Axion Bose-Einstein Condensate

Hong Zhang (张宏) Shandong University, Qingdao

2023/03/16 USTC

Outline

\Diamond Axions

Properties & Radio Signals

 \Leftrightarrow Black Hole Superradiance

Properties & GW Signals

 \diamond Summary

Outline

\Diamond Axions

Properties & Radio Signals

 \Leftrightarrow Black Hole Superradiance

Properties & GW Signals

 \diamond Summary

Strong CP Problem

Strong CP Problem
• Strong CP-violating term $\mathcal{L}_{\theta} = \theta \frac{\alpha_s}{8\pi} G^a_{\mu\nu} \widetilde{G}^{a\mu\nu}$
Neutron electric dipole moment measurement: $\theta \lesssim 10^{-1}$

Neutron electric dipole moment measurement: $\theta \lesssim 10^{-10}$ Surprisingly small because: \circ High-energy physics breaks CP **Strong CP Problem**

• Strong CP-violating term $\mathcal{L}_{\theta} = \theta \frac{\alpha_s}{8\pi} G_{\mu\nu}^a \widetilde{G}^{a\mu\nu}$

Neutron electric dipole moment measurement: $\theta \lesssim 10^{-10}$

Surprisingly small because: \circ High-energy physics breaks
 $\$

 \circ "Anthropic boundary" : $\theta \lesssim 10^{-3}$

Unnaturally small parameter

Axion.

High-energy physics breaks CP

"Anthropic boundary": $\theta \lesssim 10^{-3}$
 $G^a_{\mu\nu}\widetilde{G}^{a\mu\nu}$

field:

The potential is tilted by quark condensate

The axion field slides down to $\phi = 0$
 Restore the CP symmetry "Anthropic boundary": $\theta \lesssim 10^{-3}$
 $G^a_{\mu\nu} \widetilde{G}^{a\mu\nu}$

field:

The potential is **tilted** by quark condensate

The axion field **slides** down to $\phi = 0$
 Restore the CP symmetry

Relativistic Axions

Temperature below 1GeV

Relativistic Axions
\nReal pseudoscalar field Temperature below 1GeV
\n
$$
\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \mathcal{V}(\phi)
$$
\n
$$
\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \mathcal{V}(\phi)
$$
\n
$$
\mathcal{V}(\phi) = m_a^2 f_a^2 [1 - \cos(\phi/f_a)] = \frac{1}{2} m_a^2 \phi^2 - \frac{m_a^2}{4! f_a^2} \phi^4 + \cdots
$$
\n
$$
\mathcal{V}(\phi) = m_{\pi}^2 f_{\pi}^2 \left(1 - \left[1 - \frac{4z}{(1+z)^2} \sin^2(\phi/2f_a) \right]^{1/2} \right) \quad z = \frac{m_u}{m_d} \approx 0.48
$$
\n
$$
\mathcal{V}(\phi) = \mathcal{V}(\phi + 2\pi f_a)
$$
\n
$$
\mathcal{V}(\phi) = \mathcal{V}(\phi + 2\pi f_a)
$$
\nFor QCD axion: $m_a f_a = (80 \text{ MeV})^2$
\n
$$
\frac{\partial^2}{\partial s^2} \left\{ \sqrt{\frac{m_{\pi}^2}{\sqrt{a^2}}} \right\} = \sqrt{\frac{m_{\pi}^2}{\sqrt{a^2}}} \left\{ \sqrt{\frac{m_{\pi}^2}{\sqrt{a^2}}} \right\} = \sqrt{\frac{m_{\pi}^2}{a^2}} \left\{ \sqrt{\frac{m_{\pi}^2}{a^2}}} \right\} = \sqrt{\frac{m_{\pi}^2}{a^2}} \left\{ \sqrt{\frac{m_{\pi}^2
$$

Periodic $V(\phi) = V(\phi + 2\pi f_a)$ For QCD axion: $m_a f_a = (80 \text{ MeV})^2$

In first part of this talk, I choose $m_a = 10^{-4}$ eV

Couplings

Couplings

• Self-interaction: vertices with 2*n* axions ($n \ge 2$)

e.g. Instanton model:

e.g. Instanton model:

Each loop is suppressed by Classical Field Theory!

$$
\mathcal{L}_{em} = \frac{c_{em}\alpha}{16\pi f_a} \epsilon^{\mu\nu\alpha\beta} F_{\mu\nu} F_{\alpha\beta} \phi.
$$

Decay rate: $\Gamma_a = \frac{c_{\text{em}} \alpha m_a}{256 \pi^3 f_a^2}$.

