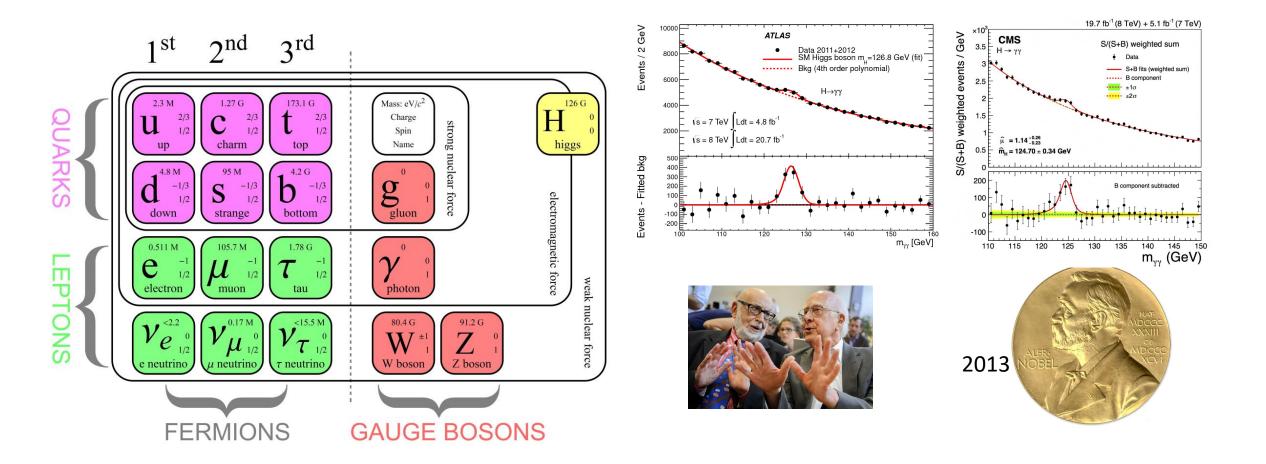
Gravitational waves from phase transitions

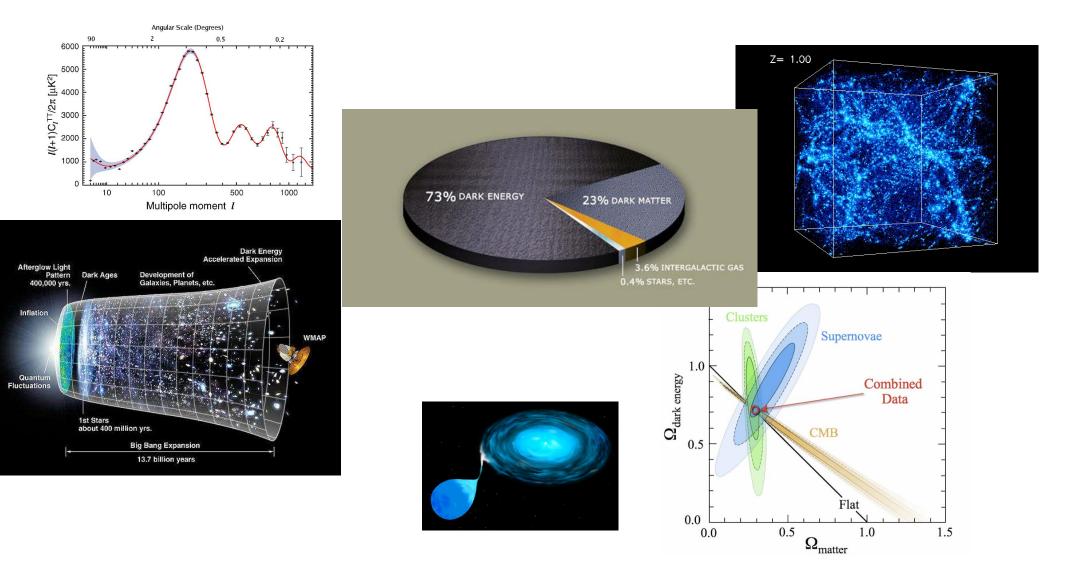
Haipeng An (Tsinghua University) ICTS 2024 @ USTC Oct 24-27, 2024

2009.12381, 2201.05171 w/ Kun-Feng Lyu, Lian-Tao Wang and Siyi Zhou 2208.14857 w/ Xi Tong and Siyi Zhou 2304.02361 w/ Chen Yang 2308.00070 w/ Boye Su, Hanwen Tai, Lian-Tao Wang, Chen Yang 2409.05833 w/ Qi Chen, Yuan Yin 2410.XXXXX w/ Qi Chen, Yuhang Li, Yuan Yin

The two Standard Models

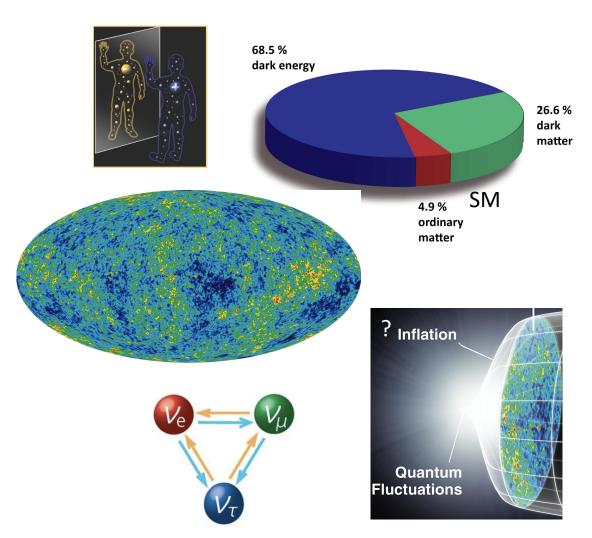


The two Standard Models

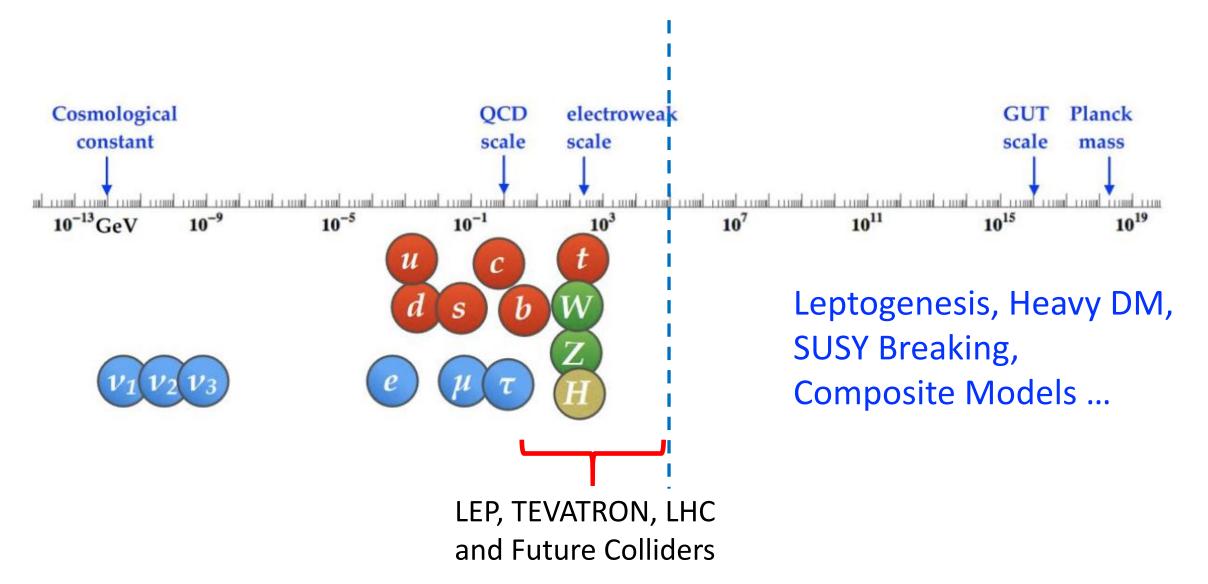


The big problems in particle phenomenology

- What is the particle nature of dark matter?
- What is dark energy?
- What is the mechanism for baryogenesis?
- What is the theory for neutrino masses?
- What is the origin of the large scale structure?
- Had the Universe experienced inflation? Any alternative scenarios?

