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What we study:

5d N=1 supersymmetric gauge theories

gauge group: U(N) → SO(N) → G2 → …
Why?

• Exactly solvable (with localization method) 

• non-perturbative physics 

• dualities (S-duality, fiber-base duality, AGT (dual with CFTs) ) 

• quantum integrability 

• 5d N=1 → 4d N=2 
 
…

(on C2q,t x S1)



Current situation:

many interesting properties discovered in the case of U(N)

• 4d/2d duality (with chiral algebra or non-unitary CFT)

• quantum integrability (~Calogero-Sutherland system)

• modular tensor category

…

but not so many results known in SO(N) or Sp(N) theories

because of technical difficulties

• in the calculation of Nekrasov partition function, 
instanton counting is very difficult.

• in the study of chiral algebra, BCD-type Macdonald 
symmetric polynomial is difficult.

what we try to solve



A sketch of what we did:

5d N=1 supersymmetric gauge theory 

topological string

gauge group: A-type
topological vertex computes 

the partition function

extended topological string

with new topological vertex

gauge group: 
BCD-type



Plan of Talk:

1. Review 1: SU(N) gauge theories and localization 

2. Review 2: brane construction and topological string 

3. Review 3: AGT duality and DIM algebra 

4. proposal: topological vertex formalism for SO(N) theory 

5. consistency checks 

6. Kim-Yagi’s prescription and physical interpretation



5d N=1 gauge theory on C2q,t x S1

Its partition function can be found via localization method.
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perturbative 
part

non-perturbative 
part

perturbative part is completely determined by the root system 
of the gauge group G.
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Ω-background with two deformation parameters
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expression of the perturbative part:
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B Some useful formulae

In this appendix, we summarize some useful formulae that we make use of in the compu-
tations in this paper.

B.1 Nekrasov partition functions

The partition functions of certain 5d N = 1 supersymmetric gauge theories may be com-
puted by the localization method. It consists of two factors, the perturbative part and the
instanton part. The perturbative part of a pure gauge theory with a gauge group G is in
general given by
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G
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∆+ is the set of positive roots of the Lie algebra g of G and a = (a1, · · · , arank(G)) is the
Coulomb branch moduli in the Cartan subalgebra. q, t are related to the Ω-deformation
parameters ϵ1, ϵ2 by q = e−ϵ1 , t = eϵ2 . The unrefined case corresponds to q = t.

On the other hand, the partition function of the instanton part is more involved. The
instanton part of the pure SU(N) gauge theory with the zero CS level is given by
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ai (i = 1, · · · , N) with ∑N
i=1 ai = 0 are the Coulomb branch moduli. q is the instanton

fugacity. In fact there is a well-known closed-form formula for the instanton partition
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where Δ+ is the set of all positive roots,
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Therefore the factor gλ in (2.13) turns out to be gλ = (−1)|λ|f2
λ and this is the framing

factor assigned to the horizontal legs when we use the diagram of (2.10).
It is now possible to compute the partition function for the diagram (2.10) which is

equivalent to (2.9). The partition function is given by
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where the Nekrasov factor in the unrefined limit is given by (B.35) and P.E. represents the
Plethystic exponential defined by

P.E. (f(x1, x2, . . . , xn)) := exp
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1
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. (2.18)

For obtaining (2.17) we used the Cauchy identity (B.34) to sum over the Young diagram
µ and

N−1
λλ (1, q) = (−1)|λ|sλ(q−ρ)sλt(q−ρ). (2.19)

In this article, we compute such partition functions as series expansions by Kähler
parameters using the mathematica package developed in [19]. Since the diagram (2.10)
or (2.9) gives the pure “Sp(0)” gauge theory, the partition function (2.17) should be trivial,
namely

Z(Q) = 1. (2.20)

Indeed, one can check this statement with mathematica to find

Z(Q) = 1 + o(Q11). (2.21)

2.2 Proposal for O-vertex

We are interested in extending this formalism to compute the partition function for a
diagram which involves the following configuration,
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ν
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non-perturbative part:

instanton counting
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in 4d (codimension 4 object)
in 5d:  particle-like
in string theory: D(p-4) branes on Dp brane.



instanton counting is not easy

ADHM construction → Nekrasov partition function

For U(N) or SU(N) theory:
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ai: Coulomb branch parameters



Jeffrey-Kirwan (JK) residue in U(N) case

poles are labeled by a set of N partitions (Young diagram)
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Figure 4. The Frobenius coordinates can be read as the length of each row and column to the
diagonal line for a Young diagram λ. As an example, we show the Young diagram λ = (5, 4, 4, 2, 2, 1)
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Jn and ψn,ψ∗
n satisfy the following commutation relations,

{ψn,ψm} = {ψ∗
n,ψ

∗
m} = 0, {ψn,ψ

∗
m} = δn+m,0, (B.21)

[Jn,ψk] = ψn+k, [Jn,ψ∗
k] = −ψ∗

n+k, [Jn, Jm] = nδn+m,0. (B.22)

|λ⟩ is a fermion basis with the label of the Frobenius coordinate (see figure 4) of a Young dia-
gram λ. When the Frobenius coordinate of a Young diagram λ is λ = (α1,α2, . . . |β1,β2 . . . ),
then |λ⟩ is given by

|λ⟩ = (−1)β1+β2+···+βs+ s
2ψ∗

−β1ψ
∗
−β2 . . .ψ

∗
−βs

ψ−αsψ−α(s−1) . . .ψ−α1 |0⟩ , (B.23)

where s is the number of boxes on the diagonal line in λ and the vacuum state |0⟩ satisfies
ψα |0⟩ = ψ∗

β |0⟩ = 0 for any α > 0, β > 0.
There are two Cauchy identities known for the skew Schur functions.

∑

λ

sλ/µ(x)sλ/ν(y) =
∏

i,j

(1 − xiyj)−1∑

η

sν/η(x)sµ/η(y), (B.24)
∑

λ

sλ/µt(x)sλt/ν(y) =
∏

i,j

(1 + xiyj)
∑

η

sνt/η(x)sµ/ηt(y). (B.25)

To see the first identify (B.24) we first note that the lefthand side of (B.24) can be written as
∑

λ

⟨µ|V+(x⃗) |λ⟩ ⟨λ|V−(y⃗) |ν⟩ = ⟨µ|V+(x⃗)V−(y⃗) |ν⟩ . (B.26)

Then by using the commutation relation

V+(x⃗)V−(y⃗) =
∏

i,j

1
1 − xiyj

V−(y⃗)V+(x⃗), (B.27)

Eq. (B.26) can be further written as

⟨µ|V+(x⃗)V−(y⃗) |ν⟩ =
∏

i,j

(1 − xiyj)−1 ⟨µ|V−(y⃗)V+(x⃗) |ν⟩

=
∏

i,j

(1 − xiyj)−1∑

η

⟨µ|V−(y⃗) |η⟩ ⟨η|V+(x⃗) |ν⟩ , (B.28)
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Analytic expression

the partition function can be written in terms of Nekrasov factors

[Nekrasov (2002)]

Appendix A

Preliminaries

A.1 Nekrasov Factor

The Nekrasov factor has various equivalent expressions, which all look so di↵erently. Its definition
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and two of the equivalent expressions were derived in [90]:
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which is one of the key identities in [55], and
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The convention used here is that (i, j) 2 � is the box in the i-th row and j-th column of the Young
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Table 1: Configuration of branes in the brane web construction. Bar represents
the direction branes stretch along, and dot means the point-like direction for
branes.
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c.f. SO(N) instanton partition function
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function (B.4) of the pure SU(N) gauge theory with the CS level zero,

ZSU(N)
loc, inst =

∞∑

k=0
qk

∑

λ1,2,...,N : partitions∑N

i=1 |λi|=k

N∏

i,j=1
Nλiλj (ai − aj ; ϵ1, ϵ2)−1, (B.8)

where the Nekrasov factor Nλν(a; ϵ1, ϵ2) is given by [8, 76, 77]

Nλν(a; ϵ1, ϵ2) :=
∏

(i,j)∈λ

[a+ ϵ1(λti − j) + ϵ2(−νj + i − 1)]

×
∏

(i,j)∈ν

[a+ ϵ1(−νti + j − 1) + ϵ2(λj − i)]. (B.9)

The instanton part of the partition function of the pure SO(2N + δ) gauge theory for
δ = 0, 1 is also given by a contour integral. The Losev-Moore-Nekrasov-Shatashvili (LMNS)
integrand of the integral for the k-instanton partition function of the pure SO(2N+δ) gauge
theory is [78–82]

ZSO(2N+δ)
k

= (−1)k [2ϵ+]
k

[ϵ1,2]k
∏

i<j

S(±φi ± φj − ϵ+)−1
k∏

i=1

N∏

j=1
[±φi ± aj − ϵ+]−1

k∏

i=1

[±2φi][±2φi + 2ϵ+]
[±φi − ϵ+]δ

,

(B.10)

where
S(φ) := [φ± ϵ−]

[φ± ϵ+]
. (B.11)

Then the instanton partition function is found via the contour integral

ZSO(2N+δ)
loc, inst =

∞∑

k=0
qk

1
|W (Sp(k))|

∮ ( k∏

i=1

dφi
2πi

)

ZSO(2N+δ)
k . (B.12)

The contour integral (B.12) may be evaluated by the Jeffrey-Kirwan residues [83–85]. Or
alternatively one can choose the contour in the following way in the unrefined cases with
ϵ1 + ϵ2 = 0. We first assume that Im(ϵ1) = Im(ϵ2) = δ, ϵ+ = iδ ∈ iR and evaluate the
contour integral by picking up the poles in the upper half plane. Then we take the limit
δ → 0 at the end. As argued in [78, 80], the poles may be labeled by colored Young
diagrams in general.

There is in fact a subtlety for the instanton partition function computed by the lo-
calization method. The instanton partition function may contain a factor which does not
depend on Coulomb branch moduli In that case, one needs to remove the extra factor
Zloc, extra from the instanton partition function Zloc, inst to obtain the correct instanton
partition function of a UV complete 5d theory [12, 39–41, 84]. Namely we consider

Ẑloc, inst = Zloc, inst/Zloc, extra. (B.13)
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much more difficult! not just a more complicated integrand.

We do not know how to label the JK poles…

Sp(N) theories are even more difficult!… Yet we want to work on them!



brane construction in string theory [Aharony, Hanany, Kol (1997)]

all non-trivial information 
contained in this 2d plane

We draw a web diagram on this plane. (balance of tension ⇒ 
various kind of (p,q) 5-branes stretching along the vector (p,q)  )

axio-dilaton charge

Web of 5-branes
We can build a large family of 5d N = 1 gauge theories in the type
IIB string theory. [Aharony-Hanany, 1997]

0 1 2 3 4 5 6 7 8 9
D5 � � � � � � • • • •
NS5 � � � � � • � • • •

7-brane � � � � � • • � � �

The balance of tension requires various types of (p, q) 5-branes to
appear in the construction, and they form a web of 5-branes.
Example: pure SU(2) gauge theory.

5

6

7-brane
N D5 branes  ⇒  U(N) gauge theory

0 1 2 3 4 5 6 7 8 9

D5 • • • • • • � � � �
NS5 • • • • • � • � � �

7-brane • • • • • � � • • •

Table 1: Configuration of branes in the brane web construction. Bar represents

the direction branes stretch along, and dot means the point-like direction for

branes.
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In U(N) theory

instanton solutions labeled by N Young diagrams
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Our results suggest that in the unrefined limit of SO(N) theories, 
the above picture still holds. D1



string duality with topological string theory

[Aganagic, Klemm, Marino, Vafa (2003)]

M-theory on toric Calabi-Yau type IIB on Taub-NUT

=

(p,q) brane web

topological string (A-model) on toric Calabi-Yau

on S1

captures  the BPS spectrum

The topological string is a convenient way to compute the index 
(partition function on S1) or the instanton partition function of 5d 
N=1 gauge theories.

[Leung, Vafa (1997)]



Topological String?

*The concrete definition etc. are not useful in this talk.

• It is a topologically twisted N=(2,2) sigma model. 
 
 

• Due to different ways of topological twist, we have A- and B-models. 
They are connected through the mirror symmetry. 
 
 

• There are certainly the open and closed version of the string theory, 
and there is a open/closed duality. 
The open theory is deeply related to Chern-Simons theories.

[Witten, (1988)] [Vafa, (1991)] …

[Candelas et al., (1985), Dixon, (1987),  Lerche et al., (1989) ….]

[Witten, (1992)] …



In the Calabi-Yau language, the web diagram corresponds to 
the toric diagram, in which each line denotes degenerate locus 
of the torus fiber (of toric Calabi-Yau).
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, and for generic (�q, p) the circle degenerates at

one point z
1

= z
2

= z
3

, but there is one exception: (1, 1) circle, generated by r
↵

� r
�

= |z
1

|2 � |z
2

|2,
degenerates at z

1

= 0 = z
2

, which is described by r
↵

� r
�

= 0 and r
�

= 0. The degenerating

loci always lie on a two-dimensional plane of the base, with r
�

= 0, and therefore we can draw a

one-dimensional diagram on the r
↵

-r
�

plane, which is usually referred to as the toric diagram. In

the current case, the toric diagram is given by

More general variety can be obtained by gluing several patches, among which the transformation

rule is given by the defining relation of the toric Calabi-Yau.

Let us see some examples. The first example is O(�1)�O(�1) ! CP1 with ~Q = (�1,�1, 1, 1)

and thus the indentification of the coordinates (x
1

, x
2

, z
1

, z
2

) reads

(x
1

, x
2

, z
1

, z
2

) ! (��1x
1

,��1x
2

,�z
1

,�z
2

). (3.4)

We choose (x
1

, x
2

, z
1

) to describe the first C3 patch. The second patch is related to the first one via

�|x
1

|2 � |x
2

|2 + |z
1

|2 + |z
2

|2 = t. (3.5)

The (0, 1) circle is generated by r
↵

= |x
1

|2 � |z
1

|2 and (1, 0) circle generated by r
�

= |x
2

|2 � |z
1

|2.
Switching to the (x

1

, x
2

, z
2

) patch, we have

r
↵

= �t+ |z
2

|2 � |x
2

|2, r
�

= �t+ |z
2

|2 � |x
1

|2, (3.6)

which lead to the transformation

(x
1

, x
2

, z
2

) ! (e�i�x
1

, e�i↵x
2

, ei(↵+�)z
2

). (3.7)

(0, 1) circle degenerates at x
2

= 0 = z
2

, with r
↵

= �t, r
�

= �t� |x
1

|2, and (1, 0) circle degenerates

at r
�

= �t, r
↵

= �t�|x
2

|2. The rest one dimensional degenerating loci is for r
↵

�r
�

circle stretching

from (r
↵

, r
�

) = (�t,�t) as (r
↵

, r
�

) = (�t + |z
2

|2,�t + |z
2

|2). The toric diagram can therefore be

depicted as

t
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under the transformation
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⇤
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h
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I
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z̄

, {Q, F
¯
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¯
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¯
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¯
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⌘
¯

JF
¯
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The string field formulation can be obtained in a similar way. As discussed before, Q can be

identified as @̄, which has not thing to do with ✓
I

’s in the field, and the selection rule is imposed

separately on the holomorphic and anti-holomorphic part, we thus can factorize the string field

Lagrangian into two parts,

S =
1

g
s

Z

X

⌦ ^ tr

✓
A ^ @̄A+

2

3
A ^ A ^ A

◆
, (2.31)

where this time A is an anti-holomorphic (0, 1)-form and ⌦ is a (d = 3, 0)-form.

3 Toric Variety and Mirror Curve
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Qa

i

|z
i

|2 = ta

)
/U(1)r, (3.1)

where ta’s are Kähler parameters, and r U(1)’s are identified as the transformation z
i

! eiQ
a
i ↵az

i

with transformation parameter ↵
a

. The Calabi-Yau condition is equivalent to

X

i

Qa

i

= 0, for 8a. (3.2)

Locally we can take a C3 patch, say with coordinates (z
1

, z
2

, z
3

) to describe the geometry. There
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). (3.3)

The base is R3 and spanned by r
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, r
�

and r
�

:= Im(z
1

z
2

z
3

). We want to know the location where
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�
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�
�
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�
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3
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�
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�
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↵

� 0. In
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2
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2
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There are equivalent ways to draw the toric diagram by choosing di↵erent patch to take the canonical

direction of C3 and all di↵erent choices are related by SL(2,Z) transformation. Let us give an

equivalent figure that will be frequently used later. The patches are taken to be the same, but we

set

r
↵

= |x
1

|2 � |x
2

|2, r
�

= |z
1

|2 � |x
2

|2. (3.8)

The toric diagram in this choice is given by

t

This geometry is also known as the resolved conifold.

