

Probing Early Universe with PBHs and **SIGWs**

Yungui Gong

School of Physics

Huazhong University of Science and Technology 华中科技大学物理学院

2021.6.10

- Gravitational Waves (GWs) and Gravitational Universe
- Inflation and GWs in early Universe
- Higgs inflation
- **The new enhancement mechanism**
- Conclusions

Gao, Gong and Li, 1405.6451 (PRD); Di and Gong, 1707.09578 (JCAP); Yi and Gong, 1712.07478 (JCAP); Lu etal., 1907.11896 (JCAP); Lin etal, 2001.05909 (PRD); Lu etal., 2006.03450 (PRD); Yi etal., 2007.09957 (PRD); Arshad etal., 2009.11081 (PRD); Yi etal., 2011.10606 (PRD); Zhang etal., 2012.06960 (JCAP); Gao etal., 2012.03856

Motivation

■ The discovery of Gravitational Waves (GWs)

GW150914: PRL 116 (16) 061102

For decisive contributions to the LIGO detector and the observation of gravitational waves

Barry C. Barish Kip S. Thorne Rainer Weiss

Seeing the Universe

■ Electromagnetic method

Gravitational Universe

• Opens a new window to uncover the Universe

■ The dawn of multi-band/multi-messenger astronomy eLISA, 1305.5720

- **Test of gravity in strong field and nonlinear** regimes
- **Provides model independent measurement** of distance

GW170817/GRB170817A

- Ground-based detectors: source localization
	- 10-1000Hz frequency band
	- A few seconds of signals
	- Stellar mass black holes and neutron stars Three or more detectors needed: Timing Triangulation

Hubble constant measurements

https://lambda.gsfc.nasa.gov/education/graphic_history/hubb_const.cfm

Spaceborne detectors

- Space-based detectors
	- mHz band
	- Last several years
	- Early inspiral signals (monochromatic): months to years before merger
	- Inspiral, merger and ringdown signals
	- Massive and Supermassive BHs
	- Extreme mass ratio inspiral (EMRI)
	- Sky localization and polarization measurement The motion of detectors: Doppler modulation

Space-based GW detectors

■ LISA/Taiji/TianQin/DECIGO (OMEGA)

Space born GW detector

■ LISA/Taiji/TianQin: Polarization

LISA/Taiji/TianQin

LISA/Taiji/TianQin

■ Noise Curve

LIGO/Virgo Results

Tens of GWs

GWTC-1: 1811.12907 GWTC-2: 2010.14527

Masses in the Stellar Graveyard 160 LIGO-Virgo Black Holes 80 40 20 10 EM Black Holes 5 **EM Neutron Stars** 2 LIGO-Virgo Neutron Stars Updated 2020-09-02 LIGO-Virgo | Frank Elavsky, Aaron Geller | Northwestern

- **GW170817: first BNS with EM** counterparts, Standard Siren
- GW190425: BNS? 1.6/1.46 solar mass NS?
- GW190412: 30/8 BBH with asymmetric mass, higher multipoles
- GW190814: 23/2.6 solar mass, heaviest NS or lightest BH?
- GW190521: Intermediate mass BH, about 150 solar mass BH

GWTC2: 2010.14527

Primordial black holes (PBHs)

• PBHs: PBH forms in the radiation era as a result of gravitational collapse of density perturbations generated during inflation pse of act

> Hawking, MNRAS 152 (1971) 75; Carr & Hawking, MNRAS 168 (1974) 399

• PBHs: LIGO/Virgo BHs are PBHs?

PRL 116, 201301 (2016)

PHYSICAL REVIEW LETTERS

week ending 20 MAY 2016

Did LIGO Detect Dark Matter?

Simeon Bird, Ilias Cholis, Julian B. Muñoz, Yacine Ali-Haïmoud, Marc Kamionkowski, Ely D. Kovetz, Alvise Raccanelli, and Adam G. Riess

week ending PHYSICAL REVIEW LETTERS PRL 117, 061101 (2016) **5 AUGUST 2016** \mathfrak{P} **Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914**

Misao Sasaki,¹ Teruaki Suyama,² Takahiro Tanaka,^{3,1} and Shuichiro Yokoyama⁴

PBHs from LIGO/Virgo

■ LIGO/Virgo

 $1 - 1$

PHYSICAL REVIEW LETTERS 126, 051101 (2021)

