### Dark Matter & the CMB

高宇 Yu Gao

#### IHEP, CAS



科大 合肥 2021/5/13

## Outline

- Particle Dark Matter Effects on the CMB
- $DM \leftrightarrow CMB$  anisotropies (Ionization)
- DM  $\leftrightarrow$  21cm (Temperature)
- Forecasts for DM and PBHs
- Inhomogeneity from DM heating

#### Dark matter out there...



f y R SCIENCE

Heart of darkness: Scientists probe dark matter near Milky Way's core



#### DM got'be `matter', right?



## Theory orders are placed.



CMB covers a wide DM mass range!

#### CMB and Dark Matter – how?



# DM probes from the CMB

• CMB spectral distortion:

`coupled' DM, early/steady energy injection, DM-photon conversion, etc

- CMB polarization: pol. rotation in CPV medium
- CMB derivatives:

21cm maps of matter power-spectrum: spatial & temperature distributions

# DM probes from the CMB

• CMB spectral distortion:

`coupled' DM, early/steady energy injection, DM-photon conversion, etc

- CMB polarization: pol. rotation in CPV medium
- CMB derivatives:

21cm maps of matter power-spectrum: spatial & temperature distributions

## Impact from steady (high-energy) injection

- Deposit energy into IGM during the dark age of Universe
- (1) Ionize (fraction of) the IGM; (2) Heats the IGM
- A small energy budget for a large impact

On decay lifetime:

| Continuum Indirect<br>Search (Fermi-LAT, etc): | $\tau > 10^{26}  \text{s}$ (line search: $\tau > 10^{28}  \text{s}$ ) |
|------------------------------------------------|-----------------------------------------------------------------------|
| IGM ionization<br>pre-EoR (PLANCK)             | $\tau > 10^{24} s$                                                    |
| IGM heating<br>pre-EoR (21cm,projected)        | $\tau > 10^{26}  s$                                                   |

#### The `standard' ionization history

Standard ionization evolution (pre-EoR)

$$\frac{dX_e}{dt} = \left\{ (1 - X_e)\beta - X_e^2 n_b \alpha^{(2)} \right\}$$

Ionization rate (by radiation field):

$$\beta \equiv \langle \sigma v \rangle \left(\frac{m_e T}{2\pi}\right)^{3/2} e^{-\epsilon_0/T}$$

 $(\alpha)$ 

Recombination:

$$\alpha^{(2)} \equiv \langle \sigma v \rangle$$

Approx. capture rate<sub>(2)</sub> = 
$$9.78 \frac{\alpha^2}{m_e^2} \left(\frac{\epsilon_0}{T}\right)^{1/2} \ln\left(\frac{\epsilon_0}{T}\right)$$



 $x_e$  reduces to a 10<sup>-4</sup> floor during the cosmic dark age and returns to unity during EoR

#### DM Effect 1: ionization

.More free electrons

•More CMB scattering  $\rightarrow$  Damping on  $C_l$ 

 $\frac{dX_e}{dt} = \left\{ (1 - X_e)\beta - X_e^2 n_b \alpha^{(2)} \right\}$ 

SM: H atom ionization and recombination

"Deposit Channels"

ionization from ground state

ionization from excited states

(+ other channels)

The `perturbed' ionization history



"Broadens the last scattering surface"

#### Redshift dependence in injection rate

- Annihilation and/or Decay of WIMPs
- Energy release during dark ages

**DM Annihilation**: fast during high z,

 $\sim (z+1)^6$ 

Late time density clustering boosts the annihilation rate after  $z\sim O(50)$ 

$$\left(\frac{\mathrm{d}E}{\mathrm{d}V\mathrm{d}t}\right)_{\mathrm{INJ}}^{\mathrm{ann,boosted}} = \left[1 + B(z)\right] \left(\frac{\mathrm{d}E}{\mathrm{d}V\mathrm{d}t}\right)_{\mathrm{INJ}}^{\mathrm{ann}}$$
$$B(z) = \frac{\Delta_{\mathrm{c}}\rho_{\mathrm{c}}}{\rho_{\mathrm{DM}}^2} \int_{M_{\mathrm{min}}}^{\infty} MB_{\mathrm{h}}(M) \frac{\mathrm{d}n}{\mathrm{d}M} \mathrm{d}M$$

**DM Decay**: a steady rate, unaffected by structure formation

 $\sim (z+1)^3$ 

## Lagged energy deposition

Injected high-energy particles lose energy by scattering, ionization, excitations, etc...