Another frequently considered example is local CP1 ⇥ CP1, or O(�2,�2) ! CP1 ⇥ CP1, with

two U(1) identifications,

(x, y
1

, y
2

, z
1

, z
2

) ⇠ (��2µ�2x,�y
1

,�y
2

, µz
1

, µz
2

). (3.9)

Equations relating di↵erent patches read

�2|x|2 + |y
1

|2 + |y
2

|2 = t
1

, (3.10)

�2|x|2 + |z
1

|2 + |z
2

|2 = t
2

. (3.11)

By choosing r
↵

= |y
1

|2 � |x|2 and r
�

= |z
1

|2 � |x|2, we obtain the following toric diagram.

t
2

t
1

It is known that there is a mirror symmetry (see [3] for a review) between A-model and B-model,

under which the Calabi-Yau manifold used in the A-model is mapped to a mirror Calabi-Yau. For

a toric variety described by

d+rX

i=1

Qa

i

|z
i

|2 = ta, (3.12)

the mirror variety is given by

xx̃ = H(u, v, x
a

), (3.13)
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The A-model partition function can be computed 
with the topological vertex.

[Aganagic, Klemm, Marino, Vafa, (2003)]

Elliptic Brane Web

1 Introduction

C

µ⌫�

2 Partition Function of M-string

The partition function of M-strings [1] can be computed from the refined topological string on a

Calabi-Yau geometry specified by a toric diagram with its top and bottom external legs identified

together. It can also be interpreted as the instanton partition function of the corresponding 6d

N = (1, 0) theory on R4⇥T

2 with omega background twisting. This partition function is an elliptic

version of the Nekrasov partition function, which is a natural consequence from the fact that the

refined topological vertex on toric Calabi-Yau is dual to 5d N = 1 theory constructed from (p, q)-

brane web, and the compactification (i.e. identification of external legs) of this brane web along the

NS5 direction lifts the theory to 6d. We give a brief review on it in this section, rederiving it by

identifying external legs of toric Calabi-Yau, with the Awata-Feigin-Shiraishi (AFS) version of the

refined topological vertex [2] (see also [3] for a review and generalization). The building block for a

compactified brane web is

�⇤[v1]

�[v2]

We note that by replacing �⇤ and � with the generalized AFS vertices introduced in [3], it is possible

to build the compactified brane web with arbitrary rank of gauge group. What we need to do is to

take the trace over the Fock space of the horizontal representation of the DIM algebra. There are

1

It can be expressed in terms of (skew) Schur functions.

C
µ⌫�

(t, q)µ, t

⌫, q
�

Figure 2: The refined topological vertex with labels. We use two short parallel lines to denote the

preferred direction.

We can easily generalize this computation to conclude

C
µ,⌫,�

/ q�
(µ)
2

X

⌘

s
µ

t
/⌘

(q���⇢)s
⌫/⌘

(q��

t�⇢), (4.36)

where the proportional prefactor only depends on �. By using the symmetric property, C;,;,� =

C;,�,;, we finally arrive at

C
µ,⌫,�

= q�
(µ)
2 s

�

(q�⇢)
X

⌘

s
µ

t
/⌘

(q���⇢)s
⌫/⌘

(q��

t�⇢). (4.37)

5 Refinement

The refinement of the topological vertex given in [10] does not have worldsheet description, but in

stead, it is established in the melting crystal picture. The modification of (4.29) is given by

h⌫| qL0V
+

(1)qL0 . . . qL0V
+

(1)tL0V�(1)tL0 . . . tL0V�(1)tL0 |µti /
1Y

i,j=1

(1� tiqj�1)�1. (5.1)

The proper prescription is that whenever we switch V�(1) to V
+

(1), tL0 has to be replaced by qL0 .

With this prescription, we can immediately see that the refined topological vertex is proportional

to

C
µ,⌫,�

(t, q) /
X

⌘

⇣q
t

⌘ |⌘|+|µ|�|⌫|
2

s
µ

t
/⌘

(q��t�⇢)s
⌫/⌘

(t��

t
q�⇢). (5.2)

The prefactor depends on our precise definition of the vertex. We have lost the symmetry among

three legs, so the only obvious guiding principle is that C
µ,⌫,�

(t, q) reduces back to C
µ,⌫,�

when we

set t = q. The leg corresponding to � is called the preferred direction of the refined topological

vertex, which is also the slicing direction of the melting crystal. For convenience, let us name the

legs of the vertex with Young diagram µ, ⌫, and � respectively by t-direction, q-direction and the

preferred direction as in Figure 2. The t- and q-direction exchange when we replace the parameter

t $ q in the refined topological vertex.

We set the gluing rule that only pairs of legs that are both in the preferred direction, or one is

in the t-direction and another is in the q-direction can be glued together.

22



⇤F = F. (165)

� = (�1,�2, . . . ,�n

), �1 � �2 � · · · � �
n

. (166)

�
i

= a
j

+ (r � 1)✏1 + (s� 1)✏2. (167)

� = (↵1,↵2, . . . |�1,�2, . . . ). (168)
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It is similar to the Feynman diagram to compute the 
partition function of topological vertex,

Qi: Kahler parameters
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Z
top

= ZG

root

Z
instanton

. (172)

17

It reproduces part of the full Nekrasov partition function of the 
corresponding gauge theory.

*Remark: 

following from the pole cancellation (or blow-up equation), one can 
determine the classical piece and the Cartan part of the full partition 
function.  [Grassi, Hatsuda, Marino (2014)]



The original topological string is dual to the “self-dual” 
point, with two omega-background parameters
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1

We call it an unrefined setup, and we mainly focus on this special limit in this talk. 

The refined version corresponding to a general omega-background 
was soon proposed.

[Awata, Kanno, (2005)] [Iqbal, Kozcaz, Vafa, (2007)]

*The refined topological string has no world sheet description, 
and is based on the melting crystal model picture. 
There is a special leg, usually named the preferred direction of 
the vertex.

q

t
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t

Its partition function is given by

X

�

(�Q)|�|s
�

(q�⇢)s
�

t(t�⇢) =
1Y
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(1�Qqi�1/2tj�1/2) = exp
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1X
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t/q)n

n(1� q�n)(1� tn)
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. (5.10)

This is exactly the Cauchy identity of the Schur function, and a natural candidate for refinement is

to realize the same factor with Macdonald function. That is to say, we would like to further impose

the constraint that the partition function does not depend on the choice of the preferred direction
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There is some ambiguity in the particular choice of Z̃
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(q, t), but it is only conventional. Finally we

obtained the full expression for the refined topological vertex as
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So far, we have only considered the toric geometry of O(�1) � O(�1) ! CP1, let us examine

the example O(0)�O(�2) ! CP1 for the independence of choice of preferred direction.
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It is again expressed in terms of (skew) Schur function.

U
q,t

(

bbgl1) (29)

q ! 1, t = q� (30)

W1+1[µ] (31)

q1 = eR✏1
= t, q2 = eR✏2

= q�1. (32)

2



Let us have a look at the details of Schur functions.
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for some Young diagram � = {�
j

}. It is a symmetric polynomial and the set of all Schur functions

forms a complete basis of symmetric polynomials. Therefore, the product of two Schur functions

can again be expressed in Schur functions,
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The most important fact about the skew Schur function we use in this article is that it can be

expressed as a fermion correlation.
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where s is the number of diagonal boxes in �.

There are two Cauchy identities known for the skew Schur functions.
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It can be expressed as an expectation value of a vertex operator.

Equivalence between Two Types of Refined Topological
Vertex

1 Melting Crystal Picture
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Cauchy identities of Schur functions revisited
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Figure 4. The Frobenius coordinates can be read as the length of each row and column to the
diagonal line for a Young diagram λ. As an example, we show the Young diagram λ = (5, 4, 4, 2, 2, 1)
here. Then the Frobenius coordinates are given by (α1,α2,α3|β1,β2,β3) =

( 9
2 ,

5
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3
2
∣∣ 11
2 , 7

2 ,
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)
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Jn and ψn,ψ∗
n satisfy the following commutation relations,

{ψn,ψm} = {ψ∗
n,ψ

∗
m} = 0, {ψn,ψ

∗
m} = δn+m,0, (B.21)

[Jn,ψk] = ψn+k, [Jn,ψ∗
k] = −ψ∗

n+k, [Jn, Jm] = nδn+m,0. (B.22)

|λ⟩ is a fermion basis with the label of the Frobenius coordinate (see figure 4) of a Young dia-
gram λ. When the Frobenius coordinate of a Young diagram λ is λ = (α1,α2, . . . |β1,β2 . . . ),
then |λ⟩ is given by

|λ⟩ = (−1)β1+β2+···+βs+ s
2ψ∗

−β1ψ
∗
−β2 . . .ψ

∗
−βs

ψ−αsψ−α(s−1) . . .ψ−α1 |0⟩ , (B.23)

where s is the number of boxes on the diagonal line in λ and the vacuum state |0⟩ satisfies
ψα |0⟩ = ψ∗

β |0⟩ = 0 for any α > 0, β > 0.
There are two Cauchy identities known for the skew Schur functions.

∑

λ

sλ/µ(x)sλ/ν(y) =
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(1 − xiyj)−1∑
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sν/η(x)sµ/η(y), (B.24)
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To see the first identify (B.24) we first note that the lefthand side of (B.24) can be written as
∑

λ

⟨µ|V+(x⃗) |λ⟩ ⟨λ|V−(y⃗) |ν⟩ = ⟨µ|V+(x⃗)V−(y⃗) |ν⟩ . (B.26)

Then by using the commutation relation

V+(x⃗)V−(y⃗) =
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i,j

1
1 − xiyj

V−(y⃗)V+(x⃗), (B.27)

Eq. (B.26) can be further written as

⟨µ|V+(x⃗)V−(y⃗) |ν⟩ =
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i,j

(1 − xiyj)−1 ⟨µ|V−(y⃗)V+(x⃗) |ν⟩

=
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(1 − xiyj)−1∑

η

⟨µ|V−(y⃗) |η⟩ ⟨η|V+(x⃗) |ν⟩ , (B.28)
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gram λ. When the Frobenius coordinate of a Young diagram λ is λ = (α1,α2, . . . |β1,β2 . . . ),
then |λ⟩ is given by

|λ⟩ = (−1)β1+β2+···+βs+ s
2ψ∗

−β1ψ
∗
−β2 . . .ψ

∗
−βs

ψ−αsψ−α(s−1) . . .ψ−α1 |0⟩ , (B.23)

where s is the number of boxes on the diagonal line in λ and the vacuum state |0⟩ satisfies
ψα |0⟩ = ψ∗

β |0⟩ = 0 for any α > 0, β > 0.
There are two Cauchy identities known for the skew Schur functions.

∑

λ

sλ/µ(x)sλ/ν(y) =
∏

i,j

(1 − xiyj)−1∑

η

sν/η(x)sµ/η(y), (B.24)
∑

λ

sλ/µt(x)sλt/ν(y) =
∏

i,j

(1 + xiyj)
∑

η

sνt/η(x)sµ/ηt(y). (B.25)

To see the first identify (B.24) we first note that the lefthand side of (B.24) can be written as
∑

λ

⟨µ|V+(x⃗) |λ⟩ ⟨λ|V−(y⃗) |ν⟩ = ⟨µ|V+(x⃗)V−(y⃗) |ν⟩ . (B.26)

Then by using the commutation relation

V+(x⃗)V−(y⃗) =
∏

i,j

1
1 − xiyj

V−(y⃗)V+(x⃗), (B.27)

Eq. (B.26) can be further written as

⟨µ|V+(x⃗)V−(y⃗) |ν⟩ =
∏

i,j

(1 − xiyj)−1 ⟨µ|V−(y⃗)V+(x⃗) |ν⟩

=
∏

i,j

(1 − xiyj)−1∑

η

⟨µ|V−(y⃗) |η⟩ ⟨η|V+(x⃗) |ν⟩ , (B.28)
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n satisfy the following commutation relations,

{ψn,ψm} = {ψ∗
n,ψ

∗
m} = 0, {ψn,ψ

∗
m} = δn+m,0, (B.21)
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k] = −ψ∗
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|λ⟩ is a fermion basis with the label of the Frobenius coordinate (see figure 4) of a Young dia-
gram λ. When the Frobenius coordinate of a Young diagram λ is λ = (α1,α2, . . . |β1,β2 . . . ),
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where s is the number of boxes on the diagonal line in λ and the vacuum state |0⟩ satisfies
ψα |0⟩ = ψ∗

β |0⟩ = 0 for any α > 0, β > 0.
There are two Cauchy identities known for the skew Schur functions.
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∏
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Then by using the commutation relation

V+(x⃗)V−(y⃗) =
∏

i,j

1
1 − xiyj

V−(y⃗)V+(x⃗), (B.27)

Eq. (B.26) can be further written as

⟨µ|V+(x⃗)V−(y⃗) |ν⟩ =
∏

i,j

(1 − xiyj)−1 ⟨µ|V−(y⃗)V+(x⃗) |ν⟩

=
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Jn and ψn,ψ∗
n satisfy the following commutation relations,

{ψn,ψm} = {ψ∗
n,ψ

∗
m} = 0, {ψn,ψ

∗
m} = δn+m,0, (B.21)

[Jn,ψk] = ψn+k, [Jn,ψ∗
k] = −ψ∗

n+k, [Jn, Jm] = nδn+m,0. (B.22)

|λ⟩ is a fermion basis with the label of the Frobenius coordinate (see figure 4) of a Young dia-
gram λ. When the Frobenius coordinate of a Young diagram λ is λ = (α1,α2, . . . |β1,β2 . . . ),
then |λ⟩ is given by

|λ⟩ = (−1)β1+β2+···+βs+ s
2ψ∗

−β1ψ
∗
−β2 . . .ψ

∗
−βs

ψ−αsψ−α(s−1) . . .ψ−α1 |0⟩ , (B.23)

where s is the number of boxes on the diagonal line in λ and the vacuum state |0⟩ satisfies
ψα |0⟩ = ψ∗

β |0⟩ = 0 for any α > 0, β > 0.
There are two Cauchy identities known for the skew Schur functions.

∑

λ

sλ/µ(x)sλ/ν(y) =
∏

i,j

(1 − xiyj)−1∑

η

sν/η(x)sµ/η(y), (B.24)
∑

λ

sλ/µt(x)sλt/ν(y) =
∏

i,j

(1 + xiyj)
∑

η

sνt/η(x)sµ/ηt(y). (B.25)

To see the first identify (B.24) we first note that the lefthand side of (B.24) can be written as
∑

λ

⟨µ|V+(x⃗) |λ⟩ ⟨λ|V−(y⃗) |ν⟩ = ⟨µ|V+(x⃗)V−(y⃗) |ν⟩ . (B.26)

Then by using the commutation relation

V+(x⃗)V−(y⃗) =
∏

i,j

1
1 − xiyj

V−(y⃗)V+(x⃗), (B.27)

Eq. (B.26) can be further written as

⟨µ|V+(x⃗)V−(y⃗) |ν⟩ =
∏

i,j

(1 − xiyj)−1 ⟨µ|V−(y⃗)V+(x⃗) |ν⟩

=
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Jn and ψn,ψ∗
n satisfy the following commutation relations,

{ψn,ψm} = {ψ∗
n,ψ

∗
m} = 0, {ψn,ψ

∗
m} = δn+m,0, (B.21)

[Jn,ψk] = ψn+k, [Jn,ψ∗
k] = −ψ∗

n+k, [Jn, Jm] = nδn+m,0. (B.22)

|λ⟩ is a fermion basis with the label of the Frobenius coordinate (see figure 4) of a Young dia-
gram λ. When the Frobenius coordinate of a Young diagram λ is λ = (α1,α2, . . . |β1,β2 . . . ),
then |λ⟩ is given by

|λ⟩ = (−1)β1+β2+···+βs+ s
2ψ∗

−β1ψ
∗
−β2 . . .ψ

∗
−βs

ψ−αsψ−α(s−1) . . .ψ−α1 |0⟩ , (B.23)

where s is the number of boxes on the diagonal line in λ and the vacuum state |0⟩ satisfies
ψα |0⟩ = ψ∗

β |0⟩ = 0 for any α > 0, β > 0.
There are two Cauchy identities known for the skew Schur functions.

