Mirror Symmetry of Bad Theories

Chiung Hwang

- University of Science and Technology of China Interdisciplinary Center for Theoretical Study
- Peng Huanwu Center for Fundamental Theory
- East Asia Joint Workshop on Fields and Strings 2023

Based on

S. Giacomelli, CH, F. Marino, S. Pasquetti, M. Sacchi,

"Probing bad theories with the dualization algorithm I," [arXiv:2309.05326],

Also see

- ▶ R. Comi, CH, F. Marino, S. Pasquetti, M. Sacchi, "The SL(2, Z) dualization algorithm at work," JHEP 06 (2023) 119, [arXiv:2212.10571],
- CH, S. Pasquetti, M. Sacchi, "Rethinking mirror symmetry as a local duality on fields," Phys.Rev.D 106 (2022) 10, 105014, [arXiv:2110.11362],
- ▶ L. E. Bottini, CH, S. Pasquetti, M. Sacchi, "4d S-duality wall and SL(2, Z) relations," JHEP 03 (2022) 035, [arXiv:2110.08001].

- "Probing bad theories with the dualization algorithm II," to appear.

- Introduction: building blocks of dualities
- 3d mirror symmetry as the piecewise dualization
- Application: mirror symmetry of bad theories
- Remarks

Building blocks of dualities

Example I: 3D Gauge-Scalar Duality

The 3d Maxwell theory

$$Z_{Maxwell} = \int \mathscr{D}A_{\mu} \exp\left[\int d^3x \,\frac{1}{4e^2} \,F_{\mu\nu} F^{\mu\nu}\right]$$

• The field-strength $F_{\mu\nu}$ satisfies the Bianchi identity:

 $\epsilon^{\mu\nu\rho}$

• Rewriting the integration measure in terms of gauge invariant $F_{\mu\nu}$,

$$Z_{Maxwell} = \int \mathscr{D} F_{\mu\nu} \mathscr{D} \gamma \exp\left[\int d^3x \left(\frac{1}{4e^2} F_{\mu\nu} F^{\mu\nu} - \frac{i}{4\pi} \gamma e^{\mu\nu\rho} \partial_{\mu} F_{\nu\rho}\right)\right]$$
$$= \int \mathscr{D} \gamma \exp\left[\int d^3x \frac{e^2}{8\pi^2} \partial_{\mu} \gamma \partial^{\mu} \gamma\right] \qquad J^{\mu}_{top} = \frac{ie^2}{(2\pi)^2} \partial^{\mu} \gamma \qquad \clubsuit \qquad \gamma + \alpha$$

$$\rho \partial_{\mu} F_{\nu\rho} = 0$$
 \blacktriangleright A conserved current $J^{\mu}_{top} = \frac{1}{4\pi} \epsilon^{\mu\nu\rho} F_{\mu\nu}$

• A simple duality example between the 3d Maxwell theory and a scalar theory, both of which are free.

Example II: 3D Vortex-Particle Duality

Generalization to interacting theories: the 3d bosonization

$$i\overline{\chi}\gamma_{\mu}D_{a}^{\mu}\chi - \frac{1}{2\pi}Bda - \frac{1}{4\pi}Bda$$

the vortex-particle duality

$$D_{b}\phi^{2} - \phi^{4} + \frac{1}{2\pi}bdC \qquad \longleftrightarrow \qquad i\overline{\chi}\gamma_{\mu}D_{a}^{\mu}\chi - \frac{1}{2\pi}bda - \frac{1}{4\pi}bdb + \frac{1}{2\pi}bdC \qquad \longleftrightarrow \qquad D_{C}\hat{\phi}^{2} - \hat{\phi}^{4}$$

• Adding $\frac{1}{2\pi}BdC$ + gauging $B \rightarrow b$ + the (time-reversed) bosonization

- The bosonization -> the vortex-particle duality; The vortex-particle duality -/-> the bosonization
- Namely, the bosonization is more fundamental than the vortex-particle duality.

Peskin 78, Dasgupta-Halperin 81, Chen-Fisher-Wu 93, Barkeshli-McGreevy 14, Aharony 15, Karch-Tong 16, Seiberg-Senthil-Wang-Witten 16

 $BdB \qquad \longleftrightarrow \qquad D_{R}\phi^{2} - \phi^{4}$

• Don't know how to prove it; nevertheless, a number of new dualities can be derived from it; e.g.,

What are the building blocks of 3d mirror symmetry?

3d mirror symmetry as the piecewise dualization

3D Mirror Symmetry

- A duality typically relating two 3d $\mathcal{N} = 4$ theories whose Higgs and Coulomb branches are exchanged (Intriligator-Seiberg 96, ...)
- The quantum corrected Coulomb branch from the classically exact Higgs branch of a mirror dual
- Non-perturbative monopoles <-> perturbative mesons
- Lagrangian mirror duals of non-Lagrangian theories

Duality of Theories vs Duality of Fields

Building blocks of 3d mirror symmetry?