GW190521 Mass Gap Event and the Primordial Black Hole Scenario

V. De Luca \bullet , ¹ V. Desjacques, ² G. Franciolini \bullet , ¹ P. Pani, ^{3,4} and A. Riotto¹

PHYSICAL REVIEW LETTERS 126, 071101 (2021)

GW190425; GW190814

Test for the Origin of Solar Mass Black Holes

Volodymyr Takhistov, ^{1,2,*} George M. Fuller, ^{3,4,†} and Alexander Kusenko^{1,2}

Evidence from GWTC-2 data: 2102.03809; $2105.03349 \rightarrow 30\% \text{ PBHs}$

Evidence for PBH DM

■ Planet 9

PHYSICAL REVIEW LETTERS 125, 051103 (2020)

Editors' Suggestion

Featured in Physics

What If Planet 9 Is a Primordial Black Hole? \triangleright

Jakub Scholtz \mathbf{D}^1 and James Unwin \mathbf{D}^2

■ NANOGrav

PHYSICAL REVIEW LETTERS 126, 041303 (2021)

Editors' Suggestion

NANOGrav Data Hints at Primordial Black Holes as Dark Matter

V. De Luca $\mathbf{Q}^{1,*}$ G. Franciolini $\mathbf{Q}^{1,\dagger}$ and A. Riotto^{1,2,‡}

PHYSICAL REVIEW LETTERS 126, 051303 (2021)

Editors' Suggestion

Did NANOGrav See a Signal from Primordial Black Hole Formation?

Ville Vaskonen^{®1,*} and Hardi Veermäe^{®2,†}

Early Universe

Inflationary models

• The power spectrum is parameterized $\mathscr{P}_{\mathscr{R}} = \frac{k^3}{2\pi^2} |\mathscr{R}_k|^2 = A_{\mathscr{R}}(k_*) \left(\frac{k}{k_*}\right)^{n_s - 1 + \frac{1}{2}n'_s \ln(k/k_*) + \cdots}$
order of 10⁻⁹ $\mathscr{P}_T = A_T(k_*) \left(\frac{k}{k_*}\right)^{n_t + \frac{1}{2}n'_t \ln(k/k_*) + \cdots} \approx 64\pi G \left(\frac{H}{2\pi}\right)^2$ 7.1

$$
n_s - 1 = \frac{d \ln \mathscr{P}_{\mathscr{R}}}{d \ln k} \Big|_{k=aH} = 3 - 2\nu = 2\eta_H - 4\epsilon_H \approx 2\eta - 6\epsilon
$$

$$
r = \frac{A_T}{A_{\mathcal{R}}} = 16\epsilon_H = 16\epsilon = -8n_T \quad A_T = rA_{\mathcal{R}} \sim H^2 \sim V(\phi)
$$

■ Energy scale of inflation: measurement of r

CMB constraints

Primordial GWs

Primordial temperature spectrum

PBH constraints

Sato-Polito, Kovetz, Kamionkowski, PRD 100 (19) 063521

• PBH fraction $f_{\text{PBH}} \Rightarrow \mathcal{P}_{\zeta}$ $\beta = \frac{\rho_{\text{PBH}}}{\rho_{\text{tot}}} \approx \text{erfc}\left(\frac{\delta_c}{\sqrt{2\mathcal{P}_{\delta}}}\right) = \text{erfc}\left(\frac{9\delta_c}{4\sqrt{\mathcal{P}_{\zeta}}}\right)$ M_{PBH} (g) 10^{26} 1020 10^{35} 10^{32} 10^{29} 10^{23} 10^{17} -0.6 -0.8 -1.0 $log_{10}(P_R)$ -1.2 -1.4 -1.6 **CDM** density Known pulsars -1.8 **Observational constraints SKA pulsars FRB** LIGO merger rate -2.0 **Microcaustic** GW background 1010 10^{14} $10⁶$ 10^{8} 10^{12} $k (Mpc^{-1})$