∑

λ

sλ/µ(x)sλ/ν(y) =
∏

i,j

(1 − xiyj)−1∑

η

sν/η(x)sµ/η(y), (B.24)
∑

λ

sλ/µt(x)sλt/ν(y) =
∏

i,j

(1 + xiyj)
∑

η

sνt/η(x)sµ/ηt(y). (B.25)

To see the first identify (B.24) we first note that the lefthand side of (B.24) can be written as
∑

λ

⟨µ|V+(x⃗) |λ⟩ ⟨λ|V−(y⃗) |ν⟩ = ⟨µ|V+(x⃗)V−(y⃗) |ν⟩ . (B.26)

Then by using the commutation relation

V+(x⃗)V−(y⃗) =
∏

i,j

1
1 − xiyj

V−(y⃗)V+(x⃗), (B.27)

Eq. (B.26) can be further written as

⟨µ|V+(x⃗)V−(y⃗) |ν⟩ =
∏

i,j

(1 − xiyj)−1 ⟨µ|V−(y⃗)V+(x⃗) |ν⟩

=
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(1 − xiyj)−1∑
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and then the righthand side of (B.28) precisely reproduces the righthand side of (B.24).
The second identity can be derived using the automorphism of the fermionic algebra,

! : ψ ↔ ψ∗, under which λ transforms to λt as ! exchanges {αi} and {βi}. In particular,
we have

|λt⟩ = (−1)|λ|!(|λ⟩). (B.29)

The second Cauchy identity then follows directly from the fact that the transformation !
does not change the expectation value of a correlator and !2 = id, i.e.

⟨λt|V−(y⃗) |ν⟩ = (−1)|λ|!(⟨λ|)V−(y⃗) |ν⟩

= (−1)|λ|!2(⟨λ|)!(V−(y⃗))!(|ν⟩)
= (−1)|λ|−|ν| ⟨λ|!(V−(y⃗)) |νt⟩
= ⟨λ|V −1

− (−y⃗) |νt⟩ , (B.30)

where we used !(Jn) = −Jn. Therefore
∑

λ

⟨µt|V+(x⃗) |λ⟩ ⟨λt|V−(y⃗) |ν⟩ =
∑

λ

⟨µt|V+(x⃗) |λ⟩ ⟨λ|V −1
− (−y⃗) |νt⟩

= ⟨µt|V+(x⃗)V −1
− (−y⃗) |νt⟩

=
∏

i,j

(1 + xiyj) ⟨µt|V −1
− (−y⃗)V+(x⃗) |νt⟩

=
∏

i,j

(1 + xiyj)
∑

η

⟨µt|V −1
− (−y⃗) |η⟩ ⟨η|V+(x⃗) |νt⟩

=
∏

i,j

(1 + xiyj)
∑

η

⟨µ|V−(y⃗) |ηt⟩ ⟨η|V+(x⃗) |νt⟩ , (B.31)

where we used
V+(x⃗)V −1

− (−y⃗) =
∏

i,j

(1 + xiyj)V −1
− (−y⃗)V+(x⃗). (B.32)

We can see that (B.31) yields (B.25).
The specification of the variables, {x} = {q−ρ−σ} and {y} = {q−ρ−τ}, is very useful in

this article, and in this case (B.24) and (B.25) become
∑

λ

Q|λ|sλ/µ(q−ρ−σ)sλ/ν(q−ρ−τ )

= P.E.
(

q

(1 − q)2Q
)
N−1

σtτ (Q, q)
∑

η

Q|µ|+|ν|−|η|sν/η(q−ρ−σ)sµ/η(q−ρ−τ ), (B.33)
∑

λ

(−Q)|λ|sλ/µt(q−ρ−σ)sλt/ν(q−ρ−τ )

= P.E.
(

− q

(1 − q)2Q
)
Nσtτ (Q, q)

∑

η

(−Q)|µ|+|ν|−|η|sνt/η(q−ρ−σ)sµ/ηt(q−ρ−τ ), (B.34)

where the unrefined Nekrasov factor is defined by

Nλν(Q, q) :=
∏

(i,j)∈λ

(1 − Qqλi+νt
j−i−j+1)

∏

(i,j)∈ν

(1 − Qq−νi−λt
j+i+j−1). (B.35)

– 47 –

Elliptic Brane Web

1 Introduction

C

µ⌫�

2 Partition Function of M-string

The partition function of M-strings [1] can be computed from the refined topological string on a

Calabi-Yau geometry specified by a toric diagram with its top and bottom external legs identified

together. It can also be interpreted as the instanton partition function of the corresponding 6d

N = (1, 0) theory on R4⇥T

2 with omega background twisting. This partition function is an elliptic

version of the Nekrasov partition function, which is a natural consequence from the fact that the

refined topological vertex on toric Calabi-Yau is dual to 5d N = 1 theory constructed from (p, q)-

brane web, and the compactification (i.e. identification of external legs) of this brane web along the

NS5 direction lifts the theory to 6d. We give a brief review on it in this section, rederiving it by

identifying external legs of toric Calabi-Yau, with the Awata-Feigin-Shiraishi (AFS) version of the

refined topological vertex [2] (see also [3] for a review and generalization). The building block for a

compactified brane web is

�⇤[v1]

�[v2]

We note that by replacing �⇤ and � with the generalized AFS vertices introduced in [3], it is possible

to build the compactified brane web with arbitrary rank of gauge group. What we need to do is to

take the trace over the Fock space of the horizontal representation of the DIM algebra. There are

1

a typical summation in the computation:

one-loop factor Nekrasov factor

Remark: all summations over Young diagrams 
in non-horizontal directions can be taken in this 
way.

Then we can see that the exact matching with 
Nekrasov’s formula for U(N) theories,  
i.e. eqn. ( * ).



Rewriting the vertex operators
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where

(q, 1)u

(1, 0)v

(q + 1, 1)�uv

�(q)[u, v]

(q + 1, 1)�uv

(q, 1)u

(1, 0)v

�(q)⇤[u, v]

Figure 3.1: Correspondence between �(q)[u, v], �(q)⇤[u, v] and graphic vertices. fig_vertex

3.5 Topological Vertex as Awata-Feigin-Shiraishi Intertwiner

Now we would like to define the refined topological vertex in terms of the DIM algebra as a three-leg

object. As we want to identify the weight parameter v in the (0, 1) representation as the position

of D5-branes, we decompose the Kähler parameter as Q = u
1

/u
2

and absorb ui’s into two vertices

sandwiching the degenerate locus line whose Kähler parameter is Q. We have already defined the

shifted vertex in (
shift-vert-ele-1
3.1.18), (

shift-vert-ele-2
3.1.19), (

shift-vert-ele-3
3.1.20) and (

shift-vert-ele-4
3.1.21), and roughly speaking, the three-leg vertex

we would like to define takes the form,

� |v,�i ⇠ ��[v] := �;[v]
Y

x2�
⌘(�x), (3.5.1)

hv,�|�⇤ ⇠ �⇤
�[v] := �⇤

;[v]
Y

x2�
⇠(�x). (3.5.2)

To complete the prescription in terms of the DIM algebra, we need to introduce the framing de-

pendence in the preferred direction. We add an integer label (n) to the vertex, �(n) and �⇤(n). See

Figure
fig_vertex
3.1 for the way to assign vertices with respect to (p, q) brane and we note that a (p, q) brane

is mapped to a (`
1

= q, `
2

= p) representation of the DIM algebra.

Taking the convenient normalization we chose in the previous section for the (0, 1) representation,

a� = (v�)�|�|

0

@
Y

(i,j)2�
�
(i,j)

1

AN�1

�� (1; q1, q2), (3.5.3)

the following definition of the topological vertices

�(n)
� [u, v] := �(n)[u, v] |v,�i := (�uv)|�|

Y

x2�
(�/�x)

n+1 : �;[v]
Y

x2�
⌘(�x) :, (3.5.4)

�⇤(n)
� [u⇤, v] := hv,�|�⇤(n)[u⇤, v] := (u⇤�)�|�| Y

x2�
(�x/�)

n : �⇤
;[v]

Y

x2�
⇠(�x) :, (3.5.5)

reproduce the calculation of refined topological string partition function.

Interestingly, Awata, Feigin and Shiraishi in
AFS
[31] proved that the refined topological vertices

defined above behave as intertwiners of representation in the DIM algebra.

�(n)[u, v] : (1, n)u ⌦ (0, 1)v ! (1, n+ 1)�uv, (3.5.6)

�(n)⇤[u, v] : (1, n+ 1)�uv ! (1, n)u ⌦ (0, 1)v, (3.5.7)

56

i.e. they satisfy

(⇢(1,n)u ⌦ ⇢(0,1)v )�(g(z))�⇤(n)[u, v] = �⇤(n)[u, v]⇢(1,n+1)

�uv (g(z)), (3.5.8)

�(n)[u, v](⇢(0,1)v ⌦ ⇢(1,n)u )�(g(z)) = ⇢(1,n+1)

�uv (g(z))�(n)[u, v], (3.5.9)

where the coproduct � is given by (
AFS_coproduct
3.1.42). We refer to this relation as the Awata-Feigin-Shiraishi

(AFS) property in this article.

The above property can be checked by explicit computation as follows. We need to compute

the contraction of vertex operators, and the result is listed below.

⌘(z)��[u, v] =
1

Y�(z)
: ⌘(z)��[u, v] :, (3.5.10)

��[u, v]⌘(z) = �vq
3

z

1

Y�(zq
�1

3

)
: ��[u, v]⌘(z) :, (3.5.11)

⇠(z)��[u, v] = Y�(�
�1z) : ⇠(z)��[u, v] :, (3.5.12)

��[u, v]⇠(z) = ���1

z

v
Y�(z�

�1) : ��[u, v]⇠(z) :, (3.5.13)

'�(z)��[u, v] =: '�(z)��[u, v] :, (3.5.14)

��[u, v]'
�(z) = �2

Y�(z��1/2)

Y�(z��1/2q�1

3

)
: ��[u, v]'

�(z) :, (3.5.15)

'+(z)��[u, v] =
Y�(z�1/2q�1

3

)

Y�(z�1/2)
: '+(z)��[u, v] :, (3.5.16)

��[u, v]'
+(z) =: ��[u, v]'

+(z) :, (3.5.17)

⌘(z)�⇤
�[u, v] = Y�(z�

�1) : ⌘(z)�⇤
�[u, v] :, (3.5.18)

�⇤
�[u, v]⌘(z) = ���1z/vY�(z�

�1) : �⇤
�[u, v]⌘(z) :, (3.5.19)

⇠(z)�⇤
�[u, v] =

1

Y�(zq
�1

3

)
: ⇠(z)�⇤

�[u, v] :, (3.5.20)

�⇤
�[u, v]⇠(z) = �v

z

1

Y�(z)
: �⇤

�[u, v]⇠(z) :, (3.5.21)

'�(z)�⇤
�[u, v] =: '�(z)�⇤

�[u, v] :, (3.5.22)

�⇤
�[u, v]'

�(z) = ��2

Y�(z��3/2)

Y�(z�1/2)
: �⇤

�[u, v]'
�(z) :, (3.5.23)

'+(z)�⇤
�[u, v] =

Y�(z��1/2)

Y�(z��5/2)
: '+(z)�⇤

�[u, v] :, (3.5.24)

�⇤
�[u, v]'

+(z) =: �⇤
�[u, v]'

+(z) : . (3.5.25)
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is the intertwiner in the Ding-Iohara-Miki algebra (quantum 
toroidal algebra of affine gl1),

What is a quantum toroidal algebra?

Lie algebra affine Lie algebra

quantum group quantum affine algebra

quantization
[Drinfeld (1985)]
[Jimbo (1985)] affinization

[Drinfeld (1988)] [Beck (1994)]

affinization
quantum toroidal 

algebra

[Ding, Iohara (1997)]

[Awata, Feigin, Shiraishi (2011)]



quantum toroidal algebra (of gl1)

with

g(z) =
(1� q

1

z)(1� q
2

z)(1� q
3

z)

(1� q�1

1

z)(1� q�1

2

z)(1� q�1

3

z)
, (3.1.29)

satisfying g(z�1) = g(z)�1. ⌘(z)⇠(w) and ⇠(w)⌘(z) are almost the same, but we have to be careful

because
Q

i(1� aiz)Q
j(1� bjz)

� z|{i}|�|{j}|
Q

i(z
�1 � ai)Q

j(z
�1 � bj)

=
X

k

Q
i(1� ai/bk)Q

j 6=k(1� bj/bk)
�(bkz). (3.1.30)

As a consequence,

⌘(z)⇠(w)� ⇠(w)⌘(z) =
(1� q

1

)(1� q
2

)

(1� q�1

3

)

�
�(�w/z)� �(��1w/z)

�
: ⌘(z)⇠(w) :

=
(1� q

1

)(1� q
2

)

(1� q�1

3

)

�
�(�w/z)'+(�1/2w)� �(��1w/z)'�(��1/2w)

�
, (3.1.31)

where we introduced two new vertex operators,

'+(z) =: ⌘(z�1/2)⇠(z��1/2) :, '�(z) =: ⌘(z��1/2)⇠(z�1/2) : . (3.1.32)

We can compute their algebraic relations to find

⌘(z)'±(w) = g(�⌥1/2w/z)'±(w)⌘(z), (3.1.33)

⇠(z)'±(w) = g(�⌥1/2z/w)'±(w)⇠(z). (3.1.34)

Interestingly, the above algebraic relations are exactly those of Ding-Iohara type
DI
[27] with g(z)

specified by (
g-DI
3.1.29).

This algebra of Ding-Iohara type more generally is given by

[ ±(z), ±(w)] = 0, (3.1.35)

 +(z) �(w) =
g (�̂z/w)

g (�̂�1z/w)
 �(w) +(z) (3.1.36)

 ±(z) x+(w) = g
⇣
�̂±

1
2 z/w

⌘
x+(w) ±(z) (3.1.37)

 ±(z) x�(w) = g
⇣
�̂⌥

1
2 z/w

⌘�1

x�(w) ±(z) (3.1.38)

x±(z) x±(w) = g (z/w)±1 x±(w) x±(z) (3.1.39)
⇥
x+(z), x�(w)

⇤
=

(1� q
1

)(1� q
2

)

(1� q�1

3

)

⇣
� (�̂w/z)  +

⇣
�̂

1
2w

⌘
� �

�
�̂�1w/z

�
 �

⇣
�̂�

1
2w

⌘⌘
,(3.1.40)

where �̂ is a central element of the algebra. We can see that the realization discussed above,

x+(z) 7! ⌘(z), x�(z) 7! ⇠(z),  ±(z) 7! '±(z), �̂ 7! �, (3.1.41)
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where

[Ding, Iohara (1997)]
[Miki (2007)]

fix these parameters for all the vertices and decompose all Kähler parameters in a consistent way.

Under this decomposition, the position parameter v can be completely absorbed into the vertex

operator, and we define the vertex and dual vertex after this shift as

�;[v] := exp
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1X

n=1

vn

n

1

1� t�n
J�n

!
exp

 1X
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1

n
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!
, (3.1.18)

�⇤
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1
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!
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1
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!
, (3.1.19)
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n
tn(1� q�n)�n

xJ�n

!
exp

 
�

1X

n=1

1

n
(1� t�n)��n

x Jn

!
, (3.1.20)
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 1X
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!
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 1X

n=1

1

n
(1� t�n)��n

x �nJn

!
, (3.1.21)

where we redefined

�x := vti�1q�j+1, for x = (i, j) 2 �. (3.1.22)

Multiplying these vertex operators together and taking the expectation value of the correspond-

ing correlator, we obtain the factors in the unpreferred direction of the refined topological string

partition function. We will give the prescription for preferred directions in a later section, and

before that we want to know the algebraic structure of the above vertex operators, especially that

of ⌘(z) and ⇠(z).

From explicit computation, we have

⌘(z)⌘(w) =
(1� w/z)(1� q�1

3

w/z)

(1� q
1

w/z)(1� q
2

w/z)
: ⌘(z)⌘(w) :, (3.1.23)

⇠(z)⇠(w) =
(1� q

3

w/z)(1� w/z)

(1� q�1

1

w/z)(1� q�1

2

w/z)
: ⌘(z)⌘(w) :

=
(1� q�1

3

z/w)(1� z/w)

(1� q
1

z/w)(1� q
2

z/w)
: ⌘(z)⌘(w) :, (3.1.24)

⌘(z)⇠(w) =
(1� q

1

�w/z)(1� q
2

�w/z)

(1� �w/z)(1� q�1

3

�w/z)
: ⌘(z)⇠(w) :, (3.1.25)

⇠(z)⌘(w) =
(1� q

1

�w/z)(1� q
2

�w/z)

(1� �w/z)(1� q�1

3

�w/z)
: ⌘(z)⇠(w) :, (3.1.26)

where we repeatedly used q
1

q
2

q
3

= 1. We thus have the following algebraic relations,

⌘(z)⌘(w) = g(z/w)⌘(w)⌘(z), (3.1.27)

⇠(z)⇠(w) = g(z/w)�1⇠(w)⇠(z), (3.1.28)
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is also a center
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Yangian/SHc algebra

U
q,t

(

bbgl1) (29)

q ! 1, t = q� (30)

W1+1[µ] (31)

2

(A-type)
… [Prochazka, 2015]

q-deformed

U
q,t

(

bbgl1) (29)

q ! 1, t = q� (30)

W1+1[µ] (31)

2

[Maulik, Okounkov, 2012]
[Shiffmann, Vasserot, 2012]

Relation with W-algebras

• Ding-Iohara-Miki algebra on the tensor product of N Fock 
spaces contains a U(1)x (q-deformed) WN algebra.

