hat{w}_{z,x;j+\frac{1}{2}}, \hat{w}_{z,y;i+\frac{1}{2}}, \hat{w}_{x;j}, \hat{w}_{y;i}\rangle$ where \hat{W} operators are diagonalized as,

$$\begin{split} \begin{pmatrix} \hat{W}_{z,x}(y_{j+\frac{1}{2}}) | \hat{\mathbf{w}} \rangle &= (-1)^{\hat{w}_{z,x;j+\frac{1}{2}}} | \hat{\mathbf{w}} \rangle \\ \hat{W}_{z,y}(x_{i+\frac{1}{2}}) | \hat{\mathbf{w}} \rangle &= (-1)^{\hat{w}_{z,y;i+\frac{1}{2}}} | \hat{\mathbf{w}} \rangle \\ \hat{W}(y_{j-\frac{1}{2}}, y_{j+\frac{1}{2}}) | \hat{\mathbf{w}} \rangle &= (-1)^{\hat{w}_{x;j}} | \hat{\mathbf{w}} \rangle \\ \hat{W}(x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}) | \hat{\mathbf{w}} \rangle &= (-1)^{\hat{w}_{y;i}} | \hat{\mathbf{w}} \rangle \end{split}$$

 The electric operators W will serve as symmetry generator instead,

$$\begin{split} & W(y_{j'}, y_{j'+1}) | \hat{\mathbf{w}} \rangle = | \hat{w}_{z,x;j+\frac{1}{2}} + \delta_{j,j'}, \hat{w}_{z,y;i+\frac{1}{2}}, \hat{w}_{x;j}, \hat{w}_{y;i} \rangle \\ & W(x_{i'}, x_{i'+1}) | \hat{\mathbf{w}} \rangle = | \hat{w}_{z,x;j+\frac{1}{2}}, \hat{w}_{z,y;i+\frac{1}{2}} + \delta_{i,i'}, \hat{w}_{x;j}, \hat{w}_{y;i} \rangle \\ & W_{z,x}(y_{j'}) | \hat{\mathbf{w}} \rangle = | \hat{w}_{z,x;j+\frac{1}{2}}, \hat{w}_{z,y;i+\frac{1}{2}}, \hat{w}_{x;j} + \delta_{j,j'}, \hat{w}_{y;i} \rangle \\ & W_{z,y}(x_{i'}) | \hat{\mathbf{w}} \rangle = | \hat{w}_{z,x;j+\frac{1}{2}}, \hat{w}_{z,y;i+\frac{1}{2}}, \hat{w}_{x;j}, \hat{w}_{y;i} + \delta_{i,i'} \rangle \end{split}$$

KW-duality[§]

Given any (2+1)D theory T_{sub} with subsystem symmetry, the dynamical boundary state is constructed as,

$$|\mathfrak{B}_{\mathfrak{T}_{\mathrm{sub}}}^{\mathrm{phys}}
angle = \sum_{\mathbf{w}} Z_{\mathfrak{T}_{\mathrm{sub}}}[\mathbf{w}] |\mathbf{w}
angle,$$

• The original theory is $Z_{\mathfrak{T}_{sub}}[\mathbf{w}] = \langle \mathbf{w} | \mathfrak{B}_{\mathfrak{T}_{sub}}^{phys} \rangle$

• The KW-dual is given by $Z_{\hat{\mathfrak{T}}_{sub}}[\hat{\mathbf{w}}] = \langle \hat{\mathbf{w}} | \mathfrak{B}_{\mathfrak{T}_{sub}}^{phys} \rangle$

$$Z_{\hat{\mathfrak{I}}_{sub}}[\hat{\mathbf{w}}] = \frac{1}{2^{(L_x + L_y - 1)}} \sum_{\mathbf{w} \in M_v} (-1)^{\sum_i (\hat{w}_{z,y;i+\frac{1}{2}} w_{y;i+\frac{1}{2}} + \hat{w}_{y;i}w_{z,y;i})} \\ \times (-1)^{\sum_j (\hat{w}_{z,x;j+\frac{1}{2}} w_{x;j+\frac{1}{2}} + \hat{w}_{x;j}w_{z,x;j})} Z_{\tilde{\mathfrak{I}}_{sub}}[\mathbf{w}]$$

[§]Weiguang Cao, Linhao Li, Masahito Yamazaki, Yunqin Zheng, 2023.