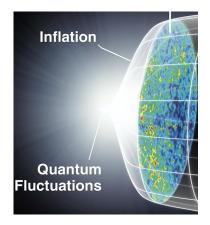


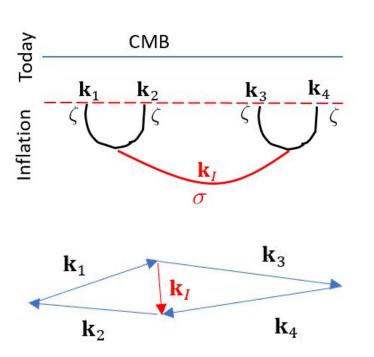
The scales of particle physics

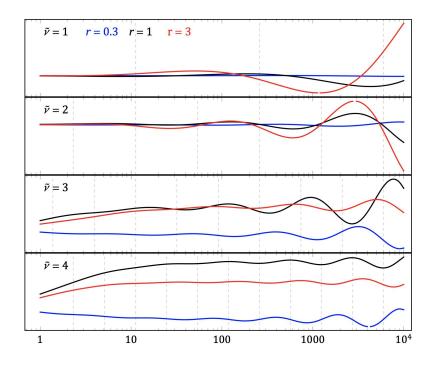


Early Universe as ultra high energy particle physics labs

• The large scale structure of the Universe (Cosmological Collider Physics) Chen, Wang, ... Arkani-Hamed, Maldacena, ... Xianyu, ...

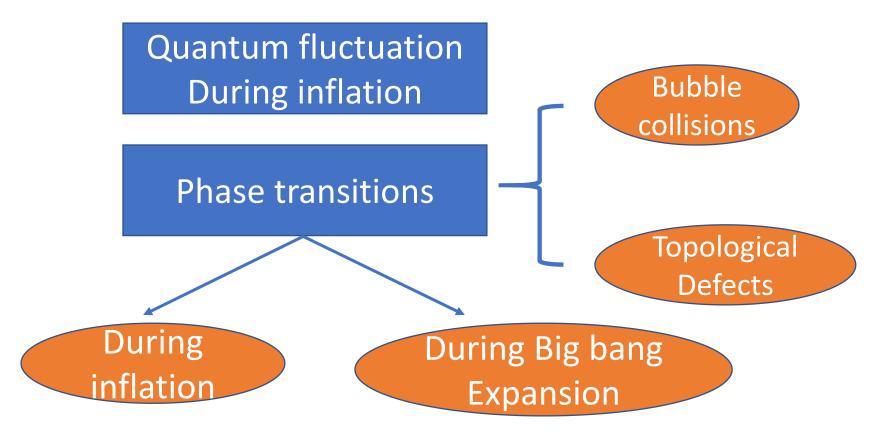


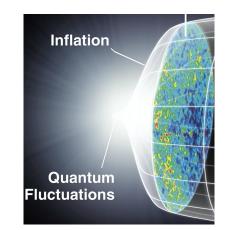


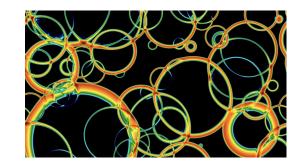


Early Universe as ultra high energy particle physics labs

• Stochastic primordial gravitational waves

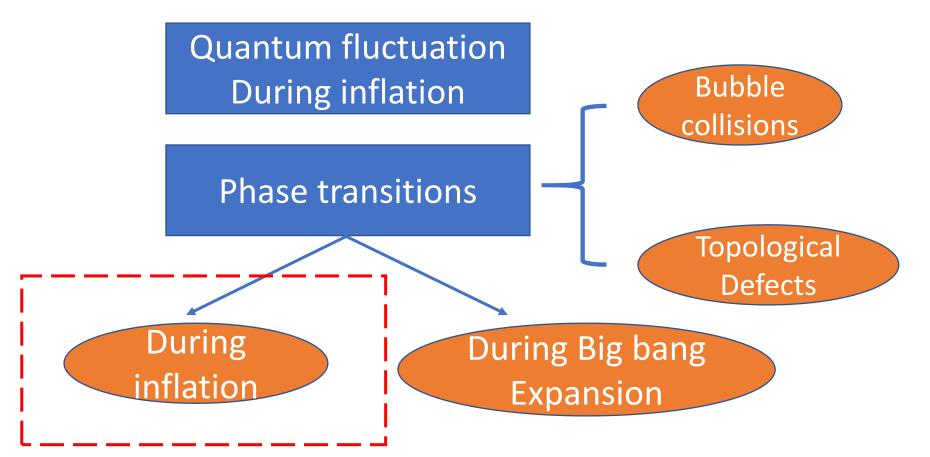


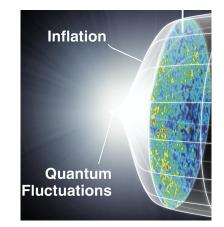


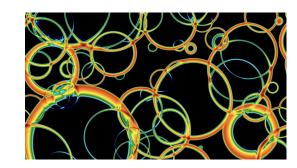


Early Universe as ultra high energy particle physics labs

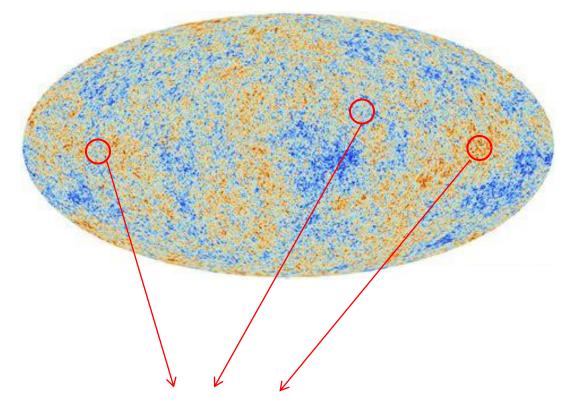
• Stochastic primordial gravitational waves







The causality problem

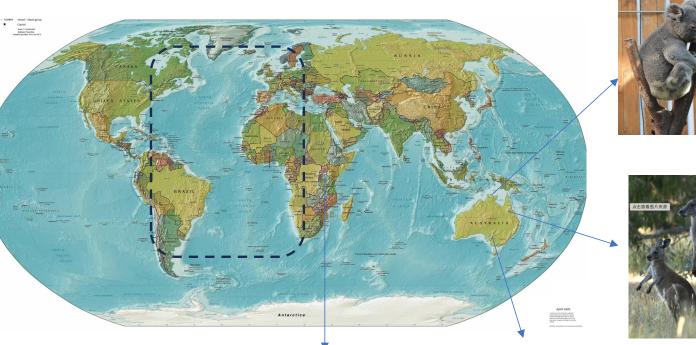


Big Bang Sigularity

Same temperature and similar fluctuations.

Causality problems usually indicate big discoveries!