[Feigin, Hoshino, Shibahara, Shiraishi, Yanagida, 2010]

(4d limit)
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Figure14:ToricdiagramofT3theory.

ThenZ̃T2/(Z
=
U(1)Z

||
U(1)Z

//
U(1))coincideswiththepartitionfunctionoftheT2-theory.According

totheargumentinsection3,thefactorsZ
=
U(1),Z

||
U(1)andZ

//
U(1)areidentifiedwiththecon-

tributionfromdecoupledM2-branesontwo-cyclesassociatedwithQ2Q3,Q3Q1andQ1Q2,

respectively.Allthetwo-cyclescanbecontinuouslymovedtoinfinity,andthereforeitis

reasonabletoeliminatethem.NowletusconsiderZ̃T2/Z
=
U(1).From(4.25),itfollowsthat

Z̃T2/Z
=
U(1)coincideswiththeNekrasovpartitionfunctionoftheU(1)gaugetheorywithtwo

fundamentalmatters.ThisstronglysuggeststhattheTN-theorypartitionfunctionisrelated

tothepartitionfunctionofsomesimplergaugetheorywithLagrangiandescription.

4.1.2.2T3theory

WenowconsidertheT3theoryengineeredbyC
3
/(Z3⇥Z3).Therelevanttoricwebdiagram

isshowninFigure14.ThetheoryhasaglobalsymmetrySU(3)
3
,whichisvisiblefromthe

diagram,andinfactthesymmetryisenhancedtoE6[7].TheCoulombbranchofthistheory

isonedimensionalcorrespondingtothesizeofthehexagoninthecenterofthediagram.The

theoryalsohasaHiggsbranchofcomplexdimension22,whichisthesamedimensionasthe

dimensionoftheoneinstantonmodulispaceofE6gaugetheory.ThesepropertiesoftheT3

theoryallowustorelateitwithSU(2)gaugetheorywithNf=5fundamentalhypermultiplets

in5d.
16

Wewillcomparethepartitionfunctionsoftwotheoriesinthenextsection,which

providesastrongevidencefortherelation.

ThediagramleadstotheT3partitionfunction

Z̃T3=(M(t,q)M(q,t))
1/2

Z(t,q,Q),

Z(t,q,Q)=
X

~⌫,~µ

(�Q1)|µ1|(�Q2)|µ2|(�Q3)|µ3|(�Q4)|µ4|(�Q5)|µ5|(�Qb)|⌫1|(�QbQ1Q�1
2Q�1

4)|⌫2|

16Asmentionedalready,fora5dSp(1)gaugetheorywithNf�5,therelevantCalabi-Yauthreefoldisnot

toricwithagenericcomplexstructure.However,inthecaseofNf=5,thereisaspecialchoiceofcomplex
structurewithwhichtheCalabi-Yauthreefoldbecomestoric.
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WN-symmetry of AGT

WN-symmetry of Kimura-Pestun 
(quiver W) [Kimura, Pestun, 2016]

another dual WN-
symmetry

S-dualityS-duality

S-duality



After all, what we want to study is SO(N) theory.



As we mentioned before, the integral is difficult to perform for SO(N) 
and Sp(N) theories.

However, the brane construction is simple.

0 1 2 3 4 5 6 7 8 9
D5 • • • • • • � � � �
NS5 • • • • • � • � � �

7-brane • • • • • � � • • •
O5± • • • • • • � � � �

Table 2: Configuration of branes in the brane web construction. Bar represents
the direction branes stretch along, and dot means the point-like direction for
branes.
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According to SO or Sp gauge group, we add O5+ or O5- orientifold 
(O-plane). 

(Well-known story in string theory text book)
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(a)

T → 1∅

(b)

Figure 3. (a): the brane web by sending T → 1 from the diagram in figure 1(b). (b): the diagram
to be used for the computations, where we shall set the leg attached to the D7-brane to be empty.

the line with the Kähler parameter T , it turns out that a finite sum gives the correct
answer, which we will see in section 3.2.

We can use this technique to compute the partition functions of SO(2N + 1) gauge
theories and also G2 gauge theories utilizing the construction in [18]. Furthermore it is also
possible to compute the pure SU(3) gauge theory with the CS level κcs = 9 by applying
the brane web proposed in [33], which may be obtained by a twisted compactification of
6d pure SU(3) gauge theory with a tensor multiplet [38].

3 Examples

In this section, we give several examples of calculations that involve the usage of the O-
vertex defined in section 2. More concretely, we first check the validity of our formalism in
section 3.1, 3.2 and 3.3 by comparing the partition functions of the SO(2N), SO(2N + 1)
and G2 gauge theories obtained in the topological vertex formalism with the O-vertex
with the known one-instanton and two-instanton partition functions in the literature. In
section 3.4, we will further apply the O-vertex to the calculation of the partition function
of the 5d pure SU(3) gauge theory with the CS level κcs = 9, by using the brane diagram
proposed for it in [33].

3.1 SO(2N) gauge theories

We start from the computation of the partition function of the pure SO(2N) theory. The
brane web diagram is obtained by putting a stack of N D5-branes on the top of an O5−-
plane. Hence we can directly apply the O-vertex proposed in section 2.2.

3.1.1 Pure SO(4) gauge theory
The first example is the simplest case N = 2, i.e. SO(4) gauge theory. The 5-brane web
diagram for the pure SO(4) theory is given by

P

Q′

Q

O5−O5+ O5+ (3.1)
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SO(4) theory
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pure SO(8) gauge theory is given by

P

Q′
R

QT

(3.43)

The Coulomb branch moduli a1, a2, a3, a4 are the height of the color D5-brane. Hence
Ai = e−ai , (i = 1, 2, 3, 4) are parametrized by

A1 = TRQ′P, A2 = RQ′P, A3 = Q′P, A4 = P. (3.44)

Extrapolating the external (2, 1) and (2,−1) 5-brane webs on the O5-plane, the instaton
fugacity is related to the length between the 5-branes on the orientifold. Namely it is
given by

q = QT 2A−4
1 = QT−2Q′−4P−4R−4. (3.45)

From the web diagram in (3.43) it is possible to compute the partition function using
the topological vertex and the O-vertex and the partition function becomes

ZSO(8)
top

=
∑

µ,ν,α,β,λ,σ,γ,δ,τ,υ,ι,π

(−Q)|λ|+|σ|+|τ |+|υ|(−Q′)|α|+|β|+2|σ|(−P )|µ|+|ν|(−R)|γ|+|δ|(−T )|ι|+|π|+2|υ|

fλf
−1
α fβf

−3
σ f−1

γ fδf
−1
τ f−1

ι fπf
−3
υ CαtγλCδβtλtCνtασtCβµtσCγtιτCπδtτ tCιt∅υC∅πtυtVνWµ.

(3.46)
Since there is no parallel external lines, (3.46) does not contain an extra factor.

The perturbative part is obtained by the limit Q → 0 and the partition functin splits
into two parts,

ZSO(8)
pert = ZSO(8)

left ZSO(8)
right , (3.47)

where

ZSO(8)
left =

∑

ν,α,γ,ι

(−Q′)|α|(−P )|ν|(−R)|γ|(−T )|ι|f−1
α f−1

γ f−1
ι Cαtγ∅Cνtα∅Cγtι∅Cιt∅∅Vν , (3.48)

ZSO(8)
right =

∑

µ,β,δ,π

(−Q′)|β|(−P )|µ|(−R)|δ|(−T )|π|fβfδfπCδβt∅Cβµt∅Cπδt∅C∅πt∅Wµ. (3.49)

The computing the summation of the left part yields

ZSO(8)
left = P.E.

(
q

(1 − q)2
(
Q′ +R+ T +Q′R+RT +Q′RT + P 2Q′ +RQ′P 2 +RQ′2P 2

+Q′RTP 2 +Q′2RTP 2 +Q′2R2TP 2
))

+ o(P 4, Q′3, R3, T 3) (3.50)

= P.E.
(

q

(1 − q)2
(
A3A

−1
4 +A2A

−1
3 +A1A

−1
2 +A2A

−1
3 +A1A

−1
3 +A1A

−1
4 +A3A4

+A2A4 +A2A3 +A1A4 +A1A3 +A1A2
))

+ o(P 4, Q′3, R3, T 3). (3.51)
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The topological vertex seems to be applicable to brane webs with O-plane, 
except for the intersection point of 5-brane and orientifold. 
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where we also introduced the parameter P . As explained in section 2.1, the partition
function of the diagram (2.23) can be computed by deforming the diagram into the follow-
ing one,

ν

O5−

Q2
P

(2.24)

where Q′ = Q−1 and P ′ = PQ and taking the fundamental region as in (2.10). The
partition function for the diagram (2.24) is then

Zν(P,Q) =
∑

µ,λ

(−Q2)|µ|Q2|λ|f2
λ(−P )|ν|CνµλC∅µtλ. (2.25)

Therefore the function associated to the diagram (2.22) is obtained by applying the limit
Q → ∞ with PQ fixed in (2.25). Then it seems that (2.25) diverges from the contribution
coming from Young diagrams satisfying 2|µ|+2|λ| > |ν|. However we observe that there is
non-trivial cancellation for higher orders of Q. When ν = ∅, then (2.25) reduces to (2.17)
and it is just 1 as we checked in (2.21). Even when ν is non-trivial, interestingly, the result
as an expansion over Q2 stops at a finite order. For example, for ν = (5, 1), we have

Z(5,1)(P,Q) = q13P 6

(1−q)6(1+q)3(1+q2)(1−q + q2)(1+q + q2)2 − q9Q2P 6

(1−q)5(1+q)2(1+q2)

+ q6Q4P 6

(1−q)4(1+q)2 + q3Q6P 6

(1−q)3(1+q)(1+q+q2) + o(Q11). (2.26)

For various choices of ν we have checked the function (2.25) terminates at the order Q|ν|.
Hence we conjecture that the expansion by Q of (2.25) terminates at the order Q|ν| for any
ν. Then it is possible to take the limit Q → ∞ with PQ fixed and (2.25) becomes

lim
Q→∞

PQ fixed

Zν(P,Q) =
∑

µ,λ
2|µ|+2|λ|=|ν|

(−Q2)|µ|Q2|λ|f2
λ(−P )|ν|CνµλC∅µtλ. (2.27)

Therefore we define a vertex function Vν by

Vν :=
∑

µ,λ
2|µ|+2|λ|=|ν|

(−1)|µ|f2
λCνµλC∅µtλ, (2.28)

which is associated to the diagram

ν

O5−O5+
Vν

(2.29)

We will call Vν O-vertex as it is associated to a line intersecting with the O5-plane.
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We propose a new topological vertex (O-vertex) for this intersection point.
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We remark that the instaton part of the partition function is expected to be symmetric
under the Weyl group of SU(3). Until the order we computed we can for example see a
part of the symmetry from the part

ẐSU(3)9
top = P.E.

(
· · ·+ 2qq

(1 − q)2
(
A1/A2 +A2

1/A
2
2 +A2/A1 +A2

2/A
2
1
)
+ . . .

)
, (3.134)

in (3.132), which is symmetric under the exchange A1 ↔ A2.5

4 O-vertex as a vertex operator

The topological vertex computation may be rephrased by expectation values of some vertex
operators [5, 34]. In this section we propose a vertex operator corresponding to the O-vertex
introduced in section 2 along the line of the vertex operator formalism. Some technical
details of the vertex operator formalism are summarized in appendix B.2.

4.1 O-vertex operator
We consider reformulating the computation using the O-vertex obtained in section 2 by
using operators and their expectation values. This may be regarded as a first step to develop
a purely analytic method to compute SO(N) and G2 partition functions in a closed form
at each order of the instanton number. More details will be presented in a future work [54].
Let us try to express Vµ as an expectation value of a vertex operator O(q),

Vν(−P )|ν| = ⟨0|O(P, q) |ν⟩ . (4.1)

The ket state |ν⟩ here is the fermion basis labeled by the Frobenius coordinates of ν (see
appendix B.2 for more details). It is straightforward to obtain the operator O(P, q) as
a form in the expansion of the fermion basis. Since the fermion basis is orthonormal
⟨ν ′ | ν⟩ = δν′ν , one way to express the operator O(P, q) is given by

O(P, q) =
∑

µ

(−P )|µ|Vµψ
∗
µ, (4.2)

with

ψ∗
µ = (−1)β1+β2+···+βs+ s

2ψ∗
α1ψ

∗
α2 · · ·ψ

∗
αs
ψβs · · ·ψβ2ψβ1 , (4.3)

where (α1,α2, · · · ,αs|β1,β2, · · · ,βs) is the Frobenius coordinate of a Young diagram µ (see
figure 4). For example, the expression of the operator O(P, q) until the order P 4 is given by

O(P, q) = 1 + qP 2

1 − q
ψ∗
3/2ψ1/2 +

P 2

1 − q
ψ∗
1/2ψ3/2 − q3P 4

(1 − q)(1 − q2)ψ
∗
7/2ψ1/2

− qP 4

(1 − q)(1 − q2)ψ
∗
5/2ψ3/2 − (1 + q3)P 4

(1 − q)(1 − q2)ψ
∗
3/2ψ

∗
1/2ψ1/2ψ3/2

+ q2P 4

(1 − q)(1 − q2)ψ
∗
3/2ψ5/2 +

P 4

(1 − q)(1 − q2)ψ
∗
1/2ψ7/2 + o(P 4),

(4.4)

from the explicit form of Vν , which can be computed by (2.28).
5We need to compute higher order terms for seeing the paired part under the exchange A1 ↔ A2 for the

other terms in the instanton part in (3.132).
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Expectation value of a vertex-operator, 
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In fact one can infer a candidate for another form of the vertex operator O(P, q) which
satisfies (4.1). In order to see that, let us compute the perturbative part of the pure
SO(2N + 2) gauge theory from the O-vertex. We focus on the contribution from the left
half of the 5-brane web diagram of the pure SO(2N + 2) gauge theory as it contains the
O-vertex Vν . The partition function from the left half of the diagram contains the square
root of the perturbative part of the partition function of a pure SU(N + 1) gauge theory.
From the topological vertex computation, it is possible to factor out such a part by using
the identity (B.33) and the remaining contribution is given by

∑

ν,η1,η2,...ηN

Vν(−P )|ν|
(

N∏

i=1
Q|ηi|

i

)

sν/η1(q−ρ)sη1/η2(q−ρ) . . . sηN−1/ηN (q−ρ)sηN (q−ρ)

=
∑

ν,η1,η2,...ηN

Vν(−P )|ν|sν/η1(q−ρ)sη1/η2(Q̃1q
−ρ) . . . sηN−1/ηN (Q̃N−1q

−ρ)sηN (Q̃Nq−ρ),
(4.5)

where we defined
Q̃i =

i∏

j=1
Qj . (4.6)

It is possible to write (4.5) in terms of the expectation value of vertex operators. First note
that the skew Schur function may be written by

sλ/µ(x⃗) = ⟨λ|V−(x⃗) |µ⟩ , (4.7)

where V−(x⃗) is defined in (B.19). Then using (4.1) and (4.7), (4.5) can be written as
∑

ν,η1,η2,...ηN

Vν(−P )|ν|sν/η1(q−ρ)sη1/η2(Q̃1q
−ρ) . . . sηN−1/ηN (Q̃N−1q

−ρ)sηN (Q̃Nq−ρ)

= ⟨0 |O(P, q) | ν⟩
〈
ν
∣∣V−(q−ρ)

∣∣ η1
〉 〈
η1
∣∣∣V−(Q̃1q

−ρ)
∣∣∣ η2
〉
· · ·
〈
ηN
∣∣∣V−

(
Q̃Nq−ρ

) ∣∣∣ 0
〉

= ⟨0|O(P, q)V−(q−ρ)
N∏

i=1
V−(Q̃iq

−ρ) |0⟩

=
〈

0
∣∣∣∣∣O(P, q) exp

( ∞∑

n=1

1
n

(1 +∑N
i=1 Q̃

n
i )q

n
2

1 − qn
J−n

) ∣∣∣∣∣ 0
〉

, (4.8)

where we used the completeness of the Frobenius basis to sum over the Young diagrams
from the second line to the third line.