Not instantaneously deposited into the IGM if particles are energetic (E >> KeV): \* accumulative over earlier injection \* efficiency reduces at later time

Energy "fraction" into ionization (of H)



#### Numerical calculation

Implemented into HyRec codes:

new physics induced excitation, scattering ter Lyman-α photons, etc.

Also see: Belotsky, Kirillov 2015 <sub>13</sub> • Compute a history-dependent deposit "efficiency" f(E,z)

$$f_c \equiv \left(\frac{dE_{tot}}{dVdt}\right)_{DEP} / \left(\frac{dE_{tot}}{dVdt}\right)_{INJ} \tag{from theory}$$

(from sim.) -

$$f_{\rm c}(z_{\rm i}) \approx \frac{\sum_{s} \sum_{j} \sum_{\rm k} E_{\rm j}^{s} I^{s}(z_{k}, E_{j}^{s}) \mathrm{d}V(z_{\rm k}) \mathrm{d}t(z_{\rm k}) T_{\rm c,ijk}^{s} \mathrm{d}E_{\rm j}^{s}}{\sum_{s} \sum_{j} E_{\rm j}^{s} I^{s}(z_{i}, E_{j}^{s}) \mathrm{d}E_{\rm j}^{s} \mathrm{d}V(z_{\rm i}) \mathrm{d}t(z_{\rm i})}$$

- Averaged over injection spectra (*j*) and species (*s*) and integrated over all previous redshift  $(z_k > z_i)$
- Electrons are more effective than gamma rays at large energy
- Photons extends to (much) lower mass range

Simulated eff. T<sub>ijk</sub> 'DarkHistory' Liu, Ridgway, Slatyer, 19'

#### DM: impact on xe

Annihilation: raises the  $x_e$  floor,

Decay: steady rise in  $x_e$ 



#### *Xe on CMB C<sub>l</sub>: damping & pol. peak shift*



#### Current limits: WIMP annihilation

Planck Collaboration: Cosmological parameters



**Fig. 46.** *Planck* 2018 constraints on DM mass and annihilation cross-section. Solid straight lines show joint CMB constraints on several annihilation channels (plotted using different colours), based on  $p_{ann} < 3.2 \times 10^{-28} \text{ cm}^3 \text{ s}^{-1} \text{ GeV}^{-1}$ . We also show the  $2\sigma$  preferred region suggested by the AMS proton excess (dashed ellipse) and the *Fermi* Galactic centre excess according to four possible models with references given in the text (solid ellipses), all of them computed under the assumption of annihilation into  $b\bar{b}$  (for other channels the ellipses would move almost tangentially to the CMB bounds). We additionally show the  $2\sigma$  preferred region suggested by the AMS/PAMELA positron fraction and *Fermi*/H.E.S.S. electron and positron fluxes for the leptophilic  $\mu^+\mu^-$  channel (dotted contours). Assuming a standard WIMP-decoupling scenario, the correct value of the relic DM abundance is obtained for a "thermal cross-section" given as a function of the mass by the black dashed line.

PLANCK 18: `Cosmological parameters' <sub>17</sub> Thermal WIMP mass limit: 10~30 GeV

#### PLANCK 18: Pol. data lifts EoR degeneracy



#### Pol. EE peak shifts make the call



Data: PLANCK18

TABLE I. Linear correlation coefficients between  $\langle \sigma v \rangle / m_{\chi}$ and cosmological parameters corresponding to Fig.3.

Polarization ani.  $C_{f}$ TE, EE peak location shift sensitive to higher z (~recombination) effects

## Near future: How about more pol. data



| AC | T, C | hile |     |
|----|------|------|-----|
|    |      |      | 111 |
|    | ACT  |      |     |