Alfred Wegener: **Continental drift** hypothesis



Animals with brood pouch 育儿袋

ostrich

emu

Causality problems usually indicate big discoveries!

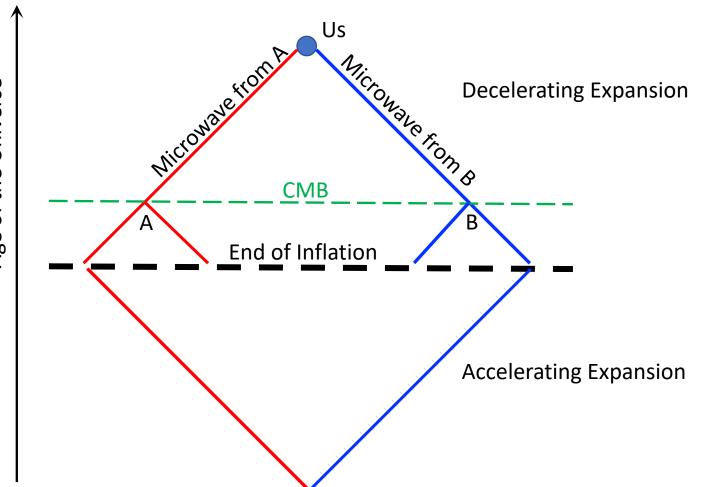
Alfred Wegener: Continental drift hypothesis

Animals with brood pouch 育儿袋

ostrich

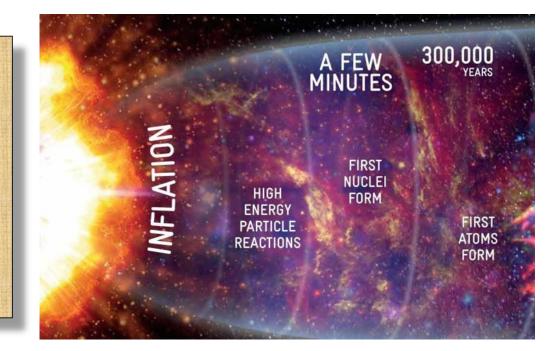
emu

Inflation theory

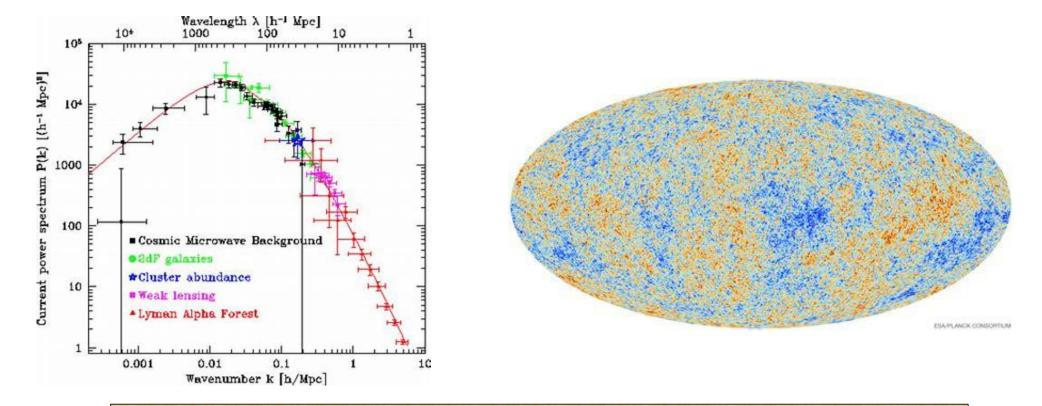


Motivations for inflation

 Solves the causality problem
 Solves the flatness problem
 Solves the magnetic monopole problem
 Generates the seed of large scale structure

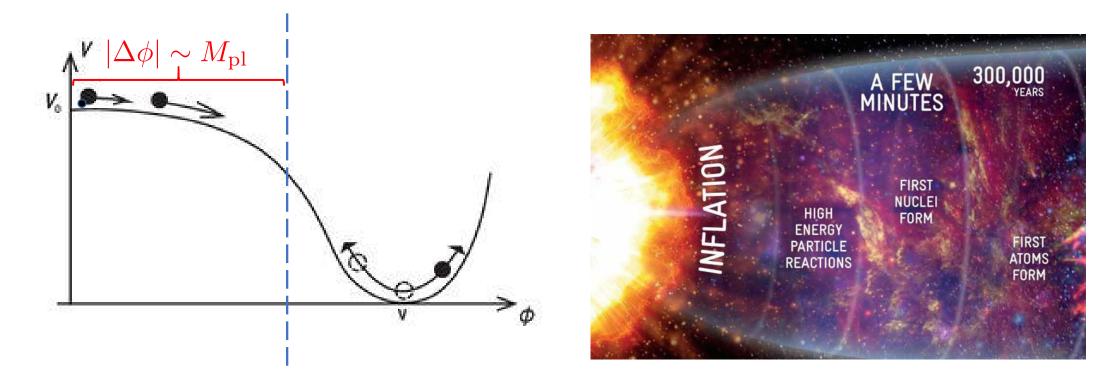


Current status of measurement



 To solve the problems, 40 to 60 e-folds is required, BUT we can only observe ten!

Slow roll inflation



To generate enough e-folds, the excursion of the inflaton field must be very large, comparable or even larger than M_{pl} .

Evolutions in the early universe

• Inflation: ϕ coupled to spectator sectors $f(\phi)g(\sigma)$

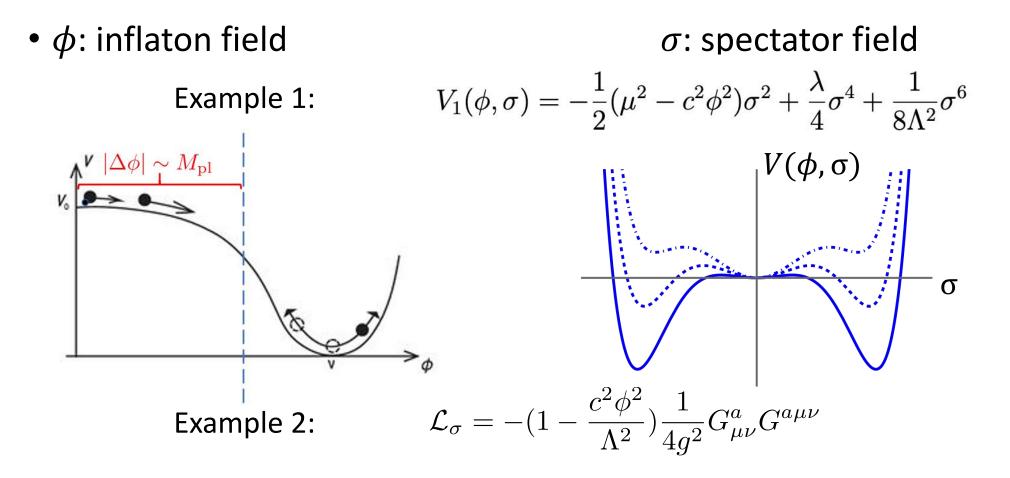
Grand
UnificationBaryogenesisSUSY
BreakingDark sector...UnificationBreakingPhase transitions...