Photon energy: $m_a/2 \sim 10 \text{ GHz}$ Radio frequency

Axion lifetime $\sim 10^{36}$ years Age of Universe $\sim 10^{10}$ years

Axion Cosmology
• Cold dark matter axions are produced a

Axion Cosmology
• Cold dark matter axions are produced abundantly
at QCD phase transition scale T ~ 1 GeV at QCD phase transition scale $T \sim 1$ GeV

Non-thermal axion production mechanism For more details, see Lect. Notes Phys. 741 (2008)

Mostly non-relativistic

 \triangleright Vacuum misalignment \triangleright Cosmic string decay Coherent
Dine & Fischler (1983) **Incoherent** Payis (1986)
Hararie & Sikivie (1987) \rightarrow Coherent **ndantly
Notes Phys. 741 (2008)
Preskill, Wise & Wilczek (1983)
Abbot & Sikivie (1983)
Dine & Fischler (1983) ndantly

Notes Phys. 741 (2008)

Preskill, Wise & Wilczek (1983)

Abbot & Sikivie (1983)

Dine & Fischler (1983)

Davis (1986)

Ungstie 9.8 Sikista (4007) Notes Phys. 741 (2008)**
Notes Phys. 741 (2008)
Preskill, Wise & Wilczek (1983)
Abbot & Sikivie (1983)
Dine & Fischler (1983)
Davis (1986)
Hararie & Sikivie (1987) Davis (1986) Notes Phys. 741 (2008)
Preskill, Wise & Wilczek (1983)
Abbot & Sikivie (1983)
Dine & Fischler (1983)
Davis (1986)
Hararie & Sikivie (1987)

Axion Dark Matter
• spin-0 non-relativistic boson

Axion Dark Matter
• spin-0 non-relativistic boson
with extremely small mass 6×10^{-6} e with extremely small mass 6×10^{-6} eV $\lesssim m_a \lesssim 2 \times 10^{-3}$ eV and extremely small self-coupling and coupling to SM particles (suppressed by 3×10^9 GeV $\lesssim f_a \lesssim 10^{12}$ GeV) and lifetime much longer than the age of our universe

Good candidate for dark matter!

Axion Dark Matter
• spin-0 non-relativistic boson

Axion Dark Matter
• spin-0 non-relativistic boson
with extremely small mass 6×10^{-6} e with extremely small mass 6×10^{-6} eV $\le m_a \le 2 \times 10^{-3}$ eV and extremely small self-coupling and coupling to SM particles (suppressed by 3×10^9 GeV $\leq f_a \leq 10^{12}$ GeV) and lifetime much longer than the age of our universe • spin-0 non-relativistic boson
with extremely small mass 6×10^{-6} eV $\lesssim m_a$
and extremely small self-coupling and coupling to
(suppressed by 3×10^9 GeV $\lesssim f_a \lesssim 10^{12}$ G
and lifetime much longer than the age

Take $m_a=10^{-4}$ eV , $\;$ de Broglie wave length ~ 2 mm $\;$

Use local density 0.4 GeV/ cm^3 , $n \times \lambda_{dB}^3 \sim 3 \times 10^{10}$

Huge occupation number!

• Different from other cold dark matter.

Take $m_a = 10^{-4}$ eV, de Broglie wave length ~ 2 mm

Use local density 0.4 GeV/cm³, $n \times \lambda_{dB}^3 \sim 3 \times 10^{10}$

Huge occupation number!

• In coherence \longrightarrow the axions are in BEC!

Outline

 \Diamond Axions

Properties & Radio Signals

 \Leftrightarrow Black Hole Superradiance

Properties & GW Signals

 \diamond Summary

breather)
Ablowitz et.al., PRL (1973) Warmup: 1-d S-G Oscillon (breather)

EOM (1-d Sine-Gordon eq., no gravity)

EOM (1-d Sine-Gordon eq., no gravity) Ablowitz et.al., PRL (1973)

$$
\frac{\partial^2}{\partial t^2}\phi(t,x) - \frac{\partial^2}{\partial x^2}\phi(t,x) + m_a^2 f_a \sin \frac{\phi(t,x)}{f_a} = 0
$$

Analytic solution ($0 < \omega < 1$ is the frequency)

$$
\phi(t, x) = 4f_a \arctan\left[\sqrt{\omega^{-2} - 1} \operatorname{sech}(\sqrt{1 - \omega^2} m_a x) \cos(m_a \omega t)\right]
$$

Features:

- **Periodic**
	- Shape changes slightly --Dominated by ω
		- --Small components with 3ω , 5ω ...
- Exponentially small at infinity (no radiation)
- Stable against perturbation

Non-relativistic EFT (Part I) $\begin{array}{l} \displaystyle{\hbox{Non-relativistic EFT (Part I)}}\\[0.2cm] \displaystyle{\cdot\ \ \hbox{Full Lagranitian for real scalars}}\\[0.2cm] \displaystyle{\mathcal{L}=\frac{1}{2}\partial_\mu\phi\partial^\mu\phi-\mathcal{V}(\phi)}} \end{array}$ **Non-relativistic EFT (Part I)**

• Full Lagrantian for real scalars
 $\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \mathcal{V}(\phi)$

• Naïve non-relativistic reduction Chavanis, PRD (2011),C
 $\phi(\mathbf{r}, t) = \frac{1}{\sqrt{2m}} \left[\psi(\mathbf{r}, t) e^{-im_a t} + \psi^*(\math$

$$
\mathcal{L}=\tfrac{1}{2}\partial_\mu\phi\partial^\mu\phi-\mathcal{V}(\phi)
$$

Chavanis, PRD (2011),Chavanis, Delfini, PRD (2011) Braaten, Mahapatra, HZ, PRD (2016)