Since (4.8) gives a part of the perturbative part of the partition function of the pure
SO(2N + 2) gauge theory except for the pure SU(N + 1) part, (4.8) should be equal to

P.E.

(
P 2q

2(1 − q)2

(

−
(
1 +

N∑

i=1
Q̃2

i

)
+
(
1 +

N∑

i=1
Q̃i

)2))

. (4.9)

Then comparing (4.8) with (4.9), we find that a candidate for another form of the vertex
operator O(P, q) in the bosonic basis may be given by

O(P, q) = exp
( ∞∑

n=1

(

−P 2n(1 + qn)
2n(1 − qn) J2n + P 2n

2n JnJn

))

. (4.10)
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It directly follows that Vν vanishes for odd-size Young diagram. 

Proposal [Hayashi, RZ (2020)] 
[Nawata, RZ (wip)]



We can compute the explicit expression of the O-vertex.
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After a little computation, we observe that Vν takes the form of

Vν = Pν(q)
(q; q)|ν|/2

, (2.30)

where we defined
(q; q)n =

n−1∏

k=0
(1 − qk+1). (2.31)

Pν in (2.30) is a polynomial of q of degree at most m(|ν|) = n(n+1)
2 for n = |ν|

2 and can
only be non-zero when |ν| is even. Some of the explicit expressions of Pν are listed below,

P(2) = −q, P(1,1) = 1, (2.32)
P(4) = q3, P(3,1) = −q, P(2,2) = 1 + q3, P(2,1,1) = −q2, P(1,1,1,1) = 1, (2.33)

and more can be found in appendix A. We will also give a candidate for the refined version
of this vertex in section 4.2.

In the same way, we can compute another O-vertex which is associated to the diagram
given by

ν

O5− O5+
Wν

(2.34)

For computing this type of O-vertex we start from the diagram in (2.24) and take the
fundamental region as

ν

O5−

λ

λ
(2.35)

The associated partition function is given by

Z̃ν(P,Q) =
∑

µ,λ

(−Q2)|µ|Q2|λ|f−4
λ (−P )|ν|CµνλCµt∅λ. (2.36)

Again we observe that (2.36) terminates at the finite order Q|ν| for various choices of ν.
Hence we conjecture that the expansion of (2.36) by Q terminates at the order Q|ν|. Then
we can take the limit Q → ∞ with PQ fixed to obtain another O-vertex Wν assoicated the
diagram of (2.34). Namely we define

Wν :=
∑

µ,λ
2|µ|+2|λ|=|ν|

(−1)|µ|f−4
λ CµνλCµt∅λ. (2.37)

We also observe that

Wν = P̃ν(q)
(q; q)|ν|/2

, (2.38)
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After a little computation, we observe that Vν takes the form of

Vν = Pν(q)
(q; q)|ν|/2

, (2.30)

where we defined
(q; q)n =

n−1∏

k=0
(1 − qk+1). (2.31)

Pν in (2.30) is a polynomial of q of degree at most m(|ν|) = n(n+1)
2 for n = |ν|

2 and can
only be non-zero when |ν| is even. Some of the explicit expressions of Pν are listed below,

P(2) = −q, P(1,1) = 1, (2.32)
P(4) = q3, P(3,1) = −q, P(2,2) = 1 + q3, P(2,1,1) = −q2, P(1,1,1,1) = 1, (2.33)

and more can be found in appendix A. We will also give a candidate for the refined version
of this vertex in section 4.2.

In the same way, we can compute another O-vertex which is associated to the diagram
given by

ν

O5− O5+
Wν

(2.34)

For computing this type of O-vertex we start from the diagram in (2.24) and take the
fundamental region as

ν

O5−

λ

λ
(2.35)

The associated partition function is given by

Z̃ν(P,Q) =
∑

µ,λ

(−Q2)|µ|Q2|λ|f−4
λ (−P )|ν|CµνλCµt∅λ. (2.36)

Again we observe that (2.36) terminates at the finite order Q|ν| for various choices of ν.
Hence we conjecture that the expansion of (2.36) by Q terminates at the order Q|ν|. Then
we can take the limit Q → ∞ with PQ fixed to obtain another O-vertex Wν assoicated the
diagram of (2.34). Namely we define

Wν :=
∑

µ,λ
2|µ|+2|λ|=|ν|

(−1)|µ|f−4
λ CµνλCµt∅λ. (2.37)

We also observe that

Wν = P̃ν(q)
(q; q)|ν|/2

, (2.38)

– 8 –

p
r
o
o
f
s
 
J
H
E
P
_
2
1
3
P
_
0
1
2
1

A Explicit form of O-vertex

In this appendix, we provide the explicit form of the O-vertices Vν ,Wν defined in (2.28)
and (2.37) respectively. As discussed in section 2, we observed that the O-vertex Vν may
be written as (2.30). We here write down the explicit form of Pν(q) in (2.30) and see
an interesting pattern. The expression of Pν(q) for |ν| = 2, 3 has been written in (2.32)
and (2.33) and the explicit form for 6 ≤ |ν| ≤ 10 is

P(6) = −q6, P(5,1) = q3, P(4,2) = −(q+q5+q6),
P(4,1,1) = q4+q5, P(3,3) = 1+q4+q5, P(3,2,1) = 0,

P(3,1,1,1) = −(q+q2), P(2,2,2) = −(q+q2+q6), P(2,2,1,1) = 1+q+q5,

P(2,1,1,1,1) = −q3, P(1,1,1,1,1,1) = 1, (A.1)

P(8) = q10, P(7,1) = −q6, P(6,1,1) = −(q7+q8+q9),
P(6,2) = q3+q8+q9+q10, P(5,3) = −(q+q6+q7+q8),

P(5,1,1,1) = q3+q4+q5, P(5,2,1) = P(3,2,1,1,1) = 0,
P(4,2,1,1) = −(q+q2+q3+q7+q8+q9), P(4,3,1) = −(q6+q8),

P(4,1,1,1,1) = q5+q6+q7, P(4,4) = 1+q5+q6+q7+q8+q10,

P(4,2,2) = q2+q3+q4+q5+q7+q8+q9+q10,

P(3,3,2) = −(q+q2+q3+q7+q8+q9), P(3,2,2,1) = −(q2+q4),
P(3,1,1,1,1,1) = −(q+q2+q3),

P(3,3,1,1) = 1+q+q2+q3+q5+q6+q7+q8, P(2,2,2,2) = 1+q2+q3+q4+q5+q10,

P(2,2,2,1,1) = −(q2+q3+q4+q9) P(2,2,1,1,1,1) = 1+q+q2+q7,

P(2,1,1,1,1,1,1) = −q4, P(1,1,1,1,1,1,1,1) = 1, (A.2)

P(10) = q15, P(9,1) =−q10,

P(8,2) = q6+q12+q13+q14+q15,

P(8,1,1) = −(q11+q12+q13+q14),
P(7,3) = −q3 − q9 − q10 − q11 − q12, P(7,2,1) = 0,

P(7,1,1,1) = q6+q7+q8+q9,

P(6,4) = q+q7+q8+q9+q10+q11+q12+q13+q14+q15,

P(6,3,1) = −(q9+q10+q11+q12+q13),
P(6,1,1,1,1) = q8+q9+2q10+q11+q12,

P(6,2,1,1) = −(q3+q4+q5+q6+q10+q11+2q12+q13+q14),
P(5,5) = −(1+q6+q7+q8+q9+q10+q11+q12+q13+q14), P(5,4,1) = 0,

P(5,3,1,1) = q+q2+q3+q4+q5+q6+q7+2q8+2q9+2q10+q11+q12, P(5,2,1,1,1) = 0,
P(5,1,1,1,1,1) = −(q3+q4+2q5+q6+q7),

P(4,4,2) = q+q2+q3+q4+q5+q6+q7+2q8+2q9+2q10+2q11+2q12+q13+q14+q15.

(A.3)
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A Explicit form of O-vertex

In this appendix, we provide the explicit form of the O-vertices Vν ,Wν defined in (2.28)
and (2.37) respectively. As discussed in section 2, we observed that the O-vertex Vν may
be written as (2.30). We here write down the explicit form of Pν(q) in (2.30) and see
an interesting pattern. The expression of Pν(q) for |ν| = 2, 3 has been written in (2.32)
and (2.33) and the explicit form for 6 ≤ |ν| ≤ 10 is

P(6) = −q6, P(5,1) = q3, P(4,2) = −(q+q5+q6),
P(4,1,1) = q4+q5, P(3,3) = 1+q4+q5, P(3,2,1) = 0,

P(3,1,1,1) = −(q+q2), P(2,2,2) = −(q+q2+q6), P(2,2,1,1) = 1+q+q5,

P(2,1,1,1,1) = −q3, P(1,1,1,1,1,1) = 1, (A.1)

P(8) = q10, P(7,1) = −q6, P(6,1,1) = −(q7+q8+q9),
P(6,2) = q3+q8+q9+q10, P(5,3) = −(q+q6+q7+q8),

P(5,1,1,1) = q3+q4+q5, P(5,2,1) = P(3,2,1,1,1) = 0,
P(4,2,1,1) = −(q+q2+q3+q7+q8+q9), P(4,3,1) = −(q6+q8),

P(4,1,1,1,1) = q5+q6+q7, P(4,4) = 1+q5+q6+q7+q8+q10,

P(4,2,2) = q2+q3+q4+q5+q7+q8+q9+q10,

P(3,3,2) = −(q+q2+q3+q7+q8+q9), P(3,2,2,1) = −(q2+q4),
P(3,1,1,1,1,1) = −(q+q2+q3),

P(3,3,1,1) = 1+q+q2+q3+q5+q6+q7+q8, P(2,2,2,2) = 1+q2+q3+q4+q5+q10,

P(2,2,2,1,1) = −(q2+q3+q4+q9) P(2,2,1,1,1,1) = 1+q+q2+q7,

P(2,1,1,1,1,1,1) = −q4, P(1,1,1,1,1,1,1,1) = 1, (A.2)

P(10) = q15, P(9,1) =−q10,

P(8,2) = q6+q12+q13+q14+q15,

P(8,1,1) = −(q11+q12+q13+q14),
P(7,3) = −q3 − q9 − q10 − q11 − q12, P(7,2,1) = 0,

P(7,1,1,1) = q6+q7+q8+q9,

P(6,4) = q+q7+q8+q9+q10+q11+q12+q13+q14+q15,

P(6,3,1) = −(q9+q10+q11+q12+q13),
P(6,1,1,1,1) = q8+q9+2q10+q11+q12,

P(6,2,1,1) = −(q3+q4+q5+q6+q10+q11+2q12+q13+q14),
P(5,5) = −(1+q6+q7+q8+q9+q10+q11+q12+q13+q14), P(5,4,1) = 0,

P(5,3,1,1) = q+q2+q3+q4+q5+q6+q7+2q8+2q9+2q10+q11+q12, P(5,2,1,1,1) = 0,
P(5,1,1,1,1,1) = −(q3+q4+2q5+q6+q7),

P(4,4,2) = q+q2+q3+q4+q5+q6+q7+2q8+2q9+2q10+2q11+2q12+q13+q14+q15.

(A.3)
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We do not have a closed-form formula for them.
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Figure 3. (a): the brane web by sending T → 1 from the diagram in figure 1(b). (b): the diagram
to be used for the computations, where we shall set the leg attached to the D7-brane to be empty.

the line with the Kähler parameter T , it turns out that a finite sum gives the correct
answer, which we will see in section 3.2.

We can use this technique to compute the partition functions of SO(2N + 1) gauge
theories and also G2 gauge theories utilizing the construction in [18]. Furthermore it is also
possible to compute the pure SU(3) gauge theory with the CS level κcs = 9 by applying
the brane web proposed in [33], which may be obtained by a twisted compactification of
6d pure SU(3) gauge theory with a tensor multiplet [38].

3 Examples

In this section, we give several examples of calculations that involve the usage of the O-
vertex defined in section 2. More concretely, we first check the validity of our formalism in
section 3.1, 3.2 and 3.3 by comparing the partition functions of the SO(2N), SO(2N + 1)
and G2 gauge theories obtained in the topological vertex formalism with the O-vertex
with the known one-instanton and two-instanton partition functions in the literature. In
section 3.4, we will further apply the O-vertex to the calculation of the partition function
of the 5d pure SU(3) gauge theory with the CS level κcs = 9, by using the brane diagram
proposed for it in [33].

3.1 SO(2N) gauge theories

We start from the computation of the partition function of the pure SO(2N) theory. The
brane web diagram is obtained by putting a stack of N D5-branes on the top of an O5−-
plane. Hence we can directly apply the O-vertex proposed in section 2.2.

3.1.1 Pure SO(4) gauge theory
The first example is the simplest case N = 2, i.e. SO(4) gauge theory. The 5-brane web
diagram for the pure SO(4) theory is given by

P

Q′

Q

O5−O5+ O5+ (3.1)
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e.g. in SO(4) theory

full brane diagram
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ZSO(4)
left is the partition function associted with the diagram

(3.10)

and ZSO(4)
right is associated with

(3.11)

Using the O-vertex (2.28) for (3.8) we checked that

ZSO(4)
left = P.E.

(
q

(1 − q)2 (Q
′ + P 2Q′)

)
+ o(P 6, Q′6), (3.12)

where o(Xk1
1 , Xk2

2 , · · · ) means that the computation was done until the order X l1
1 X l2

2 · · ·
with l1 ≤ k1, l2 ≤ k2, · · · . Similarly applying the O-vertex (2.37) to (3.9) yields

ZSO(4)
right = P.E.

(
q

(1 − q)2 (Q
′ + P 2Q′)

)
+ o(P 6, Q′6). (3.13)

Hence we obtained

ZSO(4)
left ZSO(4)

right = P.E.
( 2q
(1 − q)2 (A1A

−1
2 +A1A2)

)
+ o

(
P 6, Q′6

)
. (3.14)

Since the topological vertex reproduces only the root part of the perturbative partition
function we compare (3.14) with (B.2). The root contribution to the perturbative partition
funciton of the pure SO(4) gauge theory from (B.2) is given by

ZSO(4)
pert = P.E.

( 2q
(1 − q)2 (A1A

−1
2 +A1A2)

)
. (3.15)

Hence we see the agreement between (3.14) and (3.15) until the orders we computed.
Namely the O-vertices (2.28) and (2.37) reproduced the correct result until the orders we
computed.

Let us move on to the comparison of the instanton part ẐSO(4)
top in (3.3), namely,

ẐSO(4)
top, inst = ẐSO(4)

top /ZSO(4)
pert . (3.16)

From the identification in (3.6), the one-instanton partition function can be extracted
from (3.3) as the coefficient of Q1 in (3.16) and it is given by

ẐSO(4)
top, 1-inst =

2q
(1 − q)2Q

′ + 4q
(1 − q)2Q

′2 + 6q
(1 − q)2Q

′3 + 8q
(1 − q)2Q

′4 + 10q
(1 − q)2Q

′5

+ 12q
(1− q)2Q

′6 + 2q
(1− q)2P

2Q′ + 4q
(1− q)2P

4Q′2 + 6q
(1− q)2P

6Q′3 + o(Q′6, P 6) .

