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Introduction I

Chaos exist when a non-linear deterministic dynamical system has
non-periodic orbits which are extra sensitive to the initial conditions.
Usual ways to recognize chaos:

Poincare section

A picture of chaos is given by a scattered Poincare section.

Leading Lyapunov Exponent

∥δx(t)∥ ≈ eλt∥δx0∥

It is computed at large time and small
∥δx0∥ several times during the trajectory.

Positive coefficients signal the existence of chaos.
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Introduction II

Study of the Hénon-Heiles system’s Hamiltonian
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The non-linear terms in the Hamiltonian is responsible for chaos.
Phase Space Poincare section
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Introduction III: When chaos is present?

Demonstrate the question for the generalized Hénon-Heiles Hamiltonian
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where c and d are constants.

It can be found analytically applying formalisms of non-integrability
that except

c

d
= 0, 1,

1

6
.

the Hamiltonian system is non-integrable! (Ito 85)

Chaos is present for the rest of the values.

Side Comment:
Holographic and Gravitational applications of such methods include:
marginally (β-)deformed theories, Factorization of the S-matrix,
non-relativistic (anisotropic) theories, D-brane backgrounds,
Sasaki-Einstein, confining theories...:
(D.G., Zayas, Zoubos, Tseytlin, Lunin, Basu, Ishii, Murata, Yoshida, Nunez,

Thompson, Banerjee, Bhattacharyya, Morales-Ruiz, Ramis,...: 2012-...)
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Chaos around Black holes?

It is natural for geodesics to develop instabilities and chaos due to
the non-linear nature of gravitational fields on GR.

Geodesics naturally display a rich structure and convey important
information on the black holes.

A particularly interesting class of them are the nearly bound null
geodesics that comprise the photon ring.

Their Lyapunov exponents are expected to be measured
experimentally for the astrophysical black holes.

A well established approximate relation between the quasinormal
modes and the null geodesics exists.

(Cardoso, Miranda, Berti, Witek, Zanchin, 0812.1806; ...)

Holographic principle of asymptotically flat black holes.
(Hadar, Kapec, Lupsasca, Strominger, 2205.05064)
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Bounds/Universality on photon rings?

For spherically symmetric (Schwarzschild) black holes for particle motion
in the near horizon regime it has been noticed

λ ≤ κ = 2πT ,

(Hashimoto, Tanahashi, 1610.06070) .
Although for generic black holes around the horizon:

λ2 ≃ κ2+
1

4

(
g
(2)
tt G (1)

rr − g
(1)
tt G (2)

rr

)
(r − rh)−G (1)

rr

√
−g

(1)
tt V ′′(rh)(r−rh)

3/2+. . .

Grr := 1/grr .
Implementing all geodesic conditions and the null energy conditions are
not enough to ensure in general a bound! (D.G., 2112.02081; ...) .
There are many other specific black hole examples. (..., Zhao, Li, Lu

1809.04616; Lei, Ge, Ran 2008.01384; Jeong, Lee, Lee, Lee 2301.12198; ... many

other )

Any bounds related to photon ring geodesics?

Dimitris Giataganas Chaos on Photon Rings



Introduction Null Geodesics The Class of Black Holes Penrose Limit and Results Conclusions

An alternative approach for the near photon ring physics

Penrose limit of generic class of space-times on null geodesics of the
photon ring to obtain the plane wave metric.

The metric of the plain wave is associated with the Lyapunov
exponent and the quasinormal modes.

The construction presented is for generic large class of black holes.

The surface gravity (at least for certain limits) appears naturally on
the results.
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Null Geodesics in plane waves

The plane wave metric (of a metric g) in Brinkmann coordinates:

ds2 = 2dudv + Aij(u)x
ix jdu2 + dx⃗2 .

The massless geodesics satisfy

−u̇v̇ =
1

2
Aijx

ix j u̇2 +
1

2
˙⃗x2 ,

with a conserved conjugate momentum pv = u̇, so that

u = puτ .

The geodesic equations for the transverse coordinates x i

ẍ(τ)i = Aijp
2
vx

j := −ω2
ijx

j ,

are of the form of the non-relativistic harmonic oscillator with a
frequency matrix ωij .
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Deviations of families of geodesics

The separation δx between nearby geodesics is given by

D2

Dτ 2
δxµ = Rµ

νkl ẋ
ν ẋkδx l ,

D

Dτ
:= ẋκ∇κ,

where the transverse deviation equation is reduced to

d2

du2
δx i = Aijδx

j ,

the harmonic oscillator equation.