²⁵ Sato-Polito, Kovetz, Kamionkowski, PRD 100 (19) 063521

Constraints on power spectrum

■ Result

²⁶ Lu, Gong, Yi, Zhang, 1907.11896, JCAP 1912, 031

■ **Tensor-scalar mixing** First order scalar
\n
$$
h''_{ij} + 2\mathcal{H}h'_{ij} - \nabla^2 h_{ij} = -4S_{ij}
$$
\n
$$
S_{ij} = 2\Phi\Phi_{,ij} + 2\Psi\Psi_{,ij} + \Phi_{,i}\Phi_{,j} + 3\Psi_{,i}\Psi_{,j} - \Psi_{,i}\Phi_{,j} - \Phi_{,i}\Psi_{,j}
$$
\n
$$
-\frac{4}{3(1+w)\mathcal{H}^2}(\Psi' + \mathcal{H}\Phi)_{,i}(\Psi' + \mathcal{H}\Phi)_{,j}
$$
\n
$$
h_{ij}(x,\eta) = \frac{1}{(2\pi)^{3/2}}\int d^3ke^{ikx}[h_k(\eta)e_{ij}(\mathbf{k}) + \tilde{h}_k(\eta)\tilde{e}_{ij}(\mathbf{k})]
$$
\n
$$
\langle h_k(\eta)h_k(\eta)\rangle = \frac{2\pi^2}{k^3}\delta^{(3)}(\mathbf{k} + \tilde{\mathbf{k}})\mathcal{P}_h(k,\eta)
$$
\n
$$
\Omega_{\text{GW}}(k,\eta) = \frac{1}{24}\left(\frac{k}{aH}\right)^2\frac{\partial^2}{\partial \eta_k(k,\eta)}
$$

GW Constraints

Gow, Byrnes, Cole, Young, JCAP 02 (2021) 002

Enhancement: generic feature

29

Slow-roll parameter ϵ cannot increase monotonically

Inflection point inflation

 \blacksquare Small ϵ requires very flat potential: inflection point

The field rolls faster
$$
\dot{\phi} \propto a^{-3}
$$
 $\rho_{\phi}^{KE} \propto a^{-6}$
\n $N = \int_{\phi}^{\phi_e} \frac{d\phi}{\sqrt{2\epsilon(\phi)}}$
\n $N = \frac{1}{2\epsilon(\phi)}$
\n $N = \frac{1}{2\epsilon$

 \blacksquare Constant roll η_H constant

$$
n_s - 1 = 3 - 2\nu \quad \nu = \left| \frac{3}{2} - \eta_H \right| + \frac{\left(6 - 5\eta_H - 4\eta_H^2\right)\epsilon_H}{|3 - 2\eta_H|\left(1 + 2\eta_H\right)}
$$

■ How to enhance the power spectrum at the power spectrum while keeping the number of e-folds to be around 60

> 31 Yi and Gong, 1712.07478 (JCAP)

 $H\phi$

Modified model

The power spectrum

■ Numerical solution

Ultra-slow-roll to SR

■ USR to SR transition

$$
V(\phi) = V_0 + \frac{\beta}{2} \left[\phi + \delta_1 \log \left\{ \cosh \left(\frac{\phi - \phi_1}{\delta_1} \right) \right\} \right]
$$

+ $\frac{\gamma}{2} \left[\phi - \delta_2 \log \left\{ \cosh \left(\frac{\phi_2 - \phi}{\delta_2} \right) \right\} \right]$
 $\{\beta, \phi_1, \delta_1\} = \{10^{-14}, 0, 10^{-2}\} \qquad \gamma = 6 \times 10^{-21}$
Fast transition $\phi_2 = \{0.1580281699 \} \delta_2 = 2.12 \times 10^{-10}$
Slow transition $\phi_2 = \{0.1580282187 \} \delta_2 = 3.6 \times 10^{-8}$

S. Passaglia, W. Hu, H. Motohashi, PRD 99 (2019) 043536

Ultra-slow-roll models

35

■ String inflation

$$
V_{\rm inf} = \frac{W_0^2}{\mathcal{V}^3} \left[\frac{C_{\rm up}}{\mathcal{V}^{1/3}} - \frac{C_{\rm w}}{\sqrt{\tau_{\rm K3}}} + \frac{A_{\rm w}}{\sqrt{\tau_{\rm K3}} - B_{\rm w}} + \frac{\tau_{\rm K3}}{\mathcal{V}} \left(D_{\rm w} - \frac{G_{\rm w}}{1 + R_{\rm w} \frac{\tau_{\rm K3}^{3/2}}{\mathcal{V}}} \right) \right]
$$

fine-tuning

$$
\frac{C_{\rm w}}{\mathcal{P}_1} \left[\begin{array}{ccc|c} 1/10 & A_{\rm w} & B_{\rm w} & G_{\rm w}/\langle \mathcal{V} \rangle & R_{\rm w}/\langle \mathcal{V} \rangle & \langle \tau_{\rm K3} \rangle & \langle \mathcal{V} \rangle \\ 1/10 & 2/100 & 1 & 1.303386 \times 10^{-3} & 6.58724 \times 10^{-3} & 3.89 & 107.3 \\ 4/100 & 2/100 & 1 & 3.080548 \times 10^{-5} & 7.071067 \times 10^{-4} & 14.30 & 1000 \\ 1.978/100 & 1.65/100 & 1.01 & 9.257715 \times 10^{-8} & 1.414 \times 10^{-5} & 168.03 & 5 \times 10^{4} \end{array} \right]
$$