JW transformation[¶]

• The fermionic state $|\mathbf{s}\rangle = |s_{z,x;j}, s_{z,y;i}, s_{x;j+\frac{1}{2}}, s_{y;i+\frac{1}{2}}\rangle$ is diagonalized by,

$$\begin{cases} \hat{W}_{z,x}(y_{j-\frac{1}{2}})W_{z,x}(y_{j})\hat{W}_{z,x}(y_{j+\frac{1}{2}})|\mathbf{s}\rangle = (-1)^{s_{z,x;j}}|\mathbf{s}\rangle \\ W_{z,y}(x_{i})|\mathbf{s}\rangle = (-1)^{s_{z,y;i}}|\mathbf{s}\rangle \\ \hat{W}(y_{j-\frac{1}{2}}, y_{j+\frac{1}{2}})W(y_{j}, y_{j+1})\hat{W}(y_{j+\frac{1}{2}}, y_{j+\frac{3}{2}})|\mathbf{s}\rangle = (-1)^{s_{x;j+\frac{1}{2}}}|\mathbf{s}\rangle \\ W(x_{i}, x_{i+1})|\mathbf{s}\rangle = (-1)^{s_{y;i+\frac{1}{2}}}|\mathbf{s}\rangle \end{cases}$$

• The fermionic subsystem \mathbb{Z}_2 parity symmetry is generated by magnetic operators \hat{W}

$$\begin{cases} \hat{W}(y_{j'-\frac{1}{2}}, y_{j'+\frac{1}{2}})|\mathbf{s}\rangle = |s_{z,x;j} + \delta_{j,j'}, s_{z,y;i}, s_{x;j+\frac{1}{2}}, s_{y;i+\frac{1}{2}}\rangle \\ \hat{W}(x_{i'-\frac{1}{2}}, x_{i'+\frac{1}{2}})|\mathbf{s}\rangle = |s_{z,x;j}, s_{z,y;i} + \delta_{i,i'}, s_{x;j+\frac{1}{2}}, s_{y;i+\frac{1}{2}}\rangle \\ \hat{W}_{z,x}(y_{j'+\frac{1}{2}})|\mathbf{s}\rangle = |s_{z,x;j}, s_{z,y;i}, s_{x;j+\frac{1}{2}} + \delta_{j,j'}, s_{y;i+\frac{1}{2}}\rangle \\ \hat{W}_{z,y}(x_{i'+\frac{1}{2}})|\mathbf{s}\rangle = |s_{z,x;j}, s_{z,y;i}, s_{x;j+\frac{1}{2}}, s_{y;i+\frac{1}{2}} + \delta_{i,i'}\rangle \end{cases}$$

[¶]Weiguang Cao, Masahito Yamazaki, Yunqin Zheng. 2022

• There exists another fermionic state $|\mathbf{s}'\rangle = |s'_{z,x;j}, s'_{z,y;i}, s'_{x;j+\frac{1}{2}}, s'_{y;i+\frac{1}{2}}\rangle$ which diagonalizes the line operators,

$$W_{z,x}(y_j), \quad \hat{W}_{z,y}(x_{i-\frac{1}{2}})W_{z,y}(x_i)\hat{W}_{z,y}(x_{i+\frac{1}{2}}),$$

and strip operators,

$$W(y_j, y_{j+1}), \quad \hat{W}(x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}})W(x_i, x_{i+1})\hat{W}(x_{i+\frac{1}{2}}, x_{i+\frac{3}{2}}),$$

where $W_{z,y}(x_i)$, $W(x_i, x_{i+1})$ are sandwiched by a pair of \hat{W} operators instead.

Choosing different topological boundary states give two fermionic theories \$\mathcal{T}_{F,x,sub}\$ and \$\mathcal{T}_{F,y,sub}\$ whose partition functions are,

$$Z_{\mathfrak{T}_{F,x,\mathrm{sub}}}[\mathbf{s}] = \langle \mathbf{s} | \mathfrak{B}^{\mathrm{phys}}_{\mathfrak{T}_{\mathrm{sub}}} \rangle, \quad Z_{\mathfrak{T}_{F,y,\mathrm{sub}}}[\mathbf{s}'] = \langle \mathbf{s}' | \mathfrak{B}^{\mathrm{phys}}_{\mathfrak{T}_{\mathrm{sub}}}
angle$$

They are related to the bosonic theory \mathfrak{T}_{sub} by performing the subsystem JW transformations along *x* and *y* directions respectively.

Dualities in Subsystem Symmetry

Conclusion

- We propose that the SymTFT of (2+1)D subsystem symmetry is the 2-foliated BF theory
- We construct the bosonic/fermionic topological boundary states
- By studying the SymTFT, we obtain a duality web connecting different theories.

Future work

• • • •

- Extend the study of subsystem SymTFT to other models, like \mathbb{Z}_N subsystem symmetry.
- Study models with subsystem symmetry in higher dimensions, for example, the (3+1)D X-cube model.

Thank you!