 $f(\phi)$

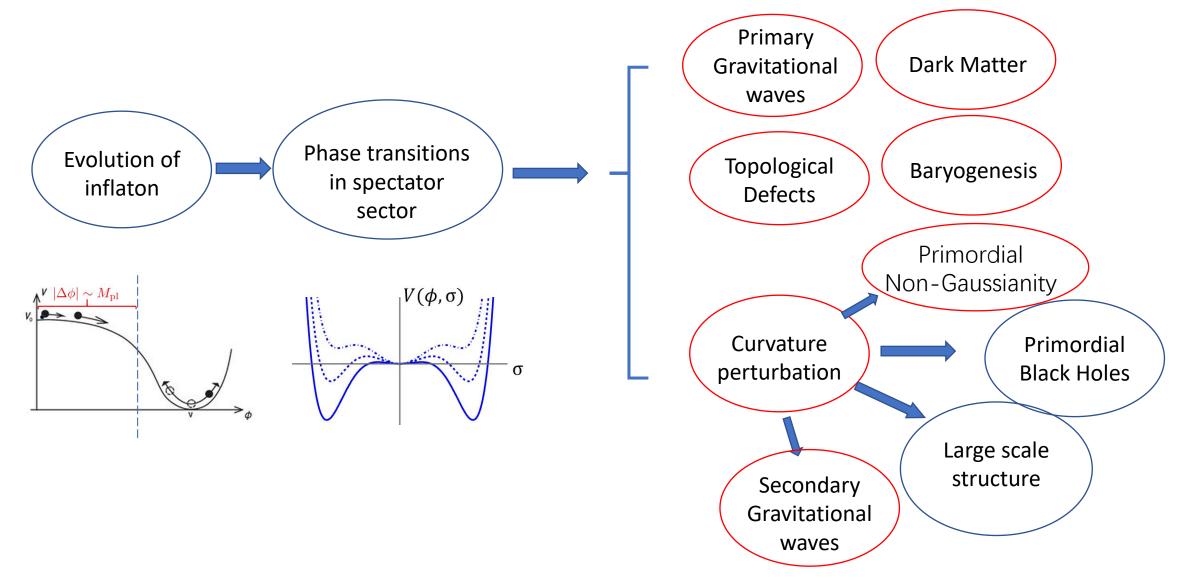
• Thermal expansion: temperature coupled to SM sector $T^2|H^2|$

 T_{RH} T_{EW} T_{QCD} T

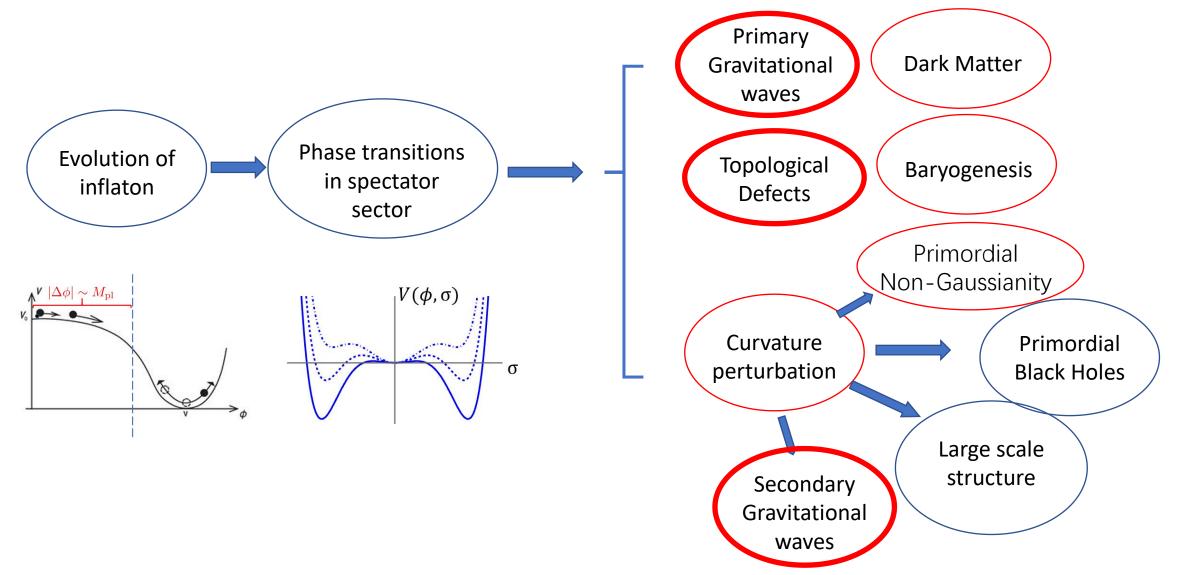
Phase transitions in spectator sector triggered by the evolution of the inflaton field



Consequences of the phase transitions



Consequences of the phase transitions



GWs from first-order phase transitions during inflation

Cosmology 101

Robertson-Walker Metric with conformal time and flat space

$$ds^{2} = -a^{2}(d\tau^{2} - dx^{2} - dy^{2} - dz^{2})$$

Perturbation of the metric

$$g_{\mu\nu} = g_{\mu\nu}^{(0)} + h_{\mu\nu}$$

GWs are in the traceless and transverse part of h_{ij} .

GWs from first-order phase transitions during inflation

- How to calculate GWs?
- In E&M: $\partial_{\mu}F^{\mu\nu} = J^{\nu}$
 - We solve the Green's function first.
 - We convolute the Green's function with the source.

• In GR:
$$G_{\mu\nu} = 8\pi G T_{\mu\nu}$$

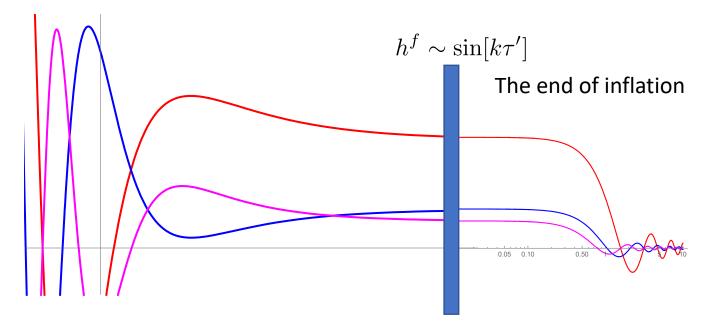
- We linearize the Einstein equation: $g_{\mu\nu} = g_{\mu\nu}^{(0)} + h_{\mu\nu}$. GW is h_{ij}^{TT} .
- We solve the Green's function first. (instantaneous and local source)
- We convolute the Green's function with the source.

GWs from first-order phase transitions during inflation $ds^2 = -a^2(d\tau^2 - dx^2 - dy^2 - dz^2)$ • $h''(\tau, \mathbf{k}) + \frac{2a'}{a}h'(\tau, \mathbf{k}) + k^2h(\tau, \mathbf{k}) = 16\pi G_N a^{-1}T\delta(\tau - \tau')$ $\left[\begin{array}{c} & & \\ &$

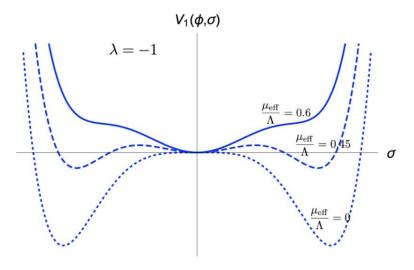
GWs from first-order phase transitions during inflation $ds^2 = -a^2(d\tau^2 - dx^2 - dy^2 - dz^2)$ • $h''(\tau, \mathbf{k}) + \frac{2a'}{a}h'(\tau, \mathbf{k}) + k^2h(\tau, \mathbf{k}) = 16\pi G_N a^{-1}T\delta(\tau - \tau')$ $g_{\mu\nu} = g_{\mu\nu}^{(0)} + h_{\mu\nu}$ GW is $h_{i\,i}^{TT}$. $h^f \sim \sin[k\tau']$ The horizon fixes the amplitude of h $k\tau \approx 0$ $-\infty$

After inflation

- $h^{f}(k)$ is the initial amplitude for the GW oscillation after inflation.
- All the modes start to oscillate with the same phase.
- Example, in RD, the oscillation is $\frac{\sin k\tau}{k\tau}$.