- Idea: dualize a "field" rather than a theory!
- If we know how to dualize each field, we may also be able to dualize the entire theory by gauging symmetries (and adding interactions if necessary) as in the previous example.

Today, focus on mirror symmetry of 3d $\mathcal{N} = 4 U(N)$ linear quiver gauge theories,

- having interactions fixed by the
- consisting of (bi-)fundamental matter fields

$$\mathcal{N} = 4$$
 supersymmetry

Building Blocks of 3D Mirror

Bifundamental Field:

Fundamental Field:

Bottini-CH-Pasquetti-Sacchi 21 CH-Pasquetti-Sacchi 21

Basic Ingredients: S-Wall

• The S-wall theory: T[U(N)]

- (Giaotto-Witten 08)
- $U(1)^{N-1}$ topological symmetry + background U(1) coupled via mixed CS + $U(N)_Y$ flavor symmetry
- Enhanced $U(N)_X \times U(N)_Y$ symmetry in the IR

Basic Ingredients: I-Wall

• The identity-wall theory: two S-walls glued by gauging common U(N)

$$\vec{X}$$
 N \cdots N \vec{Y} = $\begin{pmatrix} \\ \\ \\ \end{pmatrix}$

- $X_1 \longleftrightarrow Y_1$ The partition function proportional to the delta function $X_2 \longleftrightarrow Y_2$ ~ $\sum_{i=1}^{N} \delta\left(X_{j} - Y_{\sigma(j)}\right)$ $X_N \longleftrightarrow Y_N$ $\sigma \in S_N$ j=1
- $\langle \mathfrak{M} \rangle \neq 0$, where \mathfrak{M} is a (monopole) operator in the $U(N)_X \times U(N)_Y$ bifundamental representation, breaking

+ permutations

 $U(N)_X \times U(N)_Y \rightarrow U(N)_D$

Generalization: Mass-Deformed S- & I-Walls

 \bullet

• Mass-deformed S-wall: S-wall + mass terms breaking $U(N)_Y \rightarrow U(M) \times U(1)$

$$Y_{M+j} = V + \frac{N - M + 1 - 2j}{2} (iQ - 2m_A), \qquad j = 1, ..., N - 2$$

(Generalized) Building Blocks of 3D Mirror

Dualization of a $U(N) \times U(M)$ bifundamental hypermultiplet lacksquare

- the mass-deformed S-wall
- Similarly for the fundamental field

• A bifundamental hypermultiplet = a fundamental (twisted) hypermultiplet dualized by

The Local Hanany-Witten Move in QFT

- brane move in IIB string theory (Comi-CH-Marino-Pasquetti-Sacchi 22).
- Nothing but Higgs mechanism

• The mass-deformed I-wall satisfies an interesting property resembling the Hanany-Witten

• The general 3d linear quivers can be labeled by two sets of integers

$$\rho = [\rho_1, \dots, \rho_L],$$

$$\sigma = [\sigma_1, \dots, \sigma_K] = [N^{k_N}, \dots, 1^{k_1}].$$

- If $\rho \& \sigma$ are partitions satisfying $\sigma^T > \rho$, the theory, named as $T_{\rho}^{\sigma}[U(N)]$, is called good

All such dual pairs can be derived from the building blocks!

$$M_{L-i} = k_i,$$

$$N_{L-i} = \sum_{j=i+1}^{L} \rho_j - \sum_{j=i+1}^{N} (j-i)k_j$$

• Mirror symmetry of $T_{\rho}^{\sigma}[U(N)]$ is well known; it corresponds to swapping partitions $\rho \leftrightarrow \sigma$.

More applications:

- Generalization to SL(2,Z) dualities
- Generalization to 4d

. . .

Generalization to bad theories

Mirror symmetry of bad theories

What Are Bad Theories?

- - Good theories: $N_f \ge 2N_c$
 - Ugly theory: $N_f = 2N_c 1$
 - ► Bad theories: $N_f \le 2N_c 2$
- Quiver gauge theories generally include bad nodes.

• Classification of 3d $\mathcal{N} = 4 U(N_c)$ SQCDs with N_f flavors (Gaiotto-Witten 08)

• IR R-symmetry \neq UV R-symmetry

- Divergent partition functions when calculated with the UV R-symmetry
- Due to decoupled monopole operators in the IR
- The R-symmetry mixed with emergent symmetries rotating the decoupled monopoles

Example: Bad SQCD

Example: Bad SQCD

The HW moves

Colliding mass-deformed I-walls

Two ways of Higgsing

U(1) unbroken

 $\delta(Y_1 - Y_2)$

U(1) unbroken

 Y_2 1

U(1) Higgsed

Example: Bad SQCD

Generic FI parameter

We get two different duals depending on the FI!

U(1) unbroken

 Y_2 1

U(1) Higgsed

Example: Bad SQCD

Generic FI parameter

We get two different duals depending on the FI!