\n- Full Lagrantian for real scalars\n
$$
\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \mathcal{V}(\phi)
$$
\n
\n- Naïve non-relativistic reduction\n
	\n- $h_{\text{Braaten, Mahapatra, HZ, PRO}} \phi(\mathbf{r}, t) = \frac{1}{\sqrt{2m_a}} \left[\psi(\mathbf{r}, t) e^{-im_a t} + \psi^*(\mathbf{r}, t) e^{+im_a t} \right]$ \n For system\n
		\n- $\phi(\mathbf{r}, t) = \frac{1}{\sqrt{2m_a}} \left[\psi(\mathbf{r}, t) e^{-im_a t} + \psi^*(\mathbf{r}, t) e^{+im_a t} \right]$
		\n- $h_{\text{Braaten, Ma}} \text{Brab (2016)}$
		\n\n
	\n- Home all terms with rapid oscillating phase\n
	$$
	\mathcal{L}_{\text{eff}} = \frac{1}{2} i \left(\psi^* \dot{\psi} - \dot{\psi}^* \psi \right) - \frac{1}{2m_a} \nabla \psi^* \cdot \nabla \psi - \mathcal{V}_{\text{eff}}
	$$
	\n
	\n

For systematic treatment, see Braaten, Mahapatra, HZ,
PRD (2016), PRD(2018) Namjoo, Guth, Kaiser, PRD (2018)

$$
\mathcal{L}_{\text{eff}} = \frac{1}{2}i\left(\psi^*\dot{\psi} - \dot{\psi}^*\psi\right) - \frac{1}{2m_a}\nabla\psi^* \cdot \nabla\psi - \mathcal{V}_{\text{eff}}
$$
\n
$$
\mathcal{V}_{\text{eff}} = m_a\psi^*\psi - \frac{1}{16}\frac{(\psi^*\psi)^2}{f_a^2} + \frac{\Gamma(\psi^*\psi)^3}{288m_a f_a^4} + \dots
$$
\nDivite limit

\nAttractive interaction!

\nExpand by
$$
\frac{\psi^*\psi}{m_a f_a^2}
$$

Dilute Axion Stars
Assume: • Truncated potential, dilute axion limit
• Newtonian gravity • Spherically symmetric

Dilute Axion Star: M vs R
Heavier dilute axion stars have smaller radii.

-
- Dilute Axion Star: M vs R
• Heavier dilute axion stars have smaller radii.
• Critical mass: beyond which the kinetic pressure cannement the attractive self-interaction and gravity Dilute Axion Star: M vs R
• Heavier dilute axion stars have smaller radii.
• Critical mass: beyond which the kinetic pressure cannot balance
the attractive self-interaction and gravity the attractive self-interaction and gravity

-
-

Non-relativistic EFT (Part II)

Non-relativistic EFT (Part I)
\n
$$
\mathcal{L}_{\text{eff}} = \frac{1}{2}i(\psi^*\dot{\psi} - \dot{\psi}^*\psi) - \frac{1}{2m_a}\nabla\psi^*\cdot\nabla\psi - \mathcal{V}_{\text{eff}}
$$
\n• Dilute axion field
\n
$$
\mathcal{V}_{\text{eff}} = m_a \psi^* \psi - \frac{1}{16} \frac{(\psi^* \psi)^2}{f_a^2} + \frac{\sum_{k} (\psi^* \psi)^3}{288 m_a f_a^4} + \dots
$$

$$
\mathcal{V}_{\text{eff}} = m_a \psi^* \psi - \frac{1}{16} \frac{(\psi^* \psi)^2}{f_a^2} + \frac{1}{288} \frac{(\psi^* \psi)^3}{m_a f_a^4} + \dots
$$
 Divite

Non-relativistic EFT (Part II)
 $\mathcal{L}_{\text{eff}} = \frac{1}{2}i\left(\psi^*\psi - \psi^*\psi\right) - \frac{1}{2m_a}\nabla\psi^*\cdot\nabla\psi - \mathcal{V}_{\text{eff}}$

• Dilute axion field
 $\mathcal{V}_{\text{eff}} = m_a\psi^*\psi - \frac{1}{16}\frac{(\psi^*\psi)^2}{f_a^2} + \frac{\sum_{k}(\psi^*\psi)^3}{288m_a f_a^2 + \cdots}$ [imit

• In de ON-TCLATIVISTIC ET I (PATT II)
 $\mathcal{L}_{\text{eff}} = \frac{1}{2}i\left(\psi^*\dot{\psi} - \dot{\psi}^*\psi\right) - \frac{1}{2m_a}\nabla\psi^*\cdot\nabla\psi - \mathcal{V}_{\text{eff}}$

Dilute axion field
 $\mathcal{V}_{\text{eff}} = m_a\psi^*\psi - \frac{1}{16}\frac{(\psi^*\psi)^2}{f_a^2} + \frac{\sum(\psi^*\psi)^3}{288m_a f_a^2} + \dots$