First-order phase transition during inflation

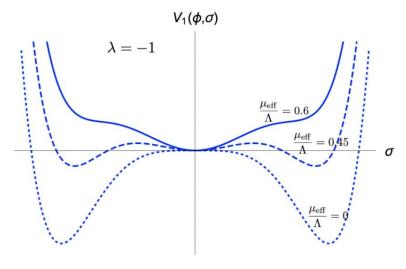


$$S_4 \approx S_4^* - \beta(t - t_*)$$
$$\beta = -\frac{dS_4}{dt}$$

 S_4 becomes smaller during

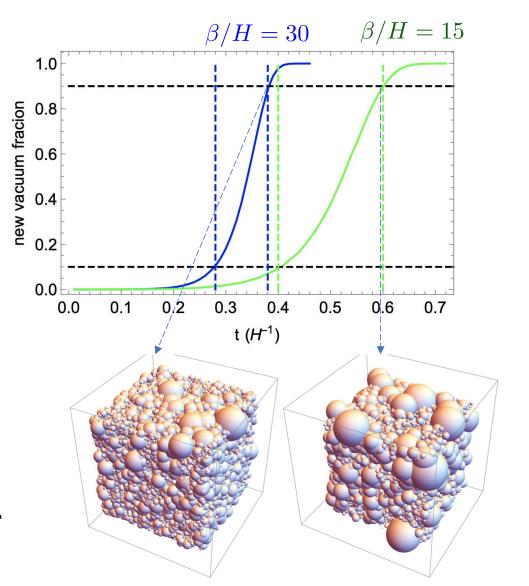
- $\frac{1}{V} \sim m_{\sigma}^4 e^{-S_4}$, bubble nucleation rate per unit volume.
- Phase transition completes: $\frac{\Gamma}{V} \times H^{-4} \sim O(1)$

First-order phase transition during inflation

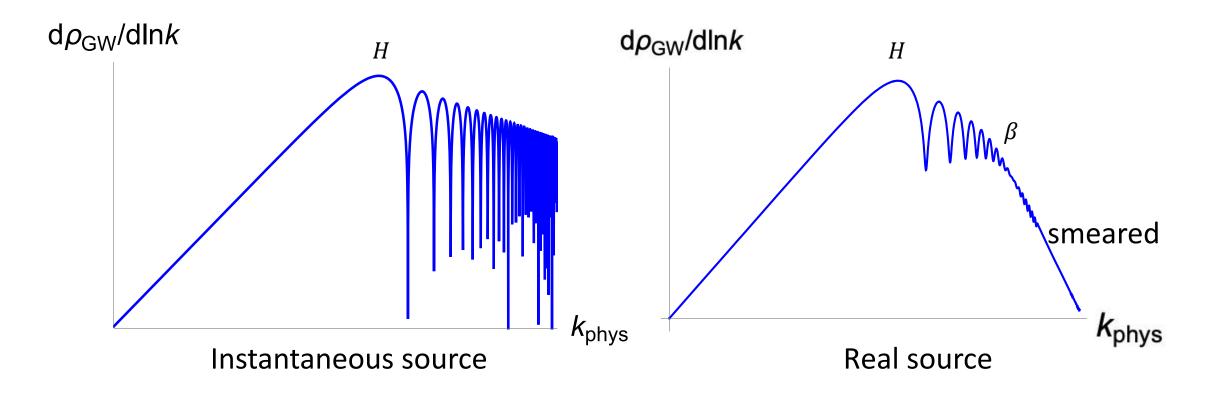


 S_4 becomes smaller during

- $\beta = -\frac{dS_4}{dt}$, determines the rate of the phase transition.
- Phase transition completes if $\beta \gg H$.