(3.17)
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ẐSO(4)
top, inst = ẐSO(4)
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perturbative part

To reproduce the one-loop part, we need to require
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In fact one can infer a candidate for another form of the vertex operator O(P, q) which
satisfies (4.1). In order to see that, let us compute the perturbative part of the pure
SO(2N + 2) gauge theory from the O-vertex. We focus on the contribution from the left
half of the 5-brane web diagram of the pure SO(2N + 2) gauge theory as it contains the
O-vertex Vν . The partition function from the left half of the diagram contains the square
root of the perturbative part of the partition function of a pure SU(N + 1) gauge theory.
From the topological vertex computation, it is possible to factor out such a part by using
the identity (B.33) and the remaining contribution is given by

∑

ν,η1,η2,...ηN

Vν(−P )|ν|
(

N∏

i=1
Q|ηi|

i

)

sν/η1(q−ρ)sη1/η2(q−ρ) . . . sηN−1/ηN (q−ρ)sηN (q−ρ)

=
∑

ν,η1,η2,...ηN

Vν(−P )|ν|sν/η1(q−ρ)sη1/η2(Q̃1q
−ρ) . . . sηN−1/ηN (Q̃N−1q

−ρ)sηN (Q̃Nq−ρ),
(4.5)

where we defined
Q̃i =

i∏

j=1
Qj . (4.6)

It is possible to write (4.5) in terms of the expectation value of vertex operators. First note
that the skew Schur function may be written by

sλ/µ(x⃗) = ⟨λ|V−(x⃗) |µ⟩ , (4.7)

where V−(x⃗) is defined in (B.19). Then using (4.1) and (4.7), (4.5) can be written as
∑

ν,η1,η2,...ηN

Vν(−P )|ν|sν/η1(q−ρ)sη1/η2(Q̃1q
−ρ) . . . sηN−1/ηN (Q̃N−1q

−ρ)sηN (Q̃Nq−ρ)

= ⟨0 |O(P, q) | ν⟩
〈
ν
∣∣V−(q−ρ)

∣∣ η1
〉 〈
η1
∣∣∣V−(Q̃1q

−ρ)
∣∣∣ η2
〉
· · ·
〈
ηN
∣∣∣V−

(
Q̃Nq−ρ

) ∣∣∣ 0
〉

= ⟨0|O(P, q)V−(q−ρ)
N∏

i=1
V−(Q̃iq

−ρ) |0⟩

=
〈

0
∣∣∣∣∣O(P, q) exp

( ∞∑

n=1

1
n

(1 +∑N
i=1 Q̃

n
i )q

n
2

1 − qn
J−n

) ∣∣∣∣∣ 0
〉

, (4.8)

where we used the completeness of the Frobenius basis to sum over the Young diagrams
from the second line to the third line.

Since (4.8) gives a part of the perturbative part of the partition function of the pure
SO(2N + 2) gauge theory except for the pure SU(N + 1) part, (4.8) should be equal to

P.E.

(
P 2q

2(1 − q)2

(

−
(
1 +

N∑

i=1
Q̃2

i

)
+
(
1 +

N∑

i=1
Q̃i

)2))

. (4.9)

Then comparing (4.8) with (4.9), we find that a candidate for another form of the vertex
operator O(P, q) in the bosonic basis may be given by

O(P, q) = exp
( ∞∑

n=1

(

−P 2n(1 + qn)
2n(1 − qn) J2n + P 2n

2n JnJn

))

. (4.10)
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this determines the O-vertex (up to terms annihilated by 
the vacuum state).



However, in the computation of partition function, the vertex 
operator is enough.
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(4.16)

where ||λ||2 =∑
i λ

2
i for λ = {λi} and Pλ is the Macdonald function with the normalization

such that

Pλt(t−ρ, q, t) = t
||λ||2

2
∏

(i,j)∈λ

(1 − tλ
t
j−i+1qλi−j)−1. (4.17)

To use the refined topological vertex, we need to choose a preferred direction and we assign
the refined topological vertex (4.16) so that λ is the preferred direction. The framing factor
is also refined [5, 55] and we assign

f̃λ(t, q) = (−1)|λ|q− ||λt||2
2 t

||λ||2
2

(
t

q

) |λ|
2
, (4.18)

for non-preferred directions and

fλ(t, q) = (−1)|λ|t−
||λt||2

2 q
||λ||2

2 , (4.19)

for preferred directions.
Then, suppose that the refined version of the O-vertex Vν(q) is given by Vν(t, q), the

partition function corresponding to (4.5) will become6

∑

ν,η1,η2,...ηN

Vν(t, q)(−P )|ν|
( N∏

i=1
Q|ηi|

i

)
sν/η1(q−ρ)sη1/η2(q−ρ) . . . sηN−1/ηN (q−ρ)sηN (q−ρ)

=
〈

0
∣∣∣∣∣O(P, t, q) exp

( ∞∑

n=1

1
n

(1 +∑N
i=1 Q̃

n
i )q

n
2

1 − qn
J−n

) ∣∣∣∣∣ 0
〉

,

(4.20)

where we defined
Vν(t, q)(−P )|ν| = ⟨0|O(P, t, q) |ν⟩ . (4.21)

From the localization result with the two Ω-deformation parameters turned on, (4.20)
should be equal to

P.E.

(
P 2q

2(1 − q)(1 − t)

(

−
(
1 +

N∑

i=1
Q̃2

i

)
+
(
1 +

N∑

i=1
Q̃i

)2))

. (4.22)

Then from the comparison of (4.20) with (4.22), we obtain

O(P, t, q) =1 + qP 2

1 − t
ψ∗
3/2ψ1/2 +

P 2

1 − t
ψ∗
1/2ψ3/2 − q2tP 4

(1 − t)(1 − t2)ψ
∗
7/2ψ1/2

− (q − q2 + qt)P 4

(1 − t)(1 − t2) ψ
∗
5/2ψ3/2 − (1 + q2t)P 4

(1 − t)(1 − t2)ψ
∗
3/2ψ

∗
1/2ψ1/2ψ3/2

+ (q − t+ qt)P 4

(1 − t)(1 − t2)ψ
∗
3/2ψ5/2 +

P 4

(1 − t)(1 − t2)ψ
∗
1/2ψ7/2 + o(P 5).

(4.23)

6The direct application of the refined topological vertex gives a factor
(

t
q

) |ν|
2 and we defined Vν(t, q)

with the factor included.
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The part that involves O-vertex in the calculation: 

and it is not hard to evaluate with BCH formula.

where Ai := ri
j=1 Qj. This simplifies an expression of the 5d partition function

ZSO(2N) =
ÿ

⁄̨

Q

qN

s=1 |⁄(s)|
Q

|2⁄(1)|
2

NŸ

r=3
Q

|2(r≠3)⁄(r)|
r

NŸ

s=1
q

(5≠2s)Ÿ(⁄(s))
2

s⁄(s)(q≠fl)s(⁄(s))‚(q≠fl)

◊ M⁄̨( ˛

A)2 Ÿ

1Æt<uÆN

N⁄(t)⁄(u)(AuA

≠1
t , q)≠2

,

(2.4)
where the M -factor is defined by

M⁄̨( ˛

A) = È0|O(A1, q) rN
s=1 V≠(AsA

≠1
1 q

≠fl≠⁄(s)) |0Í
È0|O(A1, q) rN

s=1 V≠(AsA
≠1
1 q

≠fl) |0Í
. (2.5)

Thus, the k-instanton partition function with SO(2N) gauge group receives contri-
butions from ˛

⁄ = (⁄(1)
, . . . , ⁄

(N)) with k = qN
s=1 |⁄(s)|.

Applying the Baker-Campbell-Hausdor� formula

e

X
e

Y = e

Y
e

X≠[Y,X]+ 1
2 [Y,[Y,X]]≠ 1

3! [Y,[Y,[Y,X]]]+...
, (2.6)

the M -factor can be written as

M⁄̨( ˛

A) = PE
5

qX

2(1 ≠ q)2

6
(2.7)

where

X :=
5 Nÿ

s=1
As

1
q

¸(⁄(s)) + (1 ≠ q)
¸(⁄(s))ÿ

i=1
q

i≠1≠⁄
(s)
i

262
≠

5 Nÿ

s=1
As

62

≠
5 Nÿ

s=1
A

2
s

1
q

2¸(⁄(s)) ≠ 1 + (1 ≠ q

2)
¸(⁄(s))ÿ

i=1
q

2(i≠1≠⁄
(s)
i )

26 (2.8)

One can show that this can be written as

M⁄̨( ˛

A)

=
NŸ

s=1

Ÿ

(i,j)œ⁄(s)

(1 ≠ A

2
sq

ai,j+li,j+2(i≠⁄
(s)
i )) (2.9)

Ÿ

1Æt<uÆN

5 Ÿ

(i,j)œ⁄(t)

(1 ≠ AtAuq

i≠1≠ai,j≠⁄
(u)
j )≠1

65 Ÿ

(i,j)œ⁄(u)

(1 ≠ AtAuq

li,j≠j+1+(⁄(t))‚
i )≠1

6
.

The equality between (2.7) and (2.9) is given in Appendix B. Note that the M -factor
is invariant under the permutation group

M⁄(1),...,⁄(N)(A1, . . . , AN) = M⁄(‡(1)),...,⁄(‡(N))(A‡(1), . . . , A‡(N))

for ’‡ œ SN .
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We define an M-factor

We have a closed-form formula for M-factor, and the partition function 
of SO(N) theories are written in terms Nekrasov factor and M-factor.
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Figure 3. (a): the brane web by sending T → 1 from the diagram in figure 1(b). (b): the diagram
to be used for the computations, where we shall set the leg attached to the D7-brane to be empty.

the line with the Kähler parameter T , it turns out that a finite sum gives the correct
answer, which we will see in section 3.2.

We can use this technique to compute the partition functions of SO(2N + 1) gauge
theories and also G2 gauge theories utilizing the construction in [18]. Furthermore it is also
possible to compute the pure SU(3) gauge theory with the CS level κcs = 9 by applying
the brane web proposed in [33], which may be obtained by a twisted compactification of
6d pure SU(3) gauge theory with a tensor multiplet [38].

3 Examples

In this section, we give several examples of calculations that involve the usage of the O-
vertex defined in section 2. More concretely, we first check the validity of our formalism in
section 3.1, 3.2 and 3.3 by comparing the partition functions of the SO(2N), SO(2N + 1)
and G2 gauge theories obtained in the topological vertex formalism with the O-vertex
with the known one-instanton and two-instanton partition functions in the literature. In
section 3.4, we will further apply the O-vertex to the calculation of the partition function
of the 5d pure SU(3) gauge theory with the CS level κcs = 9, by using the brane diagram
proposed for it in [33].

3.1 SO(2N) gauge theories

We start from the computation of the partition function of the pure SO(2N) theory. The
brane web diagram is obtained by putting a stack of N D5-branes on the top of an O5−-
plane. Hence we can directly apply the O-vertex proposed in section 2.2.

3.1.1 Pure SO(4) gauge theory
The first example is the simplest case N = 2, i.e. SO(4) gauge theory. The 5-brane web
diagram for the pure SO(4) theory is given by

P

Q′

Q

O5−O5+ O5+ (3.1)
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s=1 |⁄(s)|.

Applying the Baker-Campbell-Hausdor� formula

e

X
e

Y = e

Y
e

X≠[Y,X]+ 1
2 [Y,[Y,X]]≠ 1

3! [Y,[Y,[Y,X]]]+...
, (3.7)

the M -factor can be written as

M⁄̨( ˛

A) = PE
5

qX

2(1 ≠ q)2

6
(3.8)

where

X :=
5 Nÿ

s=1
As

1
q

¸(⁄(s)) + (1 ≠ q)
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i≠1≠⁄
(s)
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One can show that this can be written as

M⁄̨( ˛

A) = (3.10)

=

NŸ

s=1

Ÿ

(i,j)œ⁄(s)

(1 ≠ A

2
sq

i≠j+(⁄‚)(s)
j ≠⁄

(s)
i ))

Ÿ

1Æt<uÆN

Ÿ

(i,j)œ⁄(t)

(1 ≠ AtAuq

i+j≠1≠⁄
(t)
i ≠⁄

(u)
j )

Ÿ

(m,n)œ⁄(u)

(1 ≠ AtAuq

1≠m≠n+(⁄(t))‚
n+(⁄(u))‚

m)
.

The equality between (3.8) and (3.10) is given in Appendix C. Note that the M -factor
is invariant under the permutation group

M⁄(1),...,⁄(N)(A1, . . . , AN) = M⁄(‡(1)),...,⁄(‡(N))(A‡(1), . . . , A‡(N))

for ’‡ œ SN .

3.2 SO(2N + 1) instantons

ÿ Q0

Q

Q1

Q2

Q3

QN

(3.11)
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Figure 3. (a): the brane web by sending T → 1 from the diagram in figure 1(b). (b): the diagram
to be used for the computations, where we shall set the leg attached to the D7-brane to be empty.

the line with the Kähler parameter T , it turns out that a finite sum gives the correct
answer, which we will see in section 3.2.

We can use this technique to compute the partition functions of SO(2N + 1) gauge
theories and also G2 gauge theories utilizing the construction in [18]. Furthermore it is also
possible to compute the pure SU(3) gauge theory with the CS level κcs = 9 by applying
the brane web proposed in [33], which may be obtained by a twisted compactification of
6d pure SU(3) gauge theory with a tensor multiplet [38].

3 Examples

In this section, we give several examples of calculations that involve the usage of the O-
vertex defined in section 2. More concretely, we first check the validity of our formalism in
section 3.1, 3.2 and 3.3 by comparing the partition functions of the SO(2N), SO(2N + 1)
and G2 gauge theories obtained in the topological vertex formalism with the O-vertex
with the known one-instanton and two-instanton partition functions in the literature. In
section 3.4, we will further apply the O-vertex to the calculation of the partition function
of the 5d pure SU(3) gauge theory with the CS level κcs = 9, by using the brane diagram
proposed for it in [33].

3.1 SO(2N) gauge theories

We start from the computation of the partition function of the pure SO(2N) theory. The
brane web diagram is obtained by putting a stack of N D5-branes on the top of an O5−-
plane. Hence we can directly apply the O-vertex proposed in section 2.2.

3.1.1 Pure SO(4) gauge theory
The first example is the simplest case N = 2, i.e. SO(4) gauge theory. The 5-brane web
diagram for the pure SO(4) theory is given by

P

Q′

Q

O5−O5+ O5+ (3.1)
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answer, which we will see in section 3.2.
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theories and also G2 gauge theories utilizing the construction in [18]. Furthermore it is also
possible to compute the pure SU(3) gauge theory with the CS level κcs = 9 by applying
the brane web proposed in [33], which may be obtained by a twisted compactification of
6d pure SU(3) gauge theory with a tensor multiplet [38].
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vertex defined in section 2. More concretely, we first check the validity of our formalism in
section 3.1, 3.2 and 3.3 by comparing the partition functions of the SO(2N), SO(2N + 1)
and G2 gauge theories obtained in the topological vertex formalism with the O-vertex
with the known one-instanton and two-instanton partition functions in the literature. In
section 3.4, we will further apply the O-vertex to the calculation of the partition function
of the 5d pure SU(3) gauge theory with the CS level κcs = 9, by using the brane diagram
proposed for it in [33].

3.1 SO(2N) gauge theories

We start from the computation of the partition function of the pure SO(2N) theory. The
brane web diagram is obtained by putting a stack of N D5-branes on the top of an O5−-
plane. Hence we can directly apply the O-vertex proposed in section 2.2.

3.1.1 Pure SO(4) gauge theory
The first example is the simplest case N = 2, i.e. SO(4) gauge theory. The 5-brane web
diagram for the pure SO(4) theory is given by
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in the 4d limit one instanton ☑ 
two instantons ☑ 

three instantons ☑
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Note that (3.23) is the 1-instanton part of Zloc, extra. Therefore we expect that the full
extra factor for the partition function for the pure SO(4) gauge theory computed by (B.12)
is given by (3.2). Subtracting (3.23) from (3.20) one finds

ZSO(4)
loc, 1-inst − ZSO(4)

loc, extra =
2q

(1 − q)2

(
A1A

−1
2

(1 − A1A
−1
2 )2

+ A1A2
(1 − A1A2)2

)

, (3.24)

which agrees with the 1-instanton partition function (3.19) computed by the topological
vertex formalism. One can also see that (3.24) or (3.19) is given by the sum of the one-
instanton partition function of the pure SU(2) gauge theory with discrete theta angle zero,

ẐSO(4)
1-inst = ZSU(2)

1-inst
(
A1A

−1
2
)
+ ZSU(2)

1-inst (A1A2) , (3.25)

where
ZSU(2)
1-inst (A) = 2q

(1 − q)2
A

(1 − A)2 , (3.26)

which follows from (B.8) with N = 2. This is consistent with the isomorphism of the Lie
algebra so(4) ≃ su(2) ⊕ su(2).

Unitl the order of P 4Q′4Q2 (namely P aQ′bQc with a ≤ 4, b ≤ 4, c ≤ 2), we managed
to check that

ẐSO(4)
top, inst = ZSU(2)

inst (q, Q′)ZSU(2)
inst (q, Q′P 2), (3.27)

where ZSU(2)
inst (q, A) is the instanton partition function of the pure SU(2) gauge theory with

the zero discrete theta angle. The closed-form expressions of the SU(N) instanton partition
functions can be found in appendix B.1. We also checked that the two-instanton partition
function computed from the integral (B.12) with the extra factor removed matches with
the 2-instanton part of (3.27) until the order P 4Q′4.