Dilute

In dens $\frac{F}{f_a^2} + \frac{F}{288}$ $\frac{F_a}{m_a f_a^2} + \cdots$ limit

d $(\psi^* \psi) \sim m_a f_a^2$, must keep all orders

d chiral potential can be summed to all orders

tial:
 $\frac{1}{2} m_a \psi^* \psi + m_a^2 f_a^2 \left[1 - J_0 (2 \psi^* \psi / m_a f_a^2)\right]$

Eby, Suranyi, Vaz,

e.g. Instanton potential:

$$
\mathcal{V}_{\text{eff}}(\psi^*\psi) = \frac{1}{2}m_a\psi^*\psi + m_a^2 f_a^2 \left[1 - J_0(2\psi^*\psi/m_a f_a^2)\right]
$$

Braaten, Mahapatra, HZ, PRD (2016), PRD (2018)

Dense Branch

Dense Branch

With untruncated potential, a new dense branch is found.

Assume: • NREFT • Newtonian gravity • Isotropic Dense Branch
With untruncated potential, a new dense branch is found.
Assume: • NREFT • Newtonian gravity • Isotropic
May form as a remnant of the dilute axion star collapse.

Quantum pressure balances (gravity + ϕ^4 interaction), Attractive ϕ^4 interaction causes the turning over. Axion Stars

Quantum pressure balances (

Higher orders in the potential become important. Quantum pressure balances full potential. Axion Stars
Higher orders in the potential become important.
Quantum pressure balances full potential.

Gravity can be ignored! Same results are obtained without gravity.

Gravity is important at large mass. Newtonian gravity is not accurate anymore. Axion Stars
Gravity is important at large mass.

Detour: Oscillons

Detour: Oscillons
• Real scalar field with 3-d isotropic double-well potential
• Bogolubsky & Makhankov (1976)

Inside: false vacuum Outside: true vacuum

Detour: Time Evolution of Oscillons
Three stages found in some numerical calculation **COLOCALET ACT ACT CONFIDENT CONFIDENT CONFIDENT**

Reserves a stages found in some numerical calculation

From a given initial profile, radiate a large fraction of energy

nto outgoing waves
 OSCILION!

Localized oscill Of Oscillons

Bogolubsky & Makhankov (1976)

Bogolubsky & Makhankov (1976)

action of energy

Three stages found in some numerical calculation

1. relaxation

100

r

150

200

50

From a given initial profile, radiate a large fraction of energy into outgoing waves

2. oscillon!

slowly radiates outgoing waves.

$$
\phi(r,t) = \sum_{n=1}^{\infty} \phi_{2n+1}(r) \cos[(2n+1)\omega t] \phi_1
$$

$$
(\omega \approx m_a)
$$
^{s₀}

3. Sudden collapse

Configuration suddenly become unstable, disappear into outgoing waves.

250

Detour: Time Evolution of Oscillons
Three stages found in some numerical calculation

Three stages found in some numerical calculation

disappear into outgoing waves.

Observation of Dense Axion BEC
The radiation power of dense axion star **• The radiation power of dense axion star**
• The radiation power of dense axion star
• Heaviest dense axion star luminosity ~ 40W
• Too weak!
• Catastrophic phenomenon: collision of two axion stars,
• Catastrophic proces Observation of Dense Axion BEC
• The radiation power of dense axion star
Heaviest dense axion star luminosity ~ 40W bservation of Dense Axion BH
The radiation power of dense axion star
Heaviest dense axion star luminosity ~ 40W
Catastrophic phenomenop: collision of two axion stars bservation of Dense Axion BEC

The radiation power of dense axion star

Heaviest dense axion star luminosity ~ 40W

Too weak!

Catastrophic phenomenon: collision of two axion stars,

collision of an axion star with a neutr

COLLIST VALIOIT OF DETASE AXIOIT DEC
The radiation power of dense axion star
Heaviest dense axion star luminosity ~ 40W
Too weak!
Catastrophic phenomenon: collision of two axion stars,
collision of an axion star with a Collision of two 2-d axion BEC with only ϕ^4 interaction

Orbital angular mom. localized to vortices.

Odd-integer Harmonics

Outline

\Diamond Axions

Properties & Radio Signals

\Leftrightarrow Black Hole Superradiance

Properties & GW Signals

 \diamond Summary

Black Hole Bomb

- Because of the wave nature, the ultralight scalar cannot fall into the black hole as point particles.
- The wave equation should be solved with the Einstein equation. When the field is weak, its feedback to the metric can be ignored.
- When scattered by a Schwarzschild BH, the phase shift has a nonzero imaginary part, corresponding to the absorption of the scalar field by the BH.
- When scattered by a Kerr BH, the incoming wave can be amplified by Penrose process.