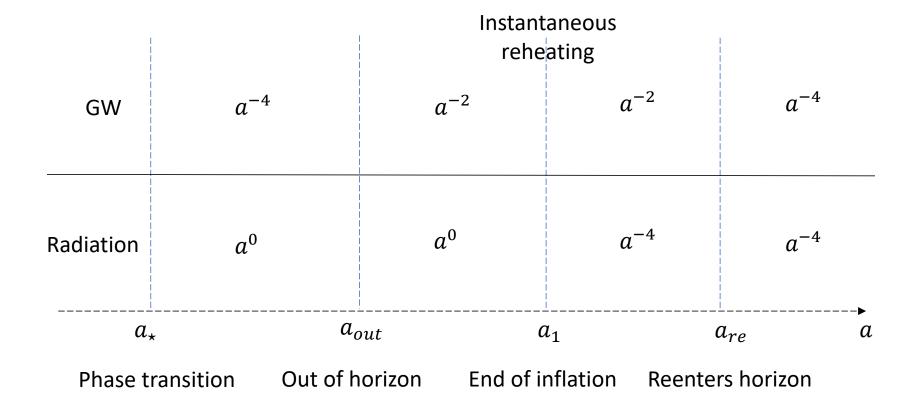


Spectrum of GW from a real source

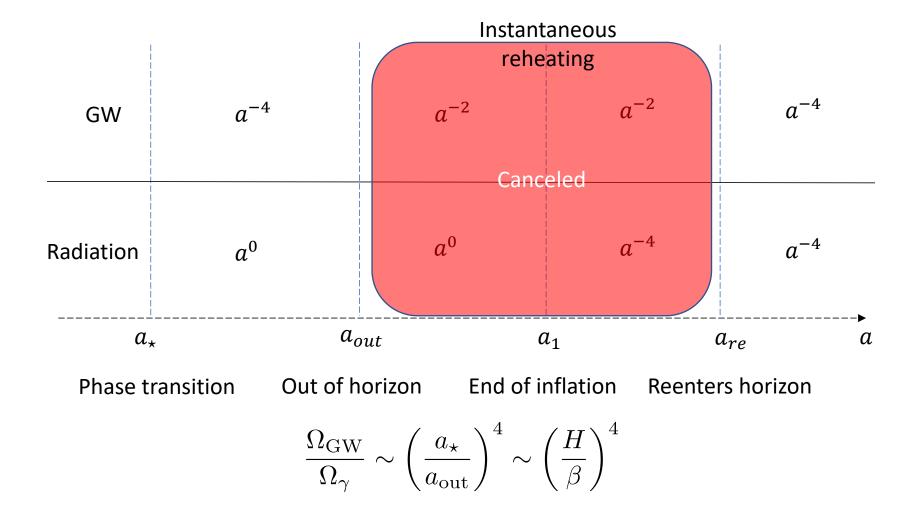


$$\beta = -\frac{dS_b}{dt} \gg H$$

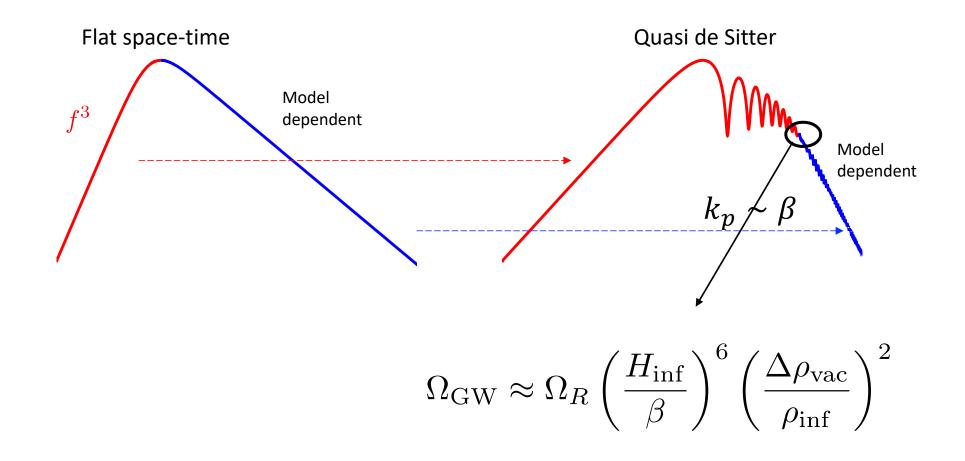
Redshifts of the GW signal



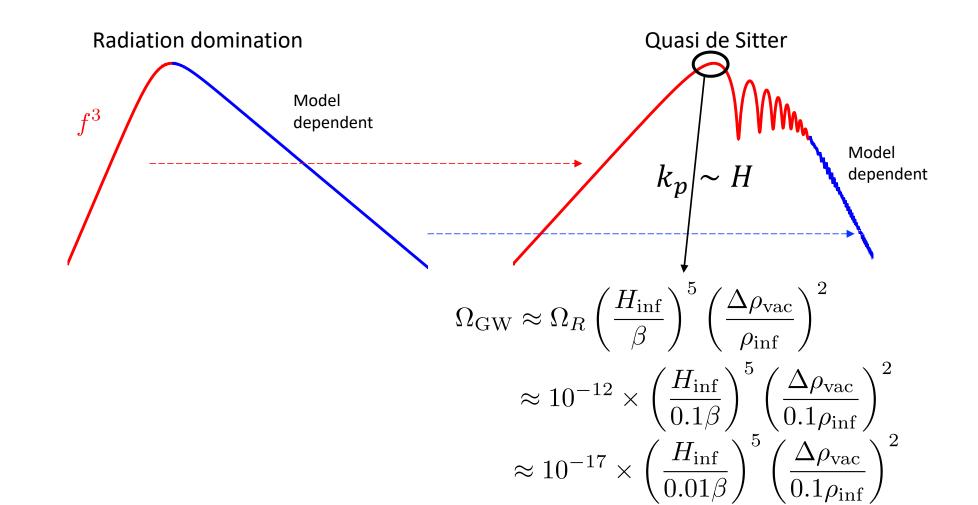
Redshifts of the GW signal



Spectrum distortion by inflation



Spectrum distortion by inflation



First-order phase transition during inflation

• Assume quasi-dS inflation, RD re-entering, and fast reheating

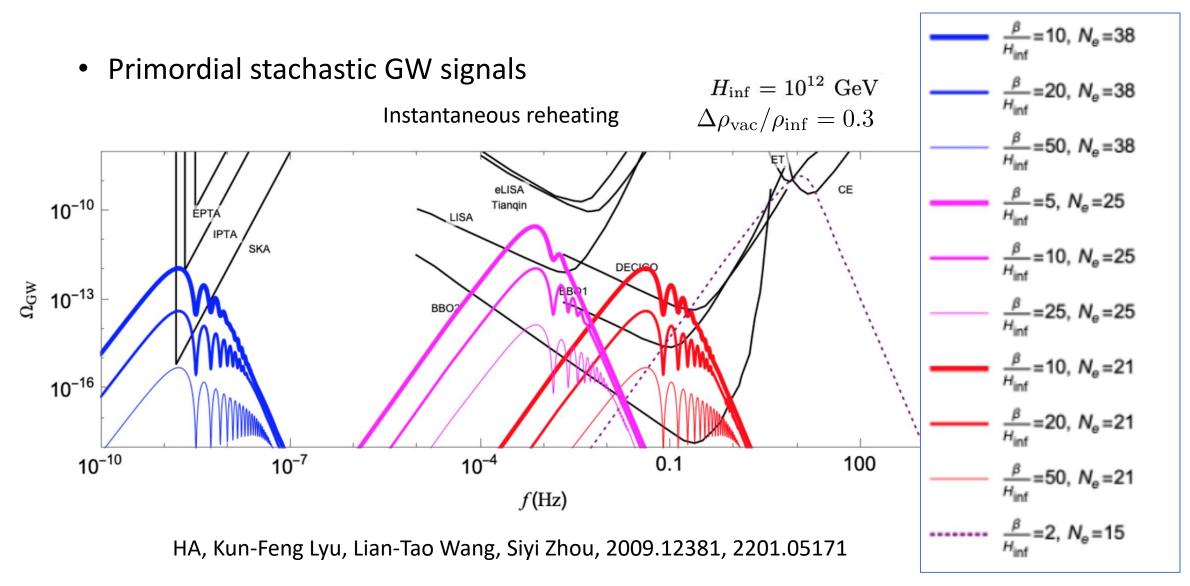
$$\Omega_{\rm GW}(k_{\rm today}) = \Omega_R \frac{H_{\rm inf}^4}{k_p^4} \left[\frac{1}{2} + S(k_p \beta^{-1}) \cos\left(\frac{2k_p}{H_{\rm inf}}\right) \right] \left(\frac{\Delta \rho_{\rm vac}}{\rho_{\rm inf}}\right)^2 \frac{d\rho_{\rm GW}^{\rm flat}}{\Delta \rho_{\rm vac} d \log k_p}$$

$$\downarrow$$
Dilution factor Smearing Suppressed by the energy faction
$$\frac{f_{\rm today}}{f_{\star}} = \frac{a(\tau_{\star})}{a_1} \left(\frac{g_{\star S}^{(0)}}{g_{\star S}^{(R)}}\right)^{1/3} \frac{T_{\rm CMB}}{\left[\left(\frac{30}{g_{\star}^{(R)}\pi^2}\right)\left(\frac{3H_{\rm inf}^2}{8\pi G_N}\right)\right]^{1/4}}$$