| 实验                 | $\sigma_{P\!,\!v}~(\mu k')$ | $\theta_{FWHM,v}(')$ | 观测频率<br>(GHz) | 参考文献<br>arXiv 号 | 实验状态           |
|--------------------|-----------------------------|----------------------|---------------|-----------------|----------------|
| AliCPT             | 2.06                        | 15.37                | 95            | 1710. 03047     | 在建             |
|                    | 2.06                        | 9.73                 | 150           |                 |                |
| AdvACTPo1          | 7.8                         | 2.2                  | 90            | 1406. 4794v2    | 运行中            |
|                    | 6.9                         | 1.3                  | 150           |                 |                |
|                    | 25                          | 0.9                  | 230           |                 |                |
| CLASS              | 39                          | 90                   | 38            | 1408.4788       | 运行中            |
|                    | 10                          | 40                   | 93            |                 | 1 I I I        |
|                    | 15                          | 24                   | 148           |                 |                |
|                    | 43                          | 18                   | 217           |                 | 10 A 10        |
| Simons Array       | 13.9                        | 5.2                  | 95            | 1502.01983      | 运行中            |
|                    | 11.4                        | 3.5                  | 150           |                 |                |
|                    | 30.1                        | 2.7                  | 220           |                 |                |
| SPT-3G             | 6                           | 1                    | 95            | 1407.2973       | 运行中            |
|                    | 3.5                         | 1                    | 150           |                 | 1 <sup>1</sup> |
|                    | 6                           | 1                    | 220           |                 |                |
| Simons             | 13.35                       | 91                   | 27            | 1808.07445      | 在建,预计          |
| <b>Observatory</b> | 24                          | 63                   | 39            |                 | 2020 年建        |
| -                  | 2.69                        | 30                   | 93            |                 | 成              |
| Small              | 2.97                        | 17                   | 145           |                 |                |
| Aperture           | 5.594                       | 11                   | 225           |                 |                |
| Telescope          | 14.14                       | 9                    | 280           |                 |                |
| Simons             | 73.5                        | 91                   | 27            | 1808.07445      | 在建,预计          |
| Observatory        | 38.18                       | 63                   | 39            |                 | 2020 年建        |
|                    | 8.2                         | 30                   | 93            |                 | 成              |
| Large              | 8.91                        | 17                   | 145           |                 | 106125404      |
| Aperture           | 21.21                       | 11                   | 225           |                 |                |
| Telescope          | 52.32                       | 9                    | 280           |                 |                |

+ BICEP3 data available

#### AliCPT: China's upcoming CMB pol. observatory





#### Forecast on WIMP lifetime (decay to photons)





| Experiment             | $\chi \to e^+ e^-$ | $\chi \to \gamma \gamma$ |
|------------------------|--------------------|--------------------------|
| Planck                 | 24                 | 85                       |
| AdvACTPol              | 0.68               | 4.7                      |
| AliCPT                 | 21                 | 78                       |
| AliCPT+Planck          | 16                 | 53                       |
| $\operatorname{CLASS}$ | 5.5                | 30                       |
| Simons Array           | 0.35               | 1.5                      |
| Simons Observatory     | 0.92               | 4.2                      |
| SPT-3G                 | 2.2                | 9.9                      |

TABLE II. 95% C.L. upper limit on  $\Gamma_{\chi}$  (in  $10^{-26} \text{ s}^{-1}$ ) at  $m_{\chi} = 10 \text{ GeV}$ .

| · · · · · · · · · · · · · · · · · · · |                       |                           |
|---------------------------------------|-----------------------|---------------------------|
| Experiment                            | $\chi\chi \to e^+e^-$ | $\chi\chi\to\gamma\gamma$ |
| Planck                                | 39                    | 32                        |
| <i>Planck</i> - Unclustered           | 39                    | 33                        |
| AdvACTPol                             | 330                   | 330                       |
| AliCPT                                | 32                    | 22                        |
| AliCPT+Planck                         | 51                    | 42                        |
| CLASS                                 | 49                    | 37                        |
| Simons Array                          | $1.1 \times 10^3$     | $1.0 \times 10^3$         |
| Simons Observatory                    | 310                   | 290                       |
| SPT-3G                                | 140                   | 130                       |

TABLE III. Expected 95% C.L. lower limit on  $m_{\chi}$  (in GeV) assuming a thermal relic's annihilation cross-section  $\langle \sigma v \rangle = 3 \times 10^{-26} \text{ cm}^3/\text{s}.$ 

#### Low mass PBHs, radiation

PBH's Hawking radiation has a  $dE/dt \sim (1+z)^3$  history

Significant sensitivity in relevant mass range:  $M_{BH} = 10^{14 - 17} g$ 

PLANCK15 constraint: S.Clark., B.Dutta., Y.Gao, Y-Z.Ma, L.E. Strigari, 1612.07738

PLANCK18 & forecasts: Extended BH mass distributions, see: J.Cang., Y.Gao., Y-Z. Ma., 2011.12244

| Experiment            | Scaling Factor |
|-----------------------|----------------|
| Planck                | 1              |
| $\operatorname{COrE}$ | 37             |
| CMB-S4                | 113            |
| PICO                  | 53             |
| LiteBIRD              | 7              |
| Simons Array          | 80             |



### BH accretion radiation (solar-supermassive)



## About (E-mode) Pol. Sensitivity...

- Mostly via extra ionization, breaks degeneracy in τ looks good!
- (Annihilation) Not very sensitive to clustering boost

#### Remaining Issue: EoR uncertainty (*t*) washes out late-time DM injection



FIG. 4: The state-of-the-art measurement on  $x_{\rm Hr}(z)$ , taken from Table . The black and red dashed lines are two examples of the "tanh" model which cannot fit the data very well.