M. Cicoli, V.A. Diaz, F.G. Pedro, JCAP 1806, 034

SUGRA	$W = a_0(1 + a_1e^{-b_1\Phi} + a_2e^{-b_2\Phi} + a_3e^{-b_3\Phi}).$					
a_0	a_3	b_1	b_2	b_3	c	
4.35×10^{-6}	7×10^{-8}	3.05	6.3868164	-4.4	2.8	$T.J. Gao, Z.K. Guo, PRD$
$2 \parallel 4.06 \times 10^{-6}$	1×10^{-6}	2.89	7.251197	-3.2	2.85	

Higgs field

■ Higgs particle 2012 $m=125~{\rm GeV}$

$$
V(\phi) = \frac{\lambda}{4} (\phi^2 - v^2)^2 + bT^2 \phi^2
$$

$$
V(\phi) = \frac{\lambda}{4} \phi^4, \quad T \gg T_{crt}
$$

2013 Nobel prize

A. Linde, 80s

Higgs Englert

CMB constraints

Higgs inflation

■ Nonminimal coupling

$$
S = \int d^4x \sqrt{-g} \left[\frac{1}{2} (1 + \xi \phi^2) R - \frac{1}{2} g^{\mu \nu} \nabla_{\mu} \phi \nabla_{\nu} \phi - \frac{1}{4} \lambda \phi^4 \right]
$$

Strong coupling attractors $n_{\rm e}$

$$
\approx 1-\frac{2}{N}, \quad r \approx \frac{12}{N^2}
$$

Kaiser, PRD 52 (95) 4295 Bezrukov and Shaposhnikov, PLB 659 (08) 703

■ Critical inflation

RG running of coupling constant $\lambda = 0$, $\beta_{\lambda} = 0$ $\lambda(\phi) = \lambda_0 + b_\lambda \ln^2(\phi/\mu) \qquad \xi(\phi) = \xi_0 + b_\xi \ln(\phi/\mu)$

Hamada, Kawai, Oda and Park, PRL 112, 241301 Bezrukov and Shaposhnikov, PLB 734 (14) 249

■ The Higgs inflation (nonminimal coupling)

$$
S = \int d^4x \sqrt{-g} \left[\frac{1}{2} (1 + \xi \phi^2) R - \frac{1}{2} g^{\mu \nu} \nabla_{\mu} \phi \nabla_{\nu} \phi - \frac{1}{4} \lambda(\phi) \phi^4 \right]
$$

\n
$$
\lambda(\phi) = \lambda_0 + b_{\lambda} \ln^2(\phi/\mu) \qquad \xi(\phi) = \xi_0 + b_{\xi} \ln(\phi/\mu)
$$

\n
$$
S = \int dx^4 \sqrt{-g} \left[\frac{1}{2} R - \frac{1 + \xi \phi^2 + 6(\xi \phi + \xi_{\phi} \phi^2/2)^2}{(1 + \xi \phi^2)^2} \frac{1}{2} g_{\mu \nu} \nabla^{\mu} \phi \nabla^{\nu} \phi - V(\phi) \right]
$$

\n
$$
V(x) = \frac{V_0 (1 + a \ln^2 x) x^4}{[1 + c(1 + b \ln x) x^2]^2},
$$

 $x = \phi/\mu$, $V_0 = \lambda_0 \mu^4/4$, $a = \lambda_1/\lambda_0$, $b = \xi_1/\xi_0$ and $c = \xi_0 \mu^2$.

Ezquiaga, Garcia-Bellido, Morales, PLB 776 (18) 345

Critical Higgs Inflation

■ The Higgs inflation (nonminimal coupling)

Ezquiaga, Garcia-Bellido, Morales, PLB 776 (18) 345

■ Higgs field is not responsible for inflation, but its fluctuation generate large power

Passaglia, Hu, Motohashi, PRD 101 (20) 123523

41 Nonminimal coupling and $R+R^2$ Gundhi & Steinwachs, 2011.09485

Horndeski Theory

- The most general scalar-tensor theory with 2nd order of EOMs
- $L_H = L_2 + L_3 + L_4 + L_5$ $L_2 = K(\phi, X), \quad X = -\frac{1}{2} \nabla_\mu \phi \nabla^\mu \phi$

$$
L_3 = -G_3(\phi, X) \Box \phi
$$

 $L_4 = G_4(\phi, X)R + G_{4,X}[(\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi)(\nabla^\mu \nabla^\nu \phi)]$