3.1.2 Pure SO(6) and SO(8) theories
Let us then consider the partition functions of the pure SO(6) and SO(8) gauge theories.
The method of the computation is essentally parallel to that in the case of the pure SO(4)
gauge theory discussed in section 3.1.1.

Pure SO(6) gauge theory. We start from the pure SO(6) gauge theory. The pure
SO(6) gauge theory can be realized on the following brane diagram,

P

Q′
R

Q

(3.28)

The relation between the Kähler parameters Q,Q′, P,R and the gauge theory pa-
rameters may be also read off from the diagram in (3.28). The Coulomb branch moduli
A1 = e−a1 , A2 = e−a2 , A3 = e−a3 are related by

A1 = PQ′R, A2 = PQ′, A3 = P. (3.29)
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where ZSU(2)
inst (q, A) is the instanton partition function of the pure SU(2) gauge theory with

the zero discrete theta angle. The closed-form expressions of the SU(N) instanton partition
functions can be found in appendix B.1. We also checked that the two-instanton partition
function computed from the integral (B.12) with the extra factor removed matches with
the 2-instanton part of (3.27) until the order P 4Q′4.

3.1.2 Pure SO(6) and SO(8) theories
Let us then consider the partition functions of the pure SO(6) and SO(8) gauge theories.
The method of the computation is essentally parallel to that in the case of the pure SO(4)
gauge theory discussed in section 3.1.1.

Pure SO(6) gauge theory. We start from the pure SO(6) gauge theory. The pure
SO(6) gauge theory can be realized on the following brane diagram,

P

Q′
R

Q

(3.28)

The relation between the Kähler parameters Q,Q′, P,R and the gauge theory pa-
rameters may be also read off from the diagram in (3.28). The Coulomb branch moduli
A1 = e−a1 , A2 = e−a2 , A3 = e−a3 are related by

A1 = PQ′R, A2 = PQ′, A3 = P. (3.29)
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pure SO(8) gauge theory is given by

P

Q′
R

QT

(3.43)

The Coulomb branch moduli a1, a2, a3, a4 are the height of the color D5-brane. Hence
Ai = e−ai , (i = 1, 2, 3, 4) are parametrized by

A1 = TRQ′P, A2 = RQ′P, A3 = Q′P, A4 = P. (3.44)

Extrapolating the external (2, 1) and (2,−1) 5-brane webs on the O5-plane, the instaton
fugacity is related to the length between the 5-branes on the orientifold. Namely it is
given by

q = QT 2A−4
1 = QT−2Q′−4P−4R−4. (3.45)

From the web diagram in (3.43) it is possible to compute the partition function using
the topological vertex and the O-vertex and the partition function becomes

ZSO(8)
top

=
∑

µ,ν,α,β,λ,σ,γ,δ,τ,υ,ι,π

(−Q)|λ|+|σ|+|τ |+|υ|(−Q′)|α|+|β|+2|σ|(−P )|µ|+|ν|(−R)|γ|+|δ|(−T )|ι|+|π|+2|υ|

fλf
−1
α fβf

−3
σ f−1

γ fδf
−1
τ f−1

ι fπf
−3
υ CαtγλCδβtλtCνtασtCβµtσCγtιτCπδtτ tCιt∅υC∅πtυtVνWµ.

(3.46)
Since there is no parallel external lines, (3.46) does not contain an extra factor.

The perturbative part is obtained by the limit Q → 0 and the partition functin splits
into two parts,

ZSO(8)
pert = ZSO(8)

left ZSO(8)
right , (3.47)

where

ZSO(8)
left =

∑

ν,α,γ,ι

(−Q′)|α|(−P )|ν|(−R)|γ|(−T )|ι|f−1
α f−1

γ f−1
ι Cαtγ∅Cνtα∅Cγtι∅Cιt∅∅Vν , (3.48)

ZSO(8)
right =

∑

µ,β,δ,π

(−Q′)|β|(−P )|µ|(−R)|δ|(−T )|π|fβfδfπCδβt∅Cβµt∅Cπδt∅C∅πt∅Wµ. (3.49)

The computing the summation of the left part yields

ZSO(8)
left = P.E.

(
q

(1 − q)2
(
Q′ +R+ T +Q′R+RT +Q′RT + P 2Q′ +RQ′P 2 +RQ′2P 2

+Q′RTP 2 +Q′2RTP 2 +Q′2R2TP 2
))

+ o(P 4, Q′3, R3, T 3) (3.50)

= P.E.
(

q

(1 − q)2
(
A3A

−1
4 +A2A

−1
3 +A1A

−1
2 +A2A

−1
3 +A1A

−1
3 +A1A

−1
4 +A3A4

+A2A4 +A2A3 +A1A4 +A1A3 +A1A2
))

+ o(P 4, Q′3, R3, T 3). (3.51)
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We checked that our results match 
with those known in the literature.
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Figure 1. (a): the brane web for the SO(8) gauge theory with one flavor in the vector represen-
tation. The red dotted line represents the branch cut for the D7-brane. (b): the brane web after
setting the height of the flavor D5-brane equal to the height of the bottom color D5-brane.

Õ5+ Õ5− Õ5+

Figure 2. The brane web for the pure SO(7) gauge theory. The green dotted line represents the
branch cut for a half D7-brane.

figure 1(b). Then we take T → 1 and the D7-brane is on top of the O5-plane. When a
D7-brane is on top of an O5-plane it can be split into two half D7-branes [37]. A piece of
D5-brane between the two half D7-branes can move in the direction which the D7-branes
extend, which represents the Higgs branch. After removing the piece of the D5-brane, we
pull the two half D7-branes in the opposite directions into the infinity. This operation
leaves a configuratioin with a branch cut of one of the half D7-branes on top of the whole
O5-plane and also a half D5-brane on top of the O5−-plane, which is depicted in figure 2.
Then the resulting theory should be interpreted as the pure SO(7) gauge theory. Since
the SO(7) gauge group can be realized on an Õ5-plane, we may interpret the orientifold in
figure 2 as an Õ5-plane. Namely an Õ5-plane is effectively realized as an O5-plane with a
branch cut of a half D7-brane on it (and a half D5-brane for an Õ5−-plane).

Since it is not clear how to apply the topological vertex for a configuration with the
branch cut, we find it convenient to use the diagram before moving the half D7-branes
into infinity. Moving the D7-branes into the left or the right direction in the diagram does
not change the theory and we can equally use the diagram before the moving depicted in
figure 3(a). For practically applying the topological vertex to the diagram in figure 3(a),
we can use the diagram in figure 3(b) instead of the one in figure 3(a), Then the partition
function for the diagram in figure 3(b) can be computed using the topological vertex and
the O-vertex. The Young diagram assigned to the bottom D5-brane is empty as reviewed
in section 2.1 for the application of the topological vertex to certain non-toric diagrams.
The Kähler parameter T is reintroduced and it is set to 1 at the end of the computation.
Although it seems that we need to sum over infinitely many Young diagrams assigned to
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there is a Higgsing prescription to write down an effective 
web diagram that can be used to do computations. 
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T → 1∅

(b)

Figure 3. (a): the brane web by sending T → 1 from the diagram in figure 1(b). (b): the diagram
to be used for the computations, where we shall set the leg attached to the D7-brane to be empty.

the line with the Kähler parameter T , it turns out that a finite sum gives the correct
answer, which we will see in section 3.2.

We can use this technique to compute the partition functions of SO(2N + 1) gauge
theories and also G2 gauge theories utilizing the construction in [18]. Furthermore it is also
possible to compute the pure SU(3) gauge theory with the CS level κcs = 9 by applying
the brane web proposed in [33], which may be obtained by a twisted compactification of
6d pure SU(3) gauge theory with a tensor multiplet [38].

3 Examples

In this section, we give several examples of calculations that involve the usage of the O-
vertex defined in section 2. More concretely, we first check the validity of our formalism in
section 3.1, 3.2 and 3.3 by comparing the partition functions of the SO(2N), SO(2N + 1)
and G2 gauge theories obtained in the topological vertex formalism with the O-vertex
with the known one-instanton and two-instanton partition functions in the literature. In
section 3.4, we will further apply the O-vertex to the calculation of the partition function
of the 5d pure SU(3) gauge theory with the CS level κcs = 9, by using the brane diagram
proposed for it in [33].

3.1 SO(2N) gauge theories

We start from the computation of the partition function of the pure SO(2N) theory. The
brane web diagram is obtained by putting a stack of N D5-branes on the top of an O5−-
plane. Hence we can directly apply the O-vertex proposed in section 2.2.

3.1.1 Pure SO(4) gauge theory
The first example is the simplest case N = 2, i.e. SO(4) gauge theory. The 5-brane web
diagram for the pure SO(4) theory is given by

P

Q′

Q

O5−O5+ O5+ (3.1)
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SO(7)

We checked SO(5) and SO(7) theories matching with the known 
results in the literature up to three instantons. 
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section 3.1, 3.2 and 3.3 by comparing the partition functions of the SO(2N), SO(2N + 1)
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of the 5d pure SU(3) gauge theory with the CS level κcs = 9, by using the brane diagram
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We start from the computation of the partition function of the pure SO(2N) theory. The
brane web diagram is obtained by putting a stack of N D5-branes on the top of an O5−-
plane. Hence we can directly apply the O-vertex proposed in section 2.2.

3.1.1 Pure SO(4) gauge theory
The first example is the simplest case N = 2, i.e. SO(4) gauge theory. The 5-brane web
diagram for the pure SO(4) theory is given by
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Remark:

We need to take a special limit T→1 at the end. It appears 
to be difficult to do, since the computation involves

0 1 2 3 4 5 6 7 8 9
D5 • • • • • • � � � �
NS5 • • • • • � • � � �

7-brane • • • • • � � • • •
O5± • • • • • • � � � �

Table 2: Configuration of branes in the brane web construction. Bar represents
the direction branes stretch along, and dot means the point-like direction for
branes.

Q0

Q

(174)

P 2Q0

Q

⇥ (175)

Q0

Q

X

�

T |�| . . . (176)
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but the summation converges with finite non-zero contributions,  
and furthermore, in the vertex-operator formalism we proposed, 
we have a closed-form expression and the limit is 
straightforward to take.



G2 gauge theory

No ADHM construction known, but there is brane construction 
proposed, and there is also a proposal for its blow-up equation 
to determine the Nekrasov partition function recursively.
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The presence of two parallel external (2, 1) 5-branes implies an SU(2) flavor symmetry
associated to the spinor matter. To perform the Higgsing which breaks the SU(2) one
needs to put the (2, 1) 5-branes on top of each other. For that we perform a generalized
flop transition [30] which yields

(3.81)

From (3.81), we perform the usual flop transition twice and arrive at

(3.82)

Then we can tune the length of 5-branes to put the two parallel external (2, 1) 5-branes on
top of each other. Supposing that a 7-brane ends on each external 5-brane, we can remove
a piece of a (2, 1) 5-brane between two (2, 1) 7-branes. This corresponds to the Higgsing
and sending the piece of the 5-brane far away giving rises to a diagram of the pure G2
gauge theory given by

(3.83)

where the 7-brane on which the (2, 1) 5-branes end is depicted as a black dot.
We then consider applying the topological vertex as well as the O-vertex to the diagram

in (3.83). At the practical level, we use the following diagram for computation.

Q2

Q1

Q′
2 Q

∅

∅

∅

(3.84)

The constraint that the two (2, 1) 5-branes with empty Young diagrams assigned coincide
at the infinity forces the Kähler parameters to satisfy Q′

2 = Q2. The Coulomb branch
moduli of the pure G2 gauge theory can be parametrized by

Q1 = A1A
−1
2 , Q2 = A2. (3.85)
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Two proposed brane web:

①  
 
 
 
 
 

②  

[Hayashi, Kim, Lee, Yagi (2018)]
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in addition to α1,α2. Associating the Kähler parameters Q1 and Q2 to the simple roots
α1 and α2 respectively, we can see that (3.90) or (3.91) reproduces the root contribution
to the perturbative part of the partition function.

Let us move on to the instanton part. The instanton part is given by removing the
perturbative contribution from the full partition function

ZG2
top, inst = ZG2

top/Z
G2
pert. (3.93)

It is possible to compare (3.93) with the result in the literature. For the one-instanton
part, the universal formula (B.14) gives

ZG2
1-inst =

2q
(1 − q)2

Q3
1Q

4
2(1 +Q2 +Q1Q2 + 3Q1Q2

2 +Q1Q3
2 +Q2

1Q
3
2 +Q2

1Q
4
2)

(1 − Q1)2(1 − Q1Q3
2)2(1 − Q2

1Q
3
2)2

, (3.94)

where we can see that the denominator is completely determined by the set of positive
long roots, {α1,α1 + 3α2, 2α1 + 3α2}. The two-instanton part may be computed by using
the blow up formula in [42]. Then we found a perfect match between (3.93) and the two-
instanton part obtained from the blow up formula as well as the one-instanton part (3.94)
until the order of Q5

1Q
5
2.

In the diagram in (3.80), a (2, 1) 5-brane was introduced on the right side. It is also
possible to realize spinor matter by having a (1, 1) 5-brane on the left side of the diagram.
When the diagram is reflected along a vertical axis, the following diagram

(3.95)

also realizes the SO(7) gauge theory with a hypermultiplet in the spinor representation.
One can perform the Higgsing to the diagram, which gives a diagram of the pure G2 gauge
theory [33]

(3.96)

It is also possible to apply the topological vertex and the O-vertex to the diagram
in (3.96). For that we use the following diagram,

Q

∅

∅Q2

Q1

Q2

P

∅

(3.97)
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one instanton ☑ 
two instantons ☑
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Combining (3.101) with (3.103), we obtain

Z ′G2
pert = P.E.

( 2q
(1 − q)2

(
Q1 +Q2 +Q1Q2 +Q1Q

2
2 +Q1Q

3
2 +Q2

1Q
3
2
))

, (3.104)

which reproduces the perturbative part of the pure G2 partition function (3.90).
The instanton part of the pure G2 partition function is given by removing the pertur-

bative part (3.104) from (3.99),

Z ′G2
top, inst = Z ′G2

top /Z
′G2
pert. (3.105)

We checked that both the one-instanton partition function and the two-instanton partition
function extracted out from the above expression agree with the result (3.94) and the blow
up result until the order Q2

1Q
2
2.

3.4 Pure SU(3) gauge theory with the Chern-Simons level 9

Lastly we compute the partition function of the 5d pure SU(3) gauge theory with the Chern-
Simons level 9 found in [31, 32]. This theory may be obtained by a circle compactification
with a twist of the 6d pure SU(3) gauge theory with a tensor multiplet [38]. A 5-brane
web diagram for the theory has been also found in [33] and it is given by

(3.106)

where we have an ÕN-plane on the left side and another ÕN-plane on the right side. The
three color D5-branes imply the presence of the SU(3) gauge group. The S-duality of type
IIB string theory exchanges a D5-brane with an NS5-brane and it amounts to rotating a
brane web diagram by 90 degrees. Hence the S-dual version of the diagram (3.106) becomes

(3.107)
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proposed brane diagram for 5d SU(3) theory at Chern-Simons 
level 9.

“non-traditional” theory
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Combining (3.101) with (3.103), we obtain

Z ′G2
pert = P.E.

( 2q
(1 − q)2

(
Q1 +Q2 +Q1Q2 +Q1Q

2
2 +Q1Q

3
2 +Q2

1Q
3
2
))

, (3.104)

which reproduces the perturbative part of the pure G2 partition function (3.90).
The instanton part of the pure G2 partition function is given by removing the pertur-

bative part (3.104) from (3.99),

Z ′G2
top, inst = Z ′G2

top /Z
′G2
pert. (3.105)

We checked that both the one-instanton partition function and the two-instanton partition
function extracted out from the above expression agree with the result (3.94) and the blow
up result until the order Q2

1Q
2
2.