Current Pol. data sensitivity MOSTLY derives from injection right-after recombination time

EoR uncertainty needs future exp. input





Remember this bump?

poor low-z sensitivity due to EoR We need a late-time handle.

#### DM effect #2: IGM temperature



## IGM heating with DM

• Injected particles raise IGM temperature

Scattering with bkg radiation  $\propto$  T<sub>CMB</sub> -T<sub>IGM</sub>

#### We may hear a lot from 21cm ...

#### .Precision reionization history:

Ionization fraction  $x_e$ , mean temperature  $T_G$ 

#### **.**Distribution of neutral Hydrogen gas

temperature map & power spectrum





Simulated T21 map w DM, Rennan Barkana, nature25791

Projected power spectrum sensitivities (from SKA white paper)

#### Neutral Hydrogen 21cm line

Hyper-fine split between the singlet and triplet states of neutral Hydrogen atom

Spontaneous 21cm transition very slow: 10<sup>7</sup> yr



$$N_1/N_0 = 3 e^{-0.068 \text{K}/T_{\text{S}}}$$

Spin temperature determined by relative effectiveness between 21cm transitions, conversions by kinetic collisions, coupling to the CMB and Lyman- $\alpha$  photons.

CMB develops [dark] absorption lines by running through neutral Hydrogen gas clouds with  $T_S < T_{CMB}$ .

 $\rightarrow$  Slices of high-z universe

$$T_{\rm S} = \frac{T_{\rm CMB} + y_{\rm c}T_{\rm G} + y_{\rm Ly\alpha}T_{\rm Ly\alpha}}{1 + y_{\rm c} + y_{\rm Ly\alpha}},$$
$$y_{\rm c} = \frac{C_{10}}{A_{10}}\frac{T_{\star}}{T_{\rm G}},$$
$$y_{\rm Ly\alpha} = \frac{P_{10}}{A_{10}}\frac{T_{\star}}{T_{\rm Ly\alpha}},$$

#### CMB's 21cm absorption windows

(1) neutral Hydrogen presence (2)  $T_S$  cooler than the CMB

Dark age window



Gas temperature decouples from CMB z~200

Early reionization window (first discovery claim from EDGES) Bowman, et.al. Nature 555, 67 (2018).

# $T_{21}$ dependencies...

- 21cm brightness relies on IGM temperature evolution
- Direct T<sub>GAS</sub> measurements.

ionization

Gas density distribution

Optical depth: Cosmology modeldependent

Wouthuysen-Field:  $T_{spin} \sim T_{lya} \sim T_{GAS}$ at cosmic dawn



Gas spin temperature against CMB

#### Temperature evolution



21cm absorption lines whenever  $\rm T_S$  is lower than  $\rm T_{CMB}$ . Temperature sim. with HyRec

DM induced heating can suppress / erase the 21cm signal



The average `brightness temperature' Z

#### EDGES: claim of 21cm

EDGES 2018 J. D. Bowman, et.al. Nature 555, 67 (2018).

2020 (summer)





Figure 2 | Best-fitting 21-cm absorption profiles for each hardware case.



EDGES: A Discovery near 78 MHz?

~ Twice the LCDM signal ! LOFAR & MWA (by 2020 Upper limits only.