Published: 28 July 1972

Floating Orbits, Superradiant Scattering and the Black-hole Bomb

WILLIAM H. PRESS & SAUL A. TEUKOLSKY

Nature 238, 211-212 (1972) Cite this article

Figure from internet 27

Massive Scalar in Kerr Mo
• Bound states: a natural "mirror"
Free scalar field with mass μ : ($\nabla^{\nu} \nabla_{\nu}$ + Massive Scalar in Kerr Metric Massive Scalar in Kerr Metric

• Bound states: a natural "mirror"

Free scalar field with mass μ : $(\nabla^{\nu}V_{\nu} + \mu^2)\Phi = 0$

• The radial and angular parts can be factorized
 $\phi(t, \vec{r}) = \sum \int d\omega \left[e^{i(m\varphi - \omega t)} R_{lm}(r) S_{lm}(\$

Free scalar field with mass μ : $(\nabla^{\nu} \nabla_{\!\nu} + \mu^2) \Phi = 0$ λ^2 d = 0

$$
\phi(t,\vec{r}) = \sum_{l,m} \int d\omega \left[e^{i(m\varphi - \omega t)} R_{lm}(r) S_{lm}(\theta) + \text{c.c.} \right]
$$

Massive Scalar in Kerr Mo
• Bound states: a natural "mirror"
Free scalar field with mass μ : ($\nabla^{\nu} \nabla_{\nu}$ + Massive Scalar in Kerr Metric Massive Scalar in Kerr Metric

• Bound states: a natural "mirror"

Free scalar field with mass μ : $(\bar{v}v_{\bar{V}} + \mu^2)\Phi = 0$

• The radial and angular parts can be factorized
 $\phi(t, \vec{r}) = \sum \int d\omega \left[e^{i(m\varphi - \omega t)} R_{lm}(r) S_{lm}(\theta$

Free scalar field with mass μ : $(\nabla^{\nu} \nabla_{\!\nu} + \mu^2) \Phi = 0$ λ^2 d = 0

$$
\phi(t,\vec{r}) = \sum_{l,m} \int d\omega \left[e^{i(m\varphi - \omega t)} R_{lm}(r) \overline{S_{lm}(\theta)} + \text{c.c.} \right]
$$

Spheroidal harmonics, similar to spherical harmonics

Massive Scalar in Kerr Mo
• Bound states: a natural "mirror"
Free scalar field with mass μ : ($\nabla^{\nu} \nabla_{\nu}$ + Massive Scalar in Kerr Metric Massive Scalar in Kerr Metric

• Bound states: a natural "mirror"

Free scalar field with mass μ : $(\bar{v}v_{\bar{V}} + \mu^2)\Phi = 0$

• The radial and angular parts can be factorized
 $\phi(t, \vec{r}) = \sum \int d\omega \left[e^{i(m\varphi - \omega t)} R_{lm}(r) S_{lm}(\theta$

Free scalar field with mass μ : $(\nabla^{\nu} \nabla_{\!\nu} + \mu^2) \Phi = 0$ λ^2 d = 0

$$
\phi(t,\vec{r}) = \sum_{l,m} \int d\omega \left[e^{i(m\varphi - \omega t)} R_{lm}(r) \overline{S_{lm}(\theta)} + \text{c.c.} \right]
$$

Spheroidal harmonics, similar to spherical harmonics

• $\omega_{n\ell m}$ is solved from the radial equation

 $n \ell m = \omega_{n \ell m} + \ell \omega_{n \ell m}$ Complex eigen-energy: $\omega_{n \ell m} = \omega_{n \ell m}^{(R)} + i \omega_{n \ell m}^{(I)}$ $n\ell m$

Three "quantum" numbers: (n, l, m)

 $n\ell m \simeq \mu$, but $\omega_{n\ell m}$ is reduced by may $\hat{u}_{n\ell m}^{(R)}\approx \mu$, but $\omega_{n\ell m}^{(I)}$ is 7 orders of magnitude smaller.

Numerical calculation requires extremely high precision.

(1) find the large- r asymptotic wavefunction, then find its small-r limit

$$
\frac{(2\kappa)^{l'}\Gamma(-2l'-1)}{\Gamma(-l'-\lambda)}r^{l'}+\frac{(2\kappa)^{-l'-1}\Gamma(2l'+1)}{\Gamma(l'+1-\lambda)}r^{-l'-1}
$$

(2) find the small- r asymptotic wavefunction, then find its large-r limit

$$
\frac{(2b)^{-l'}\Gamma(2l'+1)}{\Gamma(l'+1)\Gamma(l'+1-2ip)}r^{l'} + \frac{(2b)^{l'+1}\Gamma(-2l'-1)}{\Gamma(-l'-2ip)\Gamma(-l')}r^{-l'-1}
$$

k,l',\lambda, b, p are functions of *M, \mu, \omega, a*

(1) Find the large-r asymptotic wavefunction, then find its small-r limit
 $\frac{(2\kappa)^l \Gamma(-2l'-1)}{\Gamma(-l'-\lambda)} r^{l'} + \frac{(2\kappa)^{-l'-1} \Gamma(2l'+1)}{\Gamma(l'+1-\lambda)} r^{-l'-1}$

(2) find the small-r asymptotic wavefunction, then find its large-r limit

(2 The ratios of the two coefficients must be the same.