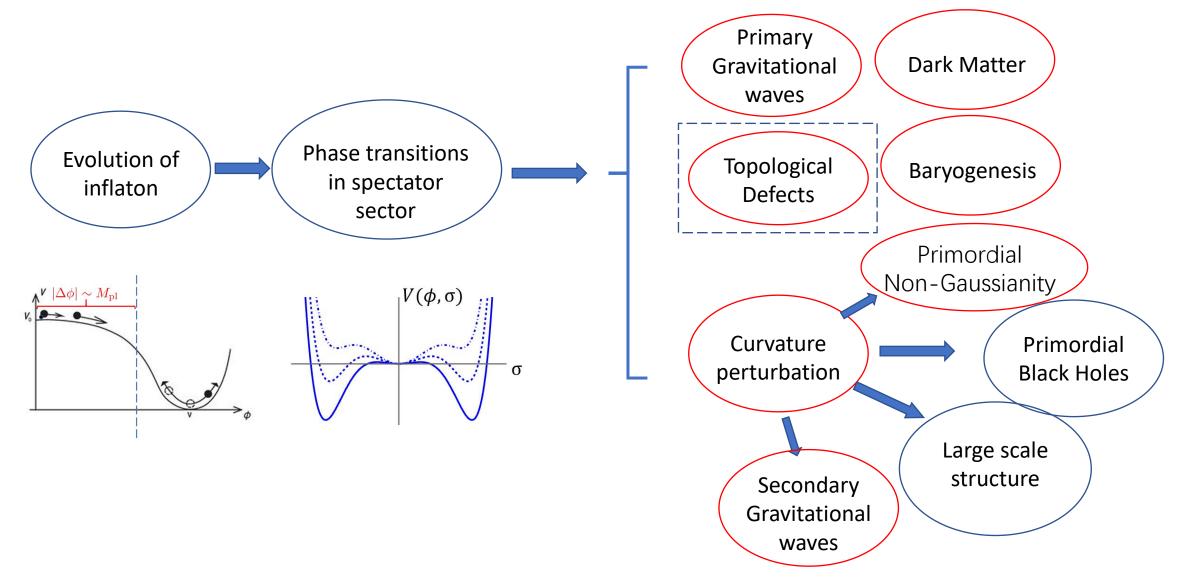
$$e^{-N_e}$$

$$N_e:$$
 e-folds before the end of inflation

First-order phase transition during inflation

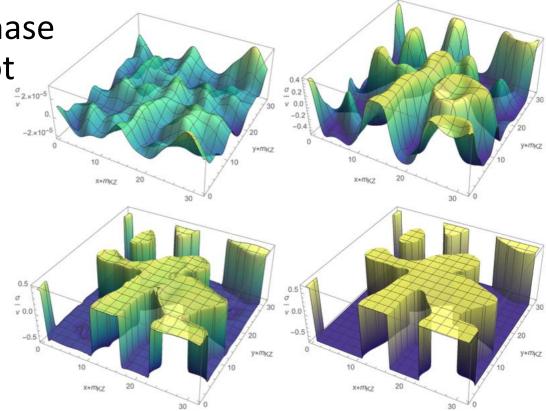


Consequences of the phase transitions



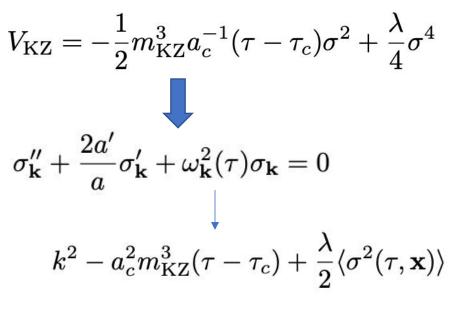
GWs from topological defects

- GWs directly from second-order phase transitions are small, usually cannot be detected.
- Phase transitions can produce topological defects:
 - Domain walls
 - Cosmic strings
 - Monopoles

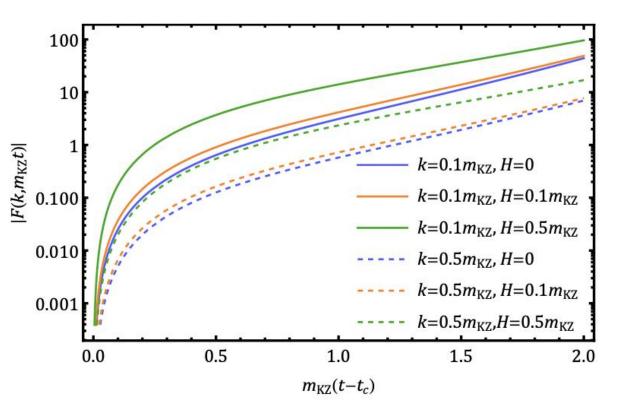


Formation of domain walls

• Tachyonic growth



 $\omega_k^2 < 0$ for small k around τ_c .



 $F(k, m_{KZ}t)$ can be seen as the occupation number in the k mode.

Formation of domain walls

 Matching to classical nonlinear evolution

Quantum

essemble

$$\begin{split} \tilde{\pi}(\mathbf{k},\tau) &= a_{\mathbf{k}} a(\tau)^2 f'(k,\tau) + a^{\dagger}_{-\mathbf{k}} a(\tau)^2 f'^*(k,\tau), \\ \tilde{\sigma}(\mathbf{k},\tau) &= a_{\mathbf{k}} f(k,\tau) + a^{\dagger}_{-\mathbf{k}} f^*(k,\tau). \end{split}$$

$$F(k,\tau) = a(\tau)^2 \operatorname{Re}\left[f'(k,\tau)f^*(k,\tau)\right]$$

$$W(\sigma_{\mathbf{k}}, \pi_{\mathbf{k}}) = \frac{1}{\pi^2} \exp\left[-\frac{|\sigma_{\mathbf{k}}|^2}{|f(\mathbf{k}, \tau)|^2} - 4|f(\mathbf{k}, \tau)|^2 \left|\pi_{\mathbf{k}} - \frac{F(\mathbf{k}, \tau)}{|f(\mathbf{k}, \tau)|^2}\sigma_{\mathbf{k}}\right|^2\right]$$

Classical

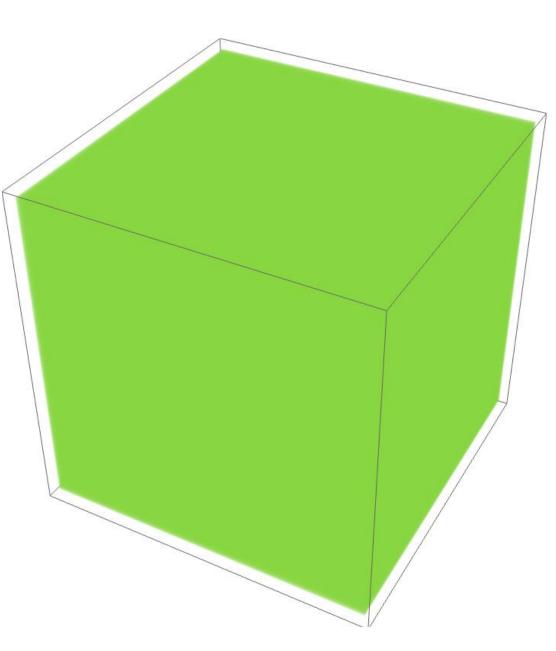
essemble

We randomly generate the σ_k and π_k according to W as the initial condition for classical lattice simulation.

Polarski and Starobinsky 1996, Lesgourgues, Polarski and Starobinsky, gr-qc/9611019 Kiefer, Polarski and Starobinsky, gr-qc/9802003

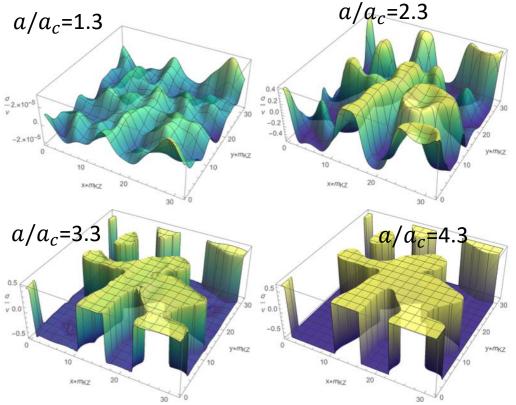
Formation of domain walls

- Symmetry breaking via a second order phase transition.
- We numerically solve the nonlinear evolution of σ field with $1000 \times 1000 \times 1000$ attice.
- At the beginning there are fluctuations, dying out after a few e-folds.
- The configuration becomes comovingly static after a few e-folds.



Formation of domain walls

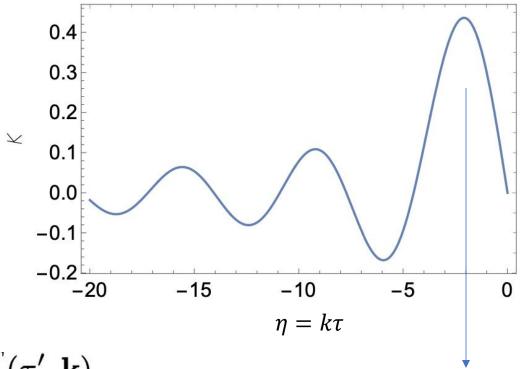
- Symmetry breaking via a second order phase transition.
- We numerically solve the nonlinear evolution of σ field with $1000 \times 1000 \times 1000$ attice.
- At the beginning there are fluctuations, dying out after a few e-folds.
- The configuration becomes comovingly static after a few e-folds.