#### WIMP involvement?

DM cooling (DM is cooler)

Lower gas temperature via collisions: more 21cm signal

Explains the EDGES data \*needs large scattering xsec DM heating (DM releases energy)

Raises gas temperature by energy injection: reduces 21cm signal

Most stringent bounds on DM annihilation, decays & other energy injections

CMB uncertainties

Large uncertainty at low frequency; radio-frequency \*new physics Non-standard cosmology Modified Friedmann Eq. Dynamic DE, etc

$$T_{21} \propto \frac{1}{H(z)} \left( 1 - \frac{T_{\gamma}}{T_S} \right)$$

### WIMP cooling as an explanation to the EDGES data



Milli-charged DM constrained to MeV range and tiny (<1%) fractions of relic density E.D.Kovertz, et.al. 18'

\* subleading abundance is OK if millicharged DM also has long-range force with the rest of DM (H.Liu, Outmezguine, Redigolo, Volansky 1908.06986)

Discovery of 21cm means high WIMP sensitivity



Unlike CMB pol., 21cm is VERY sensitive to DM clustering boost

#### WIMP lifetime bound @ 21cm discovery

Limit on  $T_{GAS}$  rise:  $\Delta T_{21} < +100$  or +150 mK at z=17

S.Clark, B.Dutta, Y.Gao, Y.-Z.Ma, L.E.Strigari, 18'

43



#### 21cm has great expectations...





#### 中国签约参与SKA项目

实验建设:SKA 一期项目的总的预计为6.5 亿 欧元,相当于50亿人民币左右。将由中国、南 非、英国、澳大利亚、荷兰、意大利、葡萄 牙,加拿大、德国、印度等共同承担。 \*中国出资规模占重要比例。 \*中电集团54研究所负责133盏天线建造。

#### 21cm with DM: Inhomogeneous heating...

- w/o DM: inhomogeneity from matter fluctuations
- w DM: x<sub>e</sub>, T also become inhomogeneous esp. for ρ<sup>2</sup> enhanced annihilation & quick E deposit
- Potential correction to 21cm spectrum (v.s. global signal)

# $x_e \& T$ inhomogeneity potentially affect the 21cm power spectrum



(Mpc/pixel, deposit terms only, instantaneous deposition)

#### Dark Matter and CMB



AdvACTPol, AliCPT, Simons Obs., SPG3, S4, etc. & 21cm coming close?

# BACKUP: light bosonic DM

#### CMB on very light bosonic DM



### BACKUP: partially coupled DM

#### Effect 3: DM `couples' to matter



DM – matter scattering at low velocity:  $\langle v\sigma \rangle \sim v^{-n}$ Corrections in TT, EE, and lensing spectra

#### FORECAST Method

#### Forecast likelihood

$$-2\ln\mathcal{L}(\{C_{\ell}\}|\{\hat{C}_{\ell}\}) = f_{\text{sky}} \times \sum_{\ell} (2\ell+1)\{\text{Tr}[\hat{C}_{\ell}C_{\ell}^{-1}] - \ln|\hat{C}_{\ell}C_{\ell}^{-1}| - 2\}$$

$$C_{\ell} \equiv \begin{bmatrix} C_{\ell}^{TT} & C_{\ell}^{TE} \\ C_{\ell}^{TE} & C_{\ell}^{EE} \end{bmatrix}$$

$$\hat{C}_{\ell} \equiv \begin{bmatrix} \bar{C}_{\ell}^{TT} + N_{\ell}^{TT} & \bar{C}_{\ell}^{TE} \\ \bar{C}_{\ell}^{TE} & \bar{C}_{\ell}^{EE} + N_{\ell}^{EE} \end{bmatrix}$$

$$N_{\ell}^{\text{EE}} = \left[\sum_{\nu} \omega_{E,\nu} \exp\left(-\ell(\ell+1)\frac{\theta_{\text{FWHM},\nu}^2}{8 \ln 2}\right)\right]^{-1}$$
$$N_{\ell}^{\text{TT}} = \frac{1}{2} N_{\ell}^{\text{EE}}$$