(4) The small quantity $\delta\lambda$ for perturbation: $l' + 1 - \lambda = -n - \delta\lambda$ ($n = 0,1...$)

$$
\omega = \omega_0 + \omega_1 \delta \lambda \text{ with } \omega_0, \omega_1 \text{ real functions of } M, \mu, n, l
$$

$$
\delta \lambda^{(0)} = -2 \, ip \, (4 \kappa b)^{2l+1} \frac{(n+2l+1)!(l!)^2}{n! \, [(2l)!(2l+1)!]^2} \prod_{j=1}^l (j^2 + 4p^2),
$$

Detweiler's result has an extra factor of 2, due to mistreatment of Γ functions with negative argument.

NLO Solution

• LO analytical result is inconsistent with the numerical solution

NLO Solution

• LO analytical result is inconsistent with the numerical solution

NLO Sol. of KNBH Bao, Xu and HZ, arXiv:2301.05317
NLO solution greatly improves the precision

• NLO solution greatly improves the precision

BH mass is normalized to 1, BH charge $Q = 0.02$

• In the rest of the talk, I focus only on Kerr BH.

Superradiance Rate of Kerr BH
• Three indices (n, l, m) $\overbrace{a=0.9}^{a=0.9}$ $\overbrace{ }^{n=0}$

- Three indices (n, l, m)
- Cloud mass rises exponentially 10^{-9}

-
- E
- ▶
- The right edge is because of 10^{-15}

 $n=2$ $\boxed{\omega_I \rightarrow \dot{M}_s = 2M_s\omega_I}$

mininant mode: $(n = 0, l, m = l)$

abdominant mode: $(1, l, m = l)$

ades with $m < l$ are unimportant.

The right edge is because of

the **superradiance condition:**
 $\omega_R < m \Omega_H$
 $\Omega_U = a/2r$, is the angular $l = 3, m = 3$ $l=4, m=$ 0.6 0.8 1.0

 $\Omega_H = a/2r_+$ is the angular velocity of the BH horizon.

Superradiance Rate of Kerr BH

- Three indices (n, l, m)
- Consider modes $(0,1,1)$ and $(0,2,2)$
- Fixing $M\mu$, reducing BH spin a 3
uperradiance rate decreases; $\sum_{n=1}^{\infty} a^{n}$

There is a critical value of a_c^{011} where the superradiance of $(0,1,1)$ mode stops;

The $(0,2,2)$ mode is still extracting 10^{-16} BH spin /

When BH spin is below a_C^{011} , the $(0,1,1)$ mode returns *J* to the BH. BH spin is a_C^{011} until (0,1,1) mode is depleted.

- The $(0,1,1)$ mode grows faster due to larger value
- The $(0,1,1)$ mode depletes while the $(0,2,2)$ mode rises.

Time Evolution III

 10^{28} 41

 t_3

 10^{20}

 t_3

 10^{20}

 10^{24}

 M/M_0

 10^{24}

 dE_{GW}/dt

 10^{28}

BH Regge Trajectory Cheng, Bao and HZ, arXiv:2201.11338
Superradiance modifies the BH spin distribution

-
- Consider 3 scenarios: **high, flat, low** to estimate the effect of the initial BH spin.

Constrain Axion Mass
Data & Assumptions
Include all BBHs in three phases of GTWC data reported by IVK collaboration

• Data & Assumptions

Include all BBHs in three phases of GTWC data reported by LVK collaboration, only excluding the events with neutron.

Axion mass prior is log-uniform between $10^{-13.5}$ to 10^{-11} eV.

Lifetime of BHs distributes log-uniformly between 10^6 to 10^{10} years

Approximate the initial BH spin distributions with 3 scenarios.

Two slightly favored ranges are identified, but evidence is weak³.

Guo, Bao and **HZ,** arXiv:2212.07186

, $l = 1, m = 1$) mode

• Previous calculation only consider the $(n = 0, l = 1, m = 1)$ mode

Guo, Bao and HZ, arXiv:2212.07186

sider the $(n = 0, l = 1, m = 1)$ mode

Monochromatic, constant energy flux,

Cannot distinguish from neutron stars Cannot distinguish from neutron stars

Guo, Bao and **HZ,** arXiv:2212.07186

, $l = 1, m = 1$) mode

• Previous calculation only consider the $(n=0, l=1, m=1)$ mode

Guo, Bao and HZ, arXiv:2212.07186

sider the $(n = 0, l = 1, m = 1)$ mode

Monochromatic, constant energy flux,

Cannot distinguish from neutron stars Cannot distinguish from neutron stars

• Different modes have slightly different angular speeds

GW Emission	Guo, Bao and HZ, arXiv:2212.07186
Previous calculation only consider the $(n = 0, l = 1, m = 1)$ mode	
Monochromatic, constant energy flux, cannot distinguish from neutron stars	
Different modes have slightly different angular speeds	
$\phi(t, \vec{r}) = \sum_{l,m} \int d\omega \left[e^{i(m\varphi - \omega t)} R_{lm}(r) S_{lm}(\theta) + \text{c.c.} \right]$	$\omega_R^{nlm} \approx \mu \left[1 - \frac{\alpha^2}{2(n + l + 1)^2} \right] + O(\alpha^4)$
e.g $\cos[(\omega + \Delta \omega)t] + \cos[(\omega - \Delta \omega)t] = 2 \cos(\Delta \omega t) \cos(\omega t)$	