3.4 Pure SU(3) gauge theory with the Chern-Simons level 9

Lastly we compute the partition function of the 5d pure SU(3) gauge theory with the Chern-
Simons level 9 found in [31, 32]. This theory may be obtained by a circle compactification
with a twist of the 6d pure SU(3) gauge theory with a tensor multiplet [38]. A 5-brane
web diagram for the theory has been also found in [33] and it is given by

(3.106)

where we have an ÕN-plane on the left side and another ÕN-plane on the right side. The
three color D5-branes imply the presence of the SU(3) gauge group. The S-duality of type
IIB string theory exchanges a D5-brane with an NS5-brane and it amounts to rotating a
brane web diagram by 90 degrees. Hence the S-dual version of the diagram (3.106) becomes

(3.107)
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Combining (3.101) with (3.103), we obtain
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(1 − q)2
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Q1 +Q2 +Q1Q2 +Q1Q

2
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3
2 +Q2

1Q
3
2
))

, (3.104)

which reproduces the perturbative part of the pure G2 partition function (3.90).
The instanton part of the pure G2 partition function is given by removing the pertur-

bative part (3.104) from (3.99),

Z ′G2
top, inst = Z ′G2

top /Z
′G2
pert. (3.105)

We checked that both the one-instanton partition function and the two-instanton partition
function extracted out from the above expression agree with the result (3.94) and the blow
up result until the order Q2
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3.4 Pure SU(3) gauge theory with the Chern-Simons level 9

Lastly we compute the partition function of the 5d pure SU(3) gauge theory with the Chern-
Simons level 9 found in [31, 32]. This theory may be obtained by a circle compactification
with a twist of the 6d pure SU(3) gauge theory with a tensor multiplet [38]. A 5-brane
web diagram for the theory has been also found in [33] and it is given by

(3.106)

where we have an ÕN-plane on the left side and another ÕN-plane on the right side. The
three color D5-branes imply the presence of the SU(3) gauge group. The S-duality of type
IIB string theory exchanges a D5-brane with an NS5-brane and it amounts to rotating a
brane web diagram by 90 degrees. Hence the S-dual version of the diagram (3.106) becomes

(3.107)
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In (3.107) the dotted lines represent Õ5-planes which is the S-dual of the ÕN-planes
in (3.106). Here the vertical direction becomes periodic and it implies that this theory
is a marginal theory whose UV completion is related to a 6d theory.

Using the O-vertex, it is also possible to compute the partition function of the pure
SU(3) gauge theory with the CS level 9 from the diagram (3.107). For that, first note that
the upper half or the lower half of the diagram (3.107) is the same as the lower half of the
diagram (3.96) for the pure G2 gauge theory. Hence we can compute the partition function
in the same way as we have done in the latter part of section 3.3. Namely for applying the
topological vertex and O-vertex we use the following diagram,

∅

∅

Q2

Q

Q2

Q1

P

P

(3.108)

where we need again to take the P → 1 limit at the end. Q1 and Q2 are related to the
Coulomb branch moduli A1, A2, A3 (A1A2A3 = 1) of SU(3) by

Q2 = A1A
−1
2 , Q1 = A2A

−1
3 , (3.109)

and the length between the Õ5-planes is the instanton fugacity of the SU(3) gauge theory
and it is

q = QQ2
2. (3.110)

In this case, the diagram also involves the vertex of

ν

O5−

(3.111)

which has not appeared before. We can also determine the function associated to the
vertex (3.111) by redoing the argument in section 2.2. For that we consider

ν
Q2 P

(3.112)

Taking the limit Q → ∞ with PQ fixed for the diagram (3.112) reproduces the dia-
gram (3.111). The partition function for the diagram (3.112) can be computed by the
method in [1], which was reviewed in section 2.1, and it gives

Z̃ν(P,Q) =
∑

µ,λ

(−Q2)|µ|Q2|λ|f−4
λ (−P )|ν|CµνλCµt∅λ. (3.113)
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one-loop ☑ 
Gopakumar-Vafa



Comment:

As far as we computed, our prescription literally reproduces each 
contribution in the localization integral.

In the unrefined limit, all JK poles are labeled by Young diagrams.

0 1 2 3 4 5 6 7 8 9
D5 • • • • • • � � � �
NS5 • • • • • � • � � �

7-brane • • • • • � � • • •
O5± • • • • • • � � � �

Table 2: Configuration of branes in the brane web construction. Bar represents
the direction branes stretch along, and dot means the point-like direction for
branes.

Q0

Q

(174)

P 2Q0

Q

⇥ (175)

Q0

Q

X

�

T |�| . . . (176)

�
i

= ±a
j

+ (r � 1)✏1 + (s� 1)✏2 +
✏1 + ✏2

2
. (177)
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For example, we can effectively choose

So the refinement is not straightforward to do in this framework.

On the other hand, Sp(N) theories are more complicated.
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then the framing factor associated to the internal line in the above diagram is

f−(ad−bc)
λ . (2.5)

The information above is enough to compute the topological string partition functions
for toric Calabi-Yau threefolds. In fact one can apply the topological vertex to certain non-
toric diagrams. Higgsing a 5d theory realized on a 5-brane web dual to a toric diagram
may yield a non-toric diagram where a line in the diagram jumps over other lines [36]. A
typical configuration in such a case is given by

(2.6)

where the lines with the slope 1 are external lines. For applying the topological vertex to
the diagram (2.6) we deform the diagram in the following way [12, 14]

∅

∅ (2.7)

Then we apply the topological vertex to the diagram (2.7) with the trivial Young diagrams
assigned to both the lines with the slope 1. Kähler parameters we assign in a deformed
diagram need to respect the configuration before the deformation. For example, the legnth
between the vertical lines in (2.7) should be equal to the length between the horizontal
lines in the diagram. We will make use of this technique in section 3.

In [1] the topological vertex formalism has been further extended to 5-brane webs with
O5-planes. We review the formalism by using an example which we will utilize later. We
start from the following diagram,

O5+O5− O5−

Q′2

(2.8)

with the Kähler paramter Q′. This diagram may be thought of as the one for the pure
“Sp(0)” gauge theory, which is trivial. Instead of directly applying the topological vertex
to the diagram of (2.8), we may change the Kähler parameter Q and deform the diagram
into [30]

O5−

Q2

(2.9)

– 4 –

Sp(0) theory “microscopic” picture 
(geometric transition)
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– 4 –

[Kim, Yagi (2017)]

way to calculate
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where Q′ = Q−1. Then we use the mirror image for the half of the diagram of (2.9), which
yields

O5−

λ

λ
(2.10)

Namely we take a different fundamental region compared to (2.9). Since this is a strip
diagram it is possible to apply the topological vertex to (2.10). The only unusual thing
compared to an ordinary strip diagram is that we need to sum over all possible Young
diagram configurations λ assigned to the horizontal legs.

A subtlety is that the Young diagram λ assigned to the horizontal leg of the mirror
image is transposed compared to the original diagram and we need to be careful of the
framing factor for the glued horizontal legs. Assuming that we can define a framing factor
labeled only by the Young diagram for the gluing legs, we can determine the framing
factor by requiring that the application of the topological vertex to the following local
diagrams, which should represent the equivalent diagrams due to the orientifold, gives the
same partition functions,

∅∅

∅ ∅λ

O5−

Q2 ∅

∅
∅

∅

O5−

λ

λ

(2.11)

where we assign trivial Young diagrams to all the external legs in (2.11). The diagram on
the left-hand side of (2.11) is an ordinary 5-brane web and the application of the topological
vertex to the diagram yields

(−Q2)|λ|f3
λC∅∅λC∅∅λt = (−Q2)|λ|f3

λsλ(q−ρ)sλt(q−ρ). (2.12)

On the other hand, the contribution from the diagram on the right-hand side of (2.11) is
given by

(−Q2)|λ|gλC∅∅λC∅∅λ = (−Q2)|λ|gλf
2
λsλ(q−ρ)sλ(q−ρ), (2.13)

with some factor gλ, which is assigned to the glued legs with the Young diagram λ. Since
they are the contributions from the equivalent diagrams (2.12) should be equal to (2.13).
In fact by using the identity

sλt(q−ρ) = (−1)|λ|fλsλ(q−ρ), (2.14)

it is possible to rewrite (2.12) as

(−Q2)|λ|(−1)|λ|f4
λsλ(q−ρ)sλ(q−ρ). (2.15)

– 5 –

use a mirror image and sum over λ.



S-dual description
[Bourgine, Fukuda, Matsuo, RZ (2017)]

Remark: We mainly set the gauge group in each node of the quiver diagram to be U(1), but

we can easily generate it to any A-type gauge group by replacing �(n) and �⇤(n0) with generalized

intertwiners �(n,m) and �⇤(n0
,m

0) introduced in [4]. For more details, refer to [4].

3 A Twisted Construction

In this section, we make our main claim of this paper, which will be checked in the remaining

sections. We propose one way to assign topological vertices, or equivalently DIM operators, to the

orbifold-construction diagram for D-type quiver gauge theories.

The brane construction with ON0 for D-type quiver gauge theories was originally reported in

[5, 6], but instead of that ”macroscopic” picture, we adopt the ”resolved” picture of this orbifold

construction proposed in [7].

ON0 ON�

The above diagram is a D2-quiver construction for the ”SU(1)”⌦”SU(1)” gauge theory1, but we

can generalize it to arbitrary D-type gauge theories by adding more branes on the left. We only

give a description in this specific case of D2, as the generalization is straightforward (see Figure3).

Figure 3: Example of generalization to D3 quiver ”SU(1)” gauge theory.

We first describe our proposal in the language of intertwiners of the DIM algebra, as it looks

much clearer in this framework.
1
The tensor product here means that the two gauge groups are completely decoupled.

5

We again use a resolved brane diagram. 

[Hayashi, Kim, Lee, Taki, Yagi, 2015]
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,m

0) introduced in [4]. For more details, refer to [4].

3 A Twisted Construction

In this section, we make our main claim of this paper, which will be checked in the remaining
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[5, 6], but instead of that ”macroscopic” picture, we adopt the ”resolved” picture of this orbifold

construction proposed in [7].
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The above diagram is a D2-quiver construction for the ”SU(1)”⌦”SU(1)” gauge theory1, but we

can generalize it to arbitrary D-type gauge theories by adding more branes on the left. We only

give a description in this specific case of D2, as the generalization is straightforward (see Figure3).

Figure 3: Example of generalization to D3 quiver ”SU(1)” gauge theory.

We first describe our proposal in the language of intertwiners of the DIM algebra, as it looks

much clearer in this framework.
1
The tensor product here means that the two gauge groups are completely decoupled.
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prescription: forcing two legs to be labeled 
by the same Young diagram



Reflection state in quantum toroidal algebra

U
q,t

(

bbgl1) (29)

q ! 1, t = q� (30)

W1+1[µ] (31)

q1 = eR✏1
= t, q2 = eR✏2

= q�1. (32)

8
<

: (33)

�

(�1)

D2 ' A1 ⇥A1 (34)

C
⌫

t;�t
(q, t) (35)

X

�

|v,�i ⌦ |v�,�i (36)

2

$ |⌦,↵ii

Figure 4: Graphical representation of the boundary state in the (p, q)-web diagram.

where ✏ is the co-unit, ✏(x±
k ) = 0, ✏( ±

±k) = 1. ⇢̄ provides a representation of DIM, it is the transposed

of the contragredient representation ⇢̂ defined in (2.14). More explicitly, the characterization (3.2)

of the boundary state in terms of the action of the Drinfeld currents (2.2) reads

(⇢(0,m)(x+(z))⌦ 1)|⌦ii = �(1⌦ ⇢(0,m)(x�(z)))|⌦ii ,
(⇢(0,m)(x�(z))⌦ 1)|⌦ii = �(1⌦ ⇢(0,m)(x+(z)))|⌦ii ,
(⇢(0,m)( ±(z))⌦ 1)|⌦ii = (1⌦ ⇢(0,m)( ±(z)))|⌦ii .

(3.4)

These constraints are satisfied by a coherent state given by

|⌦ii =
X

~�

a~� |~v,~�ii ⌦ |~v,~�ii. (3.5)

Indeed, this state is obtained from the identity operator

id =
X

~�

a~� |~v,~�iihh~v,~�| , (3.6)

with the second state has been transposed. The identities (3.2) are the equivalent of ⇢(0,m)(e) · id =

id · ⇢̂(0,m)(e) with ⇢̂ replaced by its transpose ⇢̂t = ⇢̄.

In the definition (3.5) of the boundary state, we have assumed that the two vertical modules

have the same weights. In the following, we will need a more general definition that relaxes this

condition,

|⌦,↵ii =
X

~�

a~� |~v,~�ii ⌦ |↵~v,~�ii. (3.7)

From the scaling property of the vertical representation with respect to the automorphism ⌧↵, it

can be shown that this state satisfies the property

�
⇢(0,m)(e)⌦ 1

� |⌦,↵ii = �
1⌦ ⇢̄(0,m)(⌧↵ · e)� |⌦,↵ii, e 2 DIM. (3.8)

In the correspondence with (p, q)-web diagrams, the boundary state will be associated to an

orientifold plane that realizes the vertical reflection �V . Graphically, it will be represented as a

dashed line in the brane web diagram (see Figure 4).

We would like to conclude this section with two important remarks. Firstly, the vertical repre-

sentation of rank m = 1 can be rephrased as an action of the DIM algebra on Macdonald symmetric
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where we showed the property in the unrefined limit (for simplicity)
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• One intriguing observation here is that the reflection state above 
reduces to the boundary state in the 4d limit                         .

U
q,t

(

bbgl1) (29)

q ! 1, t = q� (30)

2

be found in [23]). Using these contractions, the instanton partition function of linear quivers is

reproduced by the (Fock) vacuum expectation value of the product of intertwiners following the

prescription of the (p, q)-web diagram [23].

3 Reflection states of the Ding-Iohara-Miki algebra

Our proposal for the reflection states in DIM algebra is inspired by the boundary states of Virasoro

algebra [24] that play an important role in 2d boundary conformal field theories [33]. These states

live in the tensor product of two Verma modules, and satisfy10

(Ln ⌦ 1� 1⌦ L�n)|⌦i = 0. (3.1)

In the second term, L�n = (Ln)† corresponds to the contragredient action of Virasoro generators.

Note the presence of the morphism � ·Ln = L�n that sends the Virasoro algebra with central charge

c to a Virasoro algebra with central charge �c.

Compared to the Virasoro algebra, the DIM algebra has a richer (auto)morphism structure,

and we expect a large class of boundary states. In this paper, we will not attempt to a general

classification of boundary states but present only the simplest constructions associated with the

horizontal and vertical representations. We hope to come back to the classification issue in the near

future.

The action of DIM algebra on instanton partition functions is very di↵erent from the action

of Virasoro algebra on 2d conformal field theory. In our context, the interpretation of the states

satisfying (3.1) as boundary states seems misleading, and we will use instead the terminology

reflection state.

3.1 Vertical reflection state

By analogy with Virasoro boundary states, we are looking for states in the tensor product of two

vertical modules and satisfying the constraint

�
⇢(0,m)(e)⌦ 1

� |⌦ii = �
1⌦ ⇢̄(0,m)(e)

� |⌦ii, e 2 DIM. (3.2)

The RHS involves the dual action that has been expressed in terms of the reflection symmetry �V .

⇢̄(0,m)(e) = (�)✏(e)�1⇢(0,m)(�V · e), (3.3)

10This condition is not restrictive enough to define these states, and one should rely on the Sugawara construction

and impose the condition (Ja
n ⌦ 1 + 1⌦ J

a
�n)|Bi = 0 [24].

11

“2d” picture of this construction?



*Sp(N) theory in ADHM basis

In the ADHM construction, we have O(k) theory on D1 branes.

The Nekrasov partition function differs in the pieces of O(k)+ and O(k)-.
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2, P 2, P 2Q02)2.

; (193)

Z
(k)
Sp(N), ✓=0,⇡ =

ZO(k)+ ± ZO(k)�

2
. (194)

20

The integral expression of the partition function differs for 
instanton number k odd and even.

In total, we have four different contributions.

We gave an analytic expression for each piece of the contribution 
in terms of the M-factor.

[Nawata, RZ (wip)]

But what is the corresponding brane-web realization?



Future directions:

• adding matter fundamental matter ☑ (straightforward)

spinor?

• qq-characters

[work in progress with S. Nawata]
• topological vertex for 

Sp(N) in ADHM basis?

Uq,t

(bbgl
1
)(29)

q!1,t=q
�

(30)

W1+1
[µ](31)

q1=e
R✏

1
=t,q2=e

R✏

2
=q�1

.(32)

8
<

:
(33)

2

• O7-plane

• AGT for SO/Sp gauge theories (algebraic structure, integrability)

…

• algebraic description of 3d N=2* web?

• meaning in the context of topological string?



Summary

• beautiful results known for U(N) theories, but not so many  things 
known for other gauge  groups.

• The main reason is the difficulty to perform the localization 
integral. 

• We used an extended version of the topological vertex formalism 
to write down an analytic expression of SO(N) (and some other) 
gauge theories.

• We expect our new formula to be useful in the analysis of 
properties, e.g. algebraic structure, in gauge theories beyond 
U(N).