53

## Exp. specifications (DM)

| Experiment                    | $\nu[{ m GHz}]$ | $\omega_{\mathrm{E},\nu}^{-1/2}$ [µK-arcmin] | $\theta_{\rm FWHM}[{\rm arcmin}]$ | $f_{ m sky}[\%]$ | $\ell_{\min}$      | $\ell_{\max}$ |
|-------------------------------|-----------------|----------------------------------------------|-----------------------------------|------------------|--------------------|---------------|
|                               | 28              | 113.1                                        | 7.1                               |                  |                    |               |
|                               | 41              | 99.0                                         | 4.8                               |                  |                    |               |
| AdvACTPol $[20, 58, 59]$      | 90 *            | 11.3                                         | 2.2                               | 50               | $350^{\mathrm{a}}$ | 4000          |
|                               | $150 \star$     | 9.9                                          | 1.4                               |                  |                    |               |
|                               | 230             | 35.4                                         | 0.9                               |                  |                    |               |
| AliCPT [60]                   | 90*             | 2                                            | 15.4                              | 10               | 30                 | 600           |
| Anel I [00]                   | $150\star$      | 2                                            | 9.7                               | 10               | 30                 | 000           |
|                               | 38              | 39                                           | 90                                |                  |                    |               |
| CLASS [22]                    | 93*             | 13                                           | 40                                | 70               | 5                  | 200           |
|                               | $148 \star$     | 15                                           | 24                                | 10               | 5                  |               |
|                               | 217             | 43                                           | 18                                |                  |                    |               |
|                               | $95\star$       | 13.9                                         | 5.2                               |                  |                    |               |
| Simons Array $[24, 61]$       | $150\star$      | 11.4                                         | 3.5                               | 65               | 30                 | 3000          |
| New York                      | 220             | 30.1                                         | 2.7                               |                  |                    |               |
| Simons Observatory - SAT [25] | 27              | 35.4                                         | 93                                |                  |                    |               |
|                               | 39              | 24                                           | 63                                |                  |                    |               |
|                               | 93*             | 2.7                                          | 30                                | 10               | 25                 | 1000          |
|                               | $145 \star$     | 3                                            | 17                                | 10               | 20                 |               |
|                               | 225             | 6                                            | 11                                |                  |                    |               |
|                               | 280             | 14.1                                         | 9                                 |                  |                    |               |
| Simons Observatory - LAT [25] | 27              | 73.5                                         | 7.4                               |                  |                    |               |
|                               | 39              | 38.2                                         | 5.1                               |                  |                    |               |
|                               | 93*             | 8.2                                          | 2.2                               | 40               | 1000               | 5000          |
|                               | $145 \star$     | 8.9                                          | 1.4                               | 40               | 1000               |               |
|                               | 225             | 21.2                                         | 1                                 |                  |                    |               |
|                               | 280             | 52.3                                         | 0.9                               |                  |                    |               |
|                               | 95*             | 5.1                                          | 1                                 |                  |                    |               |
| SPT-3G [19, 61, 62]           | $150\star$      | 4.7                                          | 1                                 | 6                | 50                 | 5000          |
|                               | 220             | 12.0                                         | 1                                 |                  |                    |               |

<sup>a</sup> AdvACTPol constraints would improve by a factor of 2 if choosing  $\ell_{\min} = 60$ .

## Exp. specifications (PBH)

| Experiment            | $f_{\rm sky}$ | $\ell_{\min}$ | $\ell_{ m max}$ | ν     | $\delta P$              | $	heta_{ m FWHM}$         |
|-----------------------|---------------|---------------|-----------------|-------|-------------------------|---------------------------|
|                       | 800 1 • 1     |               |                 | (GHz) | $(\mu \text{K-arcmin})$ | $(\operatorname{arcmin})$ |
|                       |               |               |                 | 90    | 7.3                     | 12.1                      |
|                       |               |               |                 | 100   | 7.1                     | 10.9                      |
| $CO_{TE}$ [45 46]     | 0.7           | 0             | 3000            | 115   | 7.0                     | 9.6                       |
| COTE [45, 40]         | 0.7           | Z             |                 | 130   | 5.5                     | 8.5                       |
|                       |               |               |                 | 145   | 5.1                     | 7.7                       |
|                       |               |               |                 | 160   | 5.2                     | 7.0                       |
| CMD C4 [EC E7]        | 0.69          | 30            | 2000            | 95    | 2.9                     | 2.2                       |
| CMB-S4 [56, 57]       | 0.02          |               | 3000            | 145   | 2.8                     | 1.4                       |
| PICO [48, 49]         |               | 2             | 4000            | 90    | 2.1                     | 9.5                       |
|                       | 0.7           |               |                 | 108   | 1.7                     | 7.9                       |
|                       | 0.7           |               |                 | 129   | 1.5                     | 7.4                       |
|                       |               |               |                 | 155   | 1.3                     | 6.2                       |
| LiteBIRD [47]         |               | 2             |                 | 89    | 11.7                    | 35                        |
|                       | 0.7           |               | 200             | 100   | 9.2                     | 29                        |
|                       | 0.7           | 2             |                 | 119   | 7.6                     | 25                        |
|                       |               |               |                 | 140   | 5.9                     | 23                        |
| Simong Amore [52, 54] | 0.65          | 20            | 2000            | 95    | 13.9                    | 5.2                       |
| Simons Array [53, 54] | 0.00          | 30            | 3000            | 150   | 11.4                    | 3.5                       |