Guo, Bao and **HZ,** arXiv:2212.07186

, $l = 1, m = 1$) mode

• Previous calculation only consider the $(n=0, l=1, m=1)$ mode

Guo, Bao and HZ, arXiv:2212.07186

sider the $(n = 0, l = 1, m = 1)$ mode

Monochromatic, constant energy flux,

Cannot distinguish from neutron stars Cannot distinguish from neutron stars

• Different modes have slightly different angular speeds

GW Emission	Guo, Bao and HZ, arXiv:2212.07186
Previous calculation only consider the $(n = 0, l = 1, m = 1)$ mode	
Monochromatic, constant energy flux, cannot distinguish from neutron stars	
Different modes have slightly different angular speeds	
$\phi(t, \vec{r}) = \sum_{l,m} \int d\omega \left[e^{i(m\varphi - \omega t)} R_{lm}(r) S_{lm}(\theta) + \text{c.c.} \right]$	$\omega_R^{nlm} \approx \mu \left[1 - \frac{\alpha^2}{2(n + l + 1)^2} \right] + O(\alpha^4)$
e.g. $\cos[(\omega + \Delta \omega)t] + \cos[(\omega - \Delta \omega)t] = 2 \cos(\Delta \omega t) \cos(\omega t)$	
Modulation of amp, and energy flux. Beat!	

Guo, Bao and **HZ,** arXiv:2212.07186

, $l = 1, m = 1$) mode

• Previous calculation only consider the $(n=0, l=1, m=1)$ mode

Guo, Bao and HZ, arXiv:2212.07186

sider the $(n = 0, l = 1, m = 1)$ mode

Monochromatic, constant energy flux,

Cannot distinguish from neutron stars Cannot distinguish from neutron stars

• Different modes have slightly different angular speeds

GW Emission

\nGuo, Bao and HZ, arXiv:2212.07186

\n• Previous calculation only consider the
$$
(n = 0, l = 1, m = 1)
$$
 mode

\nMonochromatic, constant energy flux, cannot distinguish from neutron stars

\n• Different modes have slightly different angular speeds

\nφ(t, π) = ∑_{l,m} f dω [e^{i(mφ-wt)}R_{lm}(r)S_{lm}(θ) + c.c.]

\nω_R^{nlm} ≈ μ [1 - $\frac{\alpha^2}{2(n + l + 1)^2}$] + θ(α⁴)

\ne.g.

\n $\cos[(\omega + \Delta \omega)t] + \cos[(\omega - \Delta \omega)t] = 2 \cos(\Delta \omega t) \cos(\omega t)$

\n• strength of the beat signal.

\nTwo (0,1,1) axions → graviton: Amp.α N₀₁₁, freq. = 2ω⁰¹¹ (0,1,1) + (1,1,1) → graviton: Amp.α $\sqrt{N_{011}N_{111}}$, freq. = ω⁰¹¹ + ω¹¹¹

\nFor example, 4 μv², we have

. • Strength of the beat signal.

 $(0,1,1) + (1,1,1)$ \longrightarrow graviton: Amp. $\propto \sqrt{N_{011}N_{111}}$, freq. $= \omega^{011} + \omega^{111}$ Energy flux $\propto Amp^2$, so beat Amp. $\propto \sqrt{\frac{N_{111}}{N}}$, with freq. $\omega^{111} - \omega^{011}$ 47

• Previous calculation only conside 10^{-1}

Different modes have slightly dif $-M_s^{122}$

$$
\phi(t,\vec{r}) = \sum_{l,m} \int d\omega \left[e^{i(m\varphi - \omega t)} R_{lm}(r) S_{lm} \right]
$$

$$
\textbf{e.g } \quad \cos[(\omega + \Delta \omega)t] + \cos[(\omega + \Delta \omega)t]
$$

• Strength of the beat signal. .

 $(0,1,1) + (1,1,1)$ \longrightarrow graviton: Amp. $\propto \sqrt{N_{011}N_{111}}$, freq. $= \omega^{011} + \omega^{111}$ Energy flux $\propto Amp^2$, so beat Amp. $\propto \sqrt{\frac{N_{111}}{N}}$, with freq. $\omega^{111} - \omega^{011}$ 48

• Previous calculation only conside 10^{-1}

Different modes have slightly dif $-M_s^{122}$

$$
\phi(t,\vec{r}) = \sum_{l,m} \int d\omega \left[e^{i(m\varphi - \omega t)} R_{lm}(r) S_{lm} \right]
$$

e.g $\cos[(\omega + \Delta \omega)t] + \cos[(\omega$

• Strength of the beat signal. .