Riubu is the only non-vanishing component of the Riemann curvature
tensor of a plane wave metric and gives the −Aij matrix.
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Stable and unstable directions?

The only non-zero component of the Einstein tensor of the plane wave
metric:

Rµν − 1

2
gµνR = Ruu = −δijAij

For spacetimes satisfying the vacuum Einstein equations without the
presence of null fluxes and matter:

TrA = 0 ⇒ A11 = −A22.

Immediate implications:

They exist both stable and unstable directions with related
frequency and Lyapunov exponent.
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Which Black Holes?

The Hamilton-Jacobi (H-J) equation of geodesics is separable for a
stationary axisymmetric spacetime written in (t, θ, ϕ, r) coordinates of
the form:

gµν(r , θ) =


− C1C3

C 2
4−C3C5

0 C1C4

C 2
4−C3C5

0

0 C1

B2
0 0

C1C4

C 2
4−C3C5

0 − C1C5

C 2
4−C3C5

0

0 0 C4
C1

A2

 .

where Ci = Ai (r) + Bi (θ). (Papadopoulos, Kokkotas, 2020)

The H-J equation for null geodesics is

gµν∂µS∂νS = 0

with pµ = ∂µS . Separability for motion suggests

S = −Et + Lϕ+ Sr (r) + Sθ(θ) ,

We obtain two separable equations depending on r and θ

A2S
′2
r + A5E

2 + A3L
2 − 2A4EL = −K , B2S

′2
θ + B5E

2 + B3L
2 − 2B4EL = K .
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On the spherical photon ring r0, we find the algebraic equations

b =

(
A′
4

A′
3

±
√
A′
4
2 − A′

3A
′
5

A′
3

)∣∣∣∣∣
r0

,

kE = −A5+2
A′
4

A′
3

(
A4 − A3

A′
4

A′
3

)
+
A3A

′
5

A′
3

±2

√
A′
4
2 − A′

3A
′
5(A3A

′
4 − A′

3A4)

A′
3(r)

2

∣∣∣∣∣
r0

,

where

b =
L

E
, kE =

K
E 2

.

The equations are solvable for this general background.
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Penrose Limit: Parallel Frames along null Geodesics

The Killing-Yano antisymmetric tensor is essential for the construction.
We can use the Killing tensor

Y c
a Y

b
c = K b

a

and additionally satisfy

∇cYab +∇aYcb = 0 .

In order to solve the last equation let us try to make a more specific
choice of the functions Ai (r),Bi (θ)

A1(r) = Λ(r)2 , A2 = ∆(r) , A3(r) = −a2Φ(r)

∆(r)
,

A4(r) = −
aΦ(r)

(
Λ2(r) + a2

)
∆(r)

, A5(r) =
A4(r)

2

A3(r)
.

and

B1(θ) = a2c2θ , B2(θ) = 1 , B3(θ) = s−2
θ , B4(θ) = a , B5(θ) =

B4(θ)
2

B3(θ)
.
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The Killing-Yano tensor for this class of metrics is

Y (r , θ) = s1


0 arsθ 0 −acθ

−arsθ 0 r(a2 + r2)sθ 0
0 −r(a2 + r2)sθ 0 a2cθs

2
θ

acθ 0 −a2cθs
2
θ 0

 .

with
Φ(r) = 1 , Λ(r) = ±r + c1 , s21 = 1,

while ∆(r) remains arbitrary.

This class of metrics includes:

Kerr, Kerr-Newmann, mass deformations of Kerr...

Schwarzschild, Reissner–Nordström, Kiselev...
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Penrose limit

ds2 = 2dudv + Aijx
ix jdu2 + dx21 + dx22 , x1 ∼ r , x2 ∼ θ .

where
Aij = −Rµναβu

µe(i)νuαe(j)β
∣∣
null geodesic

.

To construct the parallel frames for the null geodesics we have

uµ = ∂µS , uµu
µ = nµn

µ = 0 , e(i)µ eµ(j) = δij ,

the parallel propagated tetrad

e(1)µ =
1

C
(uαhα

µ − u(uαξα)u
µ) , e(2)µ =

1

K
(uαfα

µ) ,

nµ = − 1

C
e(1)αhα

µ +
1

2C 4

(
Cβ

γCγδu
βuδ + u2(ξαu

α)2C 2
)
uµ .