 $L_5 = G_5(\phi, X) G_{\mu\nu} \nabla^{\mu} \nabla^{\nu} \phi - \frac{1}{6} G_{5,X} [(\Box \phi)^3]$ $-3(\Box\phi)(\nabla_\mu\nabla_\nu\phi)(\nabla^\mu\nabla^\nu\phi)+2(\nabla^\mu\nabla_\alpha\phi)(\nabla^\alpha\nabla_\beta\phi)(\nabla^\beta\nabla_\mu\phi)]$

- Non-minimally coupling
	- $L_4 = G_4(\phi, X)R + G_{4,X}[(\Box \phi)^2 (\nabla_\mu \nabla_\nu \phi)(\nabla^\mu \nabla^\nu \phi)]$
- Non-minimally derivative coupling $G_4(\phi, X) = f(\phi)$ Non-minimal coupling $f(\phi)R$

$$
G_5(\phi, X)G_{\mu\nu}\nabla^{\mu}\nabla^{\nu}\phi \longrightarrow G^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi
$$

$$
G_5(\phi, X) = \phi
$$

Non-minimal coupling Gauss-Bonnet coupling Derivative coupling

■ New Higgs inflation

$$
S = \frac{1}{2} \int d^4x \sqrt{-g} \left[M_{pl}^2 R - g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \frac{1}{M^2} G^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - 2V(\phi) \right]
$$

Germani & Kehagias, PRL 105 (2010) 011302

k/G inflation

■ Non-canonical field

■ G inflation

$$
S = \frac{1}{2} \int d^4x \sqrt{-g} \left[M_{pl}^2 R - g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \frac{f(\phi)}{M^2} G^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - 2V(\phi) \right]
$$

$$
f(\phi) = \frac{d}{\sqrt{(\frac{\phi - \phi_r}{c})^2 + 1}} \qquad V(\phi) = \lambda \phi^{2/5}
$$

Fu, Wu & Yu, PRD 100 (19) 063532; PRD 101 (20) 023529

Parameter needs to be fine tuned at least to six decimal digits

$$
S = \int d^4x \sqrt{-g} \left[\frac{1}{2}R + K(\phi, X) - G_3(\phi, X) \Box \phi \right]
$$

$$
X=-g_{\mu\nu}\nabla^{\mu}\phi\nabla^{\nu}\phi/2
$$

Lin, Gao & Gong etal., PRD 101 (20) 103515

k/G inflation

\blacksquare G inflation

 $G_{3\phi} = dG_3(\phi)/d\phi$ Special case: $K(\phi, X) = X - V(\phi)$

 \blacksquare k inflation

$$
S = \int d^4x \sqrt{-g} \left[\frac{1}{2}R + X + G(\phi)X - V(\phi) \right]
$$

$$
\mathcal{P}_{\zeta} = \frac{H^2}{8\pi^2 \epsilon} (1 + G) \qquad G
$$
used to generate a peak

45 At large scales, G is negligible, we recover standard SR result At small scales, G is very big, the power spectrum is enhanced Lin, Gao & Gong etal., PRD 101 (20) 103515

k/G inflation

■ Number of e-folds around the peak

$$
\Delta N = \int_{\phi_r - \Delta \phi}^{\phi_r + \Delta \phi} \frac{H}{\dot{\phi}} d\phi \simeq -\int_{\phi_r - \Delta \phi}^{\phi_r + \Delta \phi} \frac{V(1+G)}{V_{\phi}} d\phi
$$

Peak width should be small

■ The limit on the potential

The possible potentials

The power-law potential $V(\phi) = \lambda \phi^n$

$$
n_s = 1 - \frac{n+2}{2N}
$$

$$
r = \frac{4n}{N}
$$

Higgs potential $n = 4, N_* = 40$ $\begin{array}{c}\nn_s \\
r = n\end{array}$ $n = 1/3, n_s = 0.971, r = 0.033$