 $(0,1,1) + (1,1,1)$ \longrightarrow graviton: Amp. $\propto \sqrt{N_{011}N_{111}}$, freq. $= \omega^{011} + \omega^{111}$ Energy flux $\propto Amp^2$, so beat Amp. $\propto \sqrt{\frac{N_{111}}{N}}$, with freq. $\omega^{111} - \omega^{011}$ 49

GW Emission
\n• Use Teukolsky formalism to calculate the beat signal
\n
$$
\frac{dE_{GW}}{dt} = \frac{1}{8\pi} \sum_{i} \left\{ \frac{N_{011}^2}{\omega^{(011)^2}} \frac{|U_{i2}^{(\tilde{\omega}_1)}|^2}{\tilde{\omega}_1^2} + \frac{N_{111}^2}{\omega^{(111)^2}} \frac{|U_{i2}^{(\tilde{\omega}_2)}|^2}{\tilde{\omega}_2^2} + 4 \frac{N_{011} N_{111}}{\omega^{(011)} \omega^{(111)}} \frac{|U_{i2}^{\tilde{\omega}_3}|^2}{\tilde{\omega}_3^2} \right\}
$$
\nNLO
\n
$$
+ 4 \sqrt{\frac{N_{011}^3 N_{111}}{\omega^{(011)^3} \omega^{(111)}}} \frac{|U_{i2}^{(\tilde{\omega}_1)}||U_{i2}^{(\tilde{\omega}_3)}|}{\tilde{\omega}_1 \tilde{\omega}_3} \cdot \cos \left[\tilde{\omega}_4(t - r_*) - \phi_{i2}^{(\tilde{\omega}_3)} + \phi_{i2}^{(\tilde{\omega}_1)}\right]}
$$
\nsuppressed
\n
$$
+ 2 \frac{N_{011} N_{111}}{\omega^{(011)} \omega^{(111)}} \frac{|U_{i2}^{(\tilde{\omega}_1)}||U_{i2}^{(\tilde{\omega}_2)}|}{\tilde{\omega}_1 \tilde{\omega}_2} \cdot \cos \left[2 \tilde{\omega}_4(t - r_*) - \phi_{i2}^{(\tilde{\omega}_2)} + \phi_{i2}^{(\tilde{\omega}_1)}\right]}
$$
\n+
$$
+ 4 \sqrt{\frac{N_{011} N_{111}^3}{\omega^{(011)} \omega^{(111)}}} \frac{|U_{i2}^{(\tilde{\omega}_2)}||U_{i2}^{(\tilde{\omega}_3)}|}{\tilde{\omega}_2 \tilde{\omega}_3} \cdot \cos \left[\tilde{\omega}_4(t - r_*) - \phi_{i2}^{(\tilde{\omega}_2)} + \phi_{i2}^{(\tilde{\omega}_3)}\right]}.
$$

$$
\tilde{\omega}_1 \equiv 2\omega^{(011)}, \ \tilde{\omega}_2 \equiv 2\omega^{(111)}, \ \tilde{\omega}_3 \equiv \omega^{(011)} + \omega^{(111)}, \ \tilde{\omega}_4 \equiv \omega^{(111)} - \omega^{(011)}
$$

GW Beat: Observation Guo, Bao and HZ, arXiv:2212.07186

The BH spin here is determined by $M\mu$

- Parameters: $M\mu = 0.17$ (so $a_C = 0.6$), $M_s/M = 0.1$, $N_{111}/N_{011} = 0.1$
- The red shift ranges from 0.001 to 10
-

GW Beat: Observation Guo, Bao and HZ, arXiv:2212.07186

• Three factors to consider for observation total signal strength, beat signal strength, beat duration.

GW Beat: Observation Guo, Bao and HZ, arXiv:2212.07186

• Three factors to consider for observation total signal strength, beat signal strength, beat duration.

Summary

- If dark matter (DM) consists of ultralight scalars, they would exist in BEC state in the universe, different from the heavy DM candidates.
- For the QCD axion, a large portion could exist in form of axion stars, either dilute or dense.
- The photons in odd-integer harmonics of a fundamental radio frequency are a unique signature of the QCD axion.
- For even lighter axion-like particles (ALPs), they could form BEC around rotating black holes (BHs) by superradiance.
- The observed BHs cannot have high spin if the ALP has a proper mass, which is used to constrain the ALP mass.
- The gravitational wave emitted by ALP condensates around rotating BHs have unique "beat" signal.
- Non-minimal ALP models are much richer in phenomenology.

Summary

- If dark matter (DM) consists of ultralight scalars, they would exist in BEC state in the universe, different from the heavy DM candidates.
- For the QCD axion, a large portion could exist in form of axion stars, either dilute or dense.
- The photons in odd-integer harmonics of a fundamental radio frequency are a uni $\left| \begin{array}{ccc} \text{r}_{\text{b}} & \text{r}_{\text{c}} & \text{r}_{\text{c}} \end{array} \right|$ of $\left| \begin{array}{ccc} \text{r}_{\text{D}} & \text{r}_{\text{D}} & \text{r}_{\text{D}} \end{array} \right|$ Thank you! [Daxion]
- For even lighter axid particles (ALPs), they could form BEC around rotating black holes (BHs) by superradiance.
- The observed BHs cannot have high spin if the ALP has a proper mass, which is used to constrain the ALP mass.
- The gravitational wave emitted by ALP condensates around rotating BHs have unique "beat" signal.
- Non-minimal ALP models are much richer in phenomenology.