K 2 = Kαβu
αuβ , C 2 = Cαβu

αuβ , Cαβ = hαγhβ
γ .

and

h = ⋆Y = −a
(
a2 + r2

)
cθsθdθ∧dϕ−rdt∧dr−a2cθsθdt∧dθ+ars2θdϕ∧dr .

(Fransen, 2301.06999; Kubiznak, Frolov, Krtous, Connell, 0811.0012,...) .
Dimitris Giataganas Chaos on Photon Rings



Introduction Null Geodesics The Class of Black Holes Penrose Limit and Results Conclusions

Penrose Limit: Generic Results

For the equatorial geodesics we get the simplified expressions for Aij

A11 = 4
2∆(r0∆

′′ −∆′)− r0∆
′2

r30∆
′2 ,

A22 = 2
4∆(2r0 −∆′) + r0∆

′2

r30∆
′2 ,

A21 = A12 = 0 .

evaluated on the photon ring r0.

Aij is always diagonal.

In general A11 ̸= A22!
No Einstein equations has been used so far.

Dimitris Giataganas Chaos on Photon Rings



Introduction Null Geodesics The Class of Black Holes Penrose Limit and Results Conclusions

Massless Scalar Wave Equation

The Massless Scalar Wave Equation is

∇µ∇µΦ = 0 , Φ = e ipv v+ipuuϕ1(x1)ϕ2(x2)

The wave equation separates to

1

2p2v
ϕ′′
i (xi ) + Aii

x2i
2
ϕi (xi ) =

(
pu
2pv

± c

)
ϕi (xi )

When TrA = 0 ⇒ A11 = −A22 implies one harmonic oscillator(stable
direction) and one mirror inverted oscillator(unstable direction)
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Surface Gravity

Surface gravity: a measure of the gravitation force on a static observer at
the horizon surface as seen by an observer at infinity.

κ ∼ Vα , V : redshift factor , α : acceleration.

It is equal to

κ2 = −1

2
(∇µKν)(∇µKν)

∣∣∣∣
rh

.

For the black holes under study

κ =
∆′(rh)

2(r2h + a2)
.

Where for spherically symmetric static black holes we have

κ = − g ′
tt

2
√
−gttgrr

,

and for a Schwarzschild black hole simplifies to κ = (4m)−1 = 2πT .
Dimitris Giataganas Chaos on Photon Rings



Introduction Null Geodesics The Class of Black Holes Penrose Limit and Results Conclusions

Applicability of the formalism on certain Black holes I

Schwarzschild black hole:

∆(r) = r2 − 2mr , a = 0 ,

The radius of the photon ring is

r0 = 3m , b2 = 27m2 .

The Penrose limit plane wave in Brinkmann coordinates

A11 = −A22 =
1

3m2
=

16

3
κ2 , A12 = A21 = 0 .

(Fransen, 2023)

Which implies

λ =
4κ

3
√
3
< κ , ω = λ .
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Applicability of the formalism on certain Black holes II

Kerr Black hole

∆(r) = r2 − 2mr + a2

The Penrose Limit reads

A11 = −A22 =
3

r20

In the limit of large mass the Penrose limit becomes

A11 ≃
16

3
κ2
Kerr + C0(a,m) + . . . =

16

3
κ2
Schw + C1(a,m) + . . .

A11 approaches the surface gravity from above

λ ≃ κKerr + C2(a,m)± . . . ≥ κKerr
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Applicability of the formalism on certain Black holes III

Kerr-Newman black hole

∆(r) = r2 − 2mr + a2 + q2

The Penrose limit metric elements

A11 =
3mr0 − 4q2

r20 (q
2 −mr0)

, A22 =
2q2 − 3mr0
r20 (q

2 −mr0)
,

with A12 = A21 = 0 , and A11 ̸= A22 always unless q = 0.
For very massive black holes we obtain

A11 ≃
16

3
κ2
RN + C1(a,m) , A22 ≃ −16

3
κ2
RN − C2(a,m) .
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Conclusions

✓ Penrose limit is interesting alternative and ”universal” formalism to
study the near photon ring regime physics in relation to black hole
properties.

✓ We have applied the framework on a large class of space-times,
obtaining readily applicable formulas for the Lyapunov coefficients.

Ideal to study Universalities and existence of bounds.

...
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Thank you!
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