Mirror Symmetry of Bad Theories

- The piecewise dualization algorithm can be applied to the 3d $\mathcal{N} = 4 U(N)$ SQCD
- For a bad theory, the algorithm stops when two mass-deformed I-walls collide.
- Different Higgs flows, resulting in multiple dual frames depending on the FI: \bullet $SQCD(N_c, N_f, Y_1 - Y_2)$ $= \sum_{i=1}^{\lfloor \frac{N_2}{2} \rfloor} \delta(Y_1 - Y_2 + ...) \times \text{mSQCD}(r, N_f, Y_1 - Y_2 + ...) \times (\text{extra decoupled fields})$ $r = N_f - N_c + 1$ +mSQCD $(N_f - N_c, N_f, Y_1 - Y_2) \times (\text{extra decoupled fields}), \quad N_c \le N_f < 2N_c$
- Applicable to any linear quivers each bad node can be dualized using the SQCD result (Giacomelli-CH-Marino-Pasquetti-Sacchi WIP)

regardless of whether it is good or bad (Giacomelli-CH-Marino-Pasquetti-Sacchi 23).

A couple more things...

I. Mirror Symmetry of SU(N)

- symmetry coupled to the diagonal U(1) via mixed CS coupling.
- An SU(N) node can be obtained by gauging such topological U(1).

• Recall that each U(N) gauge node implies the topological U(1) global

I. Mirror Symmetry of SU(N)

theory (Giacomelli-CH-Marino-Pasquetti-Sacchi WIP).

$$2 \qquad \overrightarrow{W} = \overrightarrow{Y} \pm \frac{1}{2} \left(iQ - 2m_A \right) \qquad \text{Ga}$$

$$1 \qquad \times \delta(Y_1 - Y_2)$$

$$X_2 - X_1$$

• The same operation on the dual side leads to the mirror dual(s) of the SU(N)

I. Mirror Symmetry of SU(N)

- Comparison with the moduli space?

• The moduli space of the 3d $\mathcal{N} = 4 USp(2N)$ theory (Assel-Cremonesi 18):

$$N_{f} = 2N$$

Figure from Assel-Cremonesi 18

• Two interacting fixed points for SU(2) with 2 flavors, consistent with our mirror!

II. 3D $\mathcal{N} = 4$ Seiberg-Like Duality

- number of flavors (Kim³-Lee 12, Yaakov 13)
- (Assel-Cremonesi 17)
- Needs a modification

• Duality relating a bad/ugly $U(N_c)$ theory to a good $U(N_f - N_c)$ theory with the same

• Turns out not exact for bad theories—the bigger moduli space of the bad theory

decoupled hypers

II. 3D $\mathcal{N} = 4$ Seiberg-Like Duality

(Giacomelli-CH-Marino-Pasquetti-Sacchi 23).

2N

W =

• The EOM of the extra singlets X_i^{\pm} forbids monopole VEVs which led to multiple duals $SQCD(N_c, N_f, Y_1 - Y_2) + W$ $= \sum_{i=1}^{\lfloor \frac{N_2}{2} \rfloor} \delta(Y_1 - Y_2 + ...) \times mSQCD(r, N_f, Y_2 - Y_1 + ...) \times (extra decoupled fields) \times (X_i^{\pm})^{0^2}$ $r = N_f - N_c + 1$ +mSQCD $(N_f - N_c, N_f, Y_2 - Y_1) \times (\text{extra decoupled fields}) \times (X_i^{\pm})$ = SQCD($N_f - N_c, N_f, Y_2 - Y_1$)

• Solution: a 3d monopole is a chiral operator and can participate in the superpotential

$$\sum_{i=0}^{N_c - N_f - 1} X_i^{\pm} \mathfrak{m}_i^{\mp}$$

- We have found building blocks of mirror symmetry of 3d linear quiver gauge theories. -> The fundamental mechanism of these dualities is universal.
- We have found multiple mirror duals of bad theories determined by the FI.
- The mirror building blocks can be extended to SL(2,Z) (Comi-CH-Marino-Pasquetti-Sacchi 22).
- 4d versions of mirror & SL(2,Z) dualities are also found (CH-Pasquetti-Sacchi 20, Comi-CH-Marino-Pasquetti-Sacchi 22).

- circular quivers (WIP).
- Seiberg-like dualities? (WIP)
- Connections to higher-dimensional SCFTs? lacksquare
 - The 4d S-wall from the compactification of the 6d E-string (Pasquetti-Razamat-Sacchi-Zafrir 19, CH-Razamat-Sabag-Sacchi 21)
 - Wenbin's talk
 - Higgs branches via magnetic quivers
- Application to holographic models, e.g., ABJ(M)?
 - Cf. the holographic dual of the 3d S-wall (Assel-Bachas-Estes-Gomis 11)

Remarks (Continued)

• Other types of matters? Other types of quivers? E.g., the adjoint representation -> a special case of