 $n = 2/3, n_s = 0.967, r = 0.067$

■ Examples for peak functions Peak function $G_a(\phi) = \frac{d}{1 + |\frac{\phi - \phi_r}{c}|}$ Brans-Dicke theory: $\omega(\phi) = 1/\phi$ Around the peak $|\phi - \phi_r| \ll c$, $G_a(\phi) \sim d$ To get the enhancement, $d \sim 10^8$ To ensure enhancement at small scales, ϕ_r should away from ϕ_* Away from the peak $|\phi - \phi_r| \gg c$, $G_a(\phi) \sim dc/|\phi - \phi_r|$ $\sim O(0.01)$ $\sim O(1)$ Small peak width $c \sim 10^{-10}$ at most

Lin, Gao & Gong etal., PRD 101 (20) 103515

PBH from k/G inflation

Lin, Gao & Gong etal., PRD 101 (20) 103515 f/Hz 50

The new mechanism

■ Combine slow roll with the peak To generate peak

$$
L = [1 + G_a(\phi)]X - U(\phi)
$$

Transform non-canonical field to canonical field

$$
L = [1 + G(\varphi)]X - V(\varphi)
$$

$$
G = G_a + f(\varphi)
$$

Slow roll $L = f(\varphi)X - V(\varphi)$ $V(\varphi) = \lambda \varphi^4$, $f(\varphi) = f_0 \varphi^{22}$

$$
d\phi = \sqrt{f(\varphi)}d\varphi, \ U(\phi) = V[\varphi(\phi)]
$$

$$
L = X - U(\phi) \qquad U(\phi) = \lambda \phi^{1/3}
$$

Yi, Gong, Wang, Zhu, 2007.09957

Higgs k/G inflation

SIGWs from Higgs field

• Peak (broken power law form)

Yi, Gong, Wang, Zhu, 2007.09957

Broad Spectrum

■ Non-canonical kinetic

$$
S = \int d^4x \sqrt{-g} \left[\frac{1}{2} R + X + G(\phi) X - V(\phi) \right]
$$

\n
$$
G = G_a + f(\phi) \quad V(\phi) = \lambda \phi^4 / 4
$$

\n
$$
G_a(\phi) = \frac{h}{1 + (|\phi - \phi_p|/w)^q} \qquad q = 5/4 \qquad f(\phi) = \phi^{22}
$$

Yi, Gong, Wang, Zhu, 2007.09957; 2011.10606 ⁵⁴

Non-Gaussianity

Bispectrum

$$
\left\langle \hat{\zeta}_{\boldsymbol{k}_{1}} \hat{\zeta}_{\boldsymbol{k}_{2}} \hat{\zeta}_{\boldsymbol{k}_{3}} \right\rangle = (2\pi)^{3} \delta^{3} \left(\boldsymbol{k}_{1} + \boldsymbol{k}_{2} + \boldsymbol{k}_{3} \right) B_{\zeta} \left(k_{1}, k_{2}, k_{3} \right)
$$

$$
f_{\rm NL}(k_1, k_2, k_3) = \frac{5}{6} \frac{B_{\zeta}(k_1, k_2, k_3)}{P_{\zeta}(k_1)P_{\zeta}(k_2) + P_{\zeta}(k_2)P_{\zeta}(k_3) + P_{\zeta}(k_3)P_{\zeta}(k_1)}
$$

■ PBH

$$
\mathcal{J} = \frac{1}{6\sigma_R^3} \int \frac{d^3k_1}{(2\pi)^3} \int \frac{d^3k_2}{(2\pi)^3} \int \frac{d^3k_3}{(2\pi)^3} W(k_1R) W(k_2R) W(k_3R) \left\langle \hat{\zeta}_{k_1} \hat{\zeta}_{k_2} \hat{\zeta}_{k_3} \right\rangle
$$

$$
\mathcal{J}_{\text{peak}} = \frac{3}{20\pi} f_{\text{NL}}(k_{\text{peak}}, k_{\text{peak}}, k_{\text{peak}}) \sqrt{\Delta_{\zeta}^2(k_{\text{peak}})}
$$

R. Saito, J. Yokoyama and R. Nagata, JCAP 06 (2008) 024

■ **SIGWs**
$$
f_{\text{NL}}^2 \Delta_{\zeta}^2 \gtrsim 1
$$

R.-G. Cai, S. Pi and M. Sasaki, PRL 122 (2019) 201101

55

Non-Gaussianity in k/G inflation

Conclusion

- Higgs field drives inflation, explains DM in the form of PBHs
- **The mechanism works for more general** scalar fields
- **Different types of spectrum are also** possible
- **The observations of PBH and SIGWs can** be used to probe early universe

2007.09957, 2011.10606, 2012.03856, 2102.07369 ⁵⁷

Thank You