Calculation of GWs

- In Minkowski spacetime, static source cannot radiate due to energy-momentum conservation.
- During inflation, energy conservation is badly broken, so the even static source can produce GWs.

$$\tilde{h}_{ij}^{f}(\mathbf{k}) = \frac{16\pi G_N}{k} \int_{-\infty}^{0} d\tau' \mathcal{K}(k\tau') \tilde{T}_{ij}^{TT}(\tau', \mathbf{k})$$



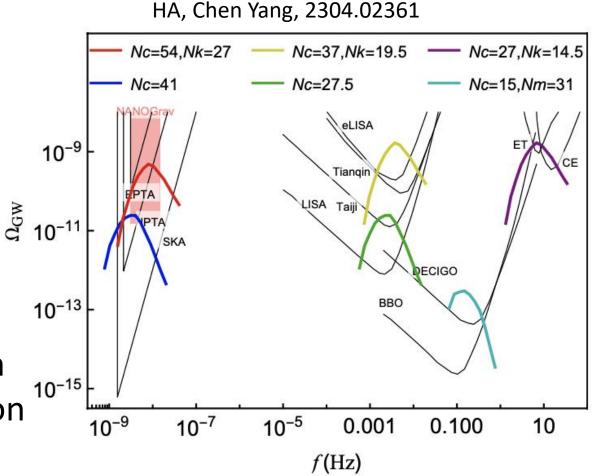
The dominant contribution

Numerical results for GWs

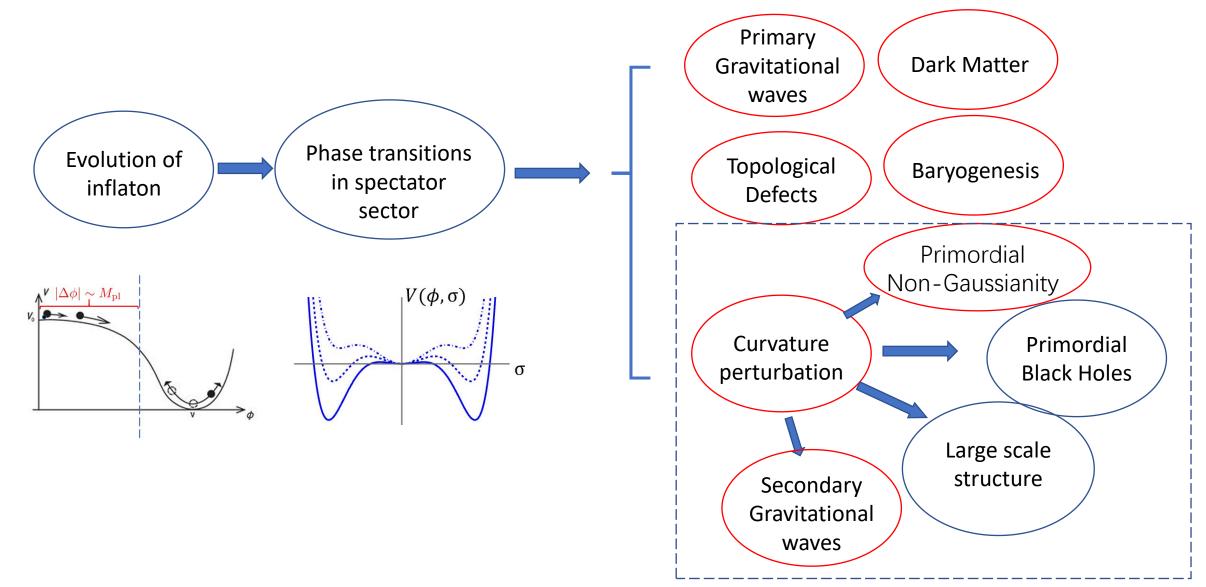
$$\Omega_{\rm GW}(f) = \Omega_R \times \rho_R^{-1} \left. \frac{d\rho_{\rm GW}}{d\ln f} \right|_{\rm today}$$
$$\frac{f_{\rm today}}{f_\star} = \frac{a(\tau_\star)}{a_1} \left(\frac{g_{\star S}^{(0)}}{g_{\star S}^{(R)}} \right)^{1/3} \frac{T_{\rm CMB}}{\left[\left(\frac{30}{g_\star^{(R)} \pi^2} \right) \left(\frac{3H_{\rm inf}^2}{8\pi G_N} \right) \right]^{1/4}}$$

Intermediate stages matter:

- Instantaneous reheating
- Intermediate matter domination
- Intermediate kination domination



Consequences of the phase transitions



Induced classical scalar perturbation $\delta\phi$

Interactions

$$\begin{aligned} \mathcal{L} &= -\frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \sigma \partial_{\nu} \sigma - V(\phi, \sigma) \\ V(\phi, \sigma) &= V_{0}(\phi) + V_{1}(\phi, \sigma) \quad \frac{\phi = \phi_{0} + \delta \phi}{\Phi^{0}} \quad \frac{\partial V_{1}}{\partial \phi_{0}} \delta \phi \\ \delta \tilde{\phi}_{\mathbf{q}}^{\prime \prime} &- \frac{2}{\tau} \delta \tilde{\phi}_{\mathbf{q}}^{\prime} + \left(q^{2} + \frac{1}{H^{2} \tau^{2}} \frac{\partial^{2} V_{0}}{\partial \phi_{0}^{2}} \right) \delta \tilde{\phi}_{\mathbf{q}} = \mathcal{S}_{\mathbf{q}} , \\ \mathcal{S}_{\mathbf{q}} &= -\frac{1}{H^{2} \tau^{2}} \left[\frac{\partial V_{1}}{\partial \phi} \right]_{\mathbf{q}} - \left\{ \frac{2 \Phi_{\mathbf{q}}}{H^{2} \tau^{2}} \left(\frac{\partial V_{0}}{\partial \phi_{0}} + \left[\frac{\partial V_{1}}{\partial \phi} \right]_{0} \right) + \frac{\dot{\phi}_{0}}{H \tau} (3 \Psi_{\mathbf{q}}^{\prime} + \Phi_{\mathbf{q}}^{\prime}) \right\} \end{aligned}$$
Pure gravitational, subdominant

Induced classical scalar perturbation $\delta\phi$

Interactions

$$\mathcal{L} = -\frac{1}{2}g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi - \frac{1}{2}g^{\mu\nu}\partial_{\mu}\sigma\partial_{\nu}\sigma - V(\phi,\sigma)$$
$$V(\phi,\sigma) = V_0(\phi) + V_1(\phi,\sigma) \qquad \stackrel{\phi = \phi_0 + \delta\phi}{\longrightarrow} \quad \frac{\partial V_1}{\partial \phi},$$

Source term for $\delta\phi$

- The source is different from T_{ij}^{TT}
- No one has done the simulation before

$$V(\phi, \sigma) = V_{0}(\phi) + V_{1}(\phi, \sigma) \xrightarrow{\phi = \phi_{0} + \delta\phi} \frac{\partial V_{1}}{\partial \phi_{0}} \delta\phi \qquad \text{• The solution}$$

$$\delta \tilde{\phi}_{\mathbf{q}}^{\prime\prime\prime} - \frac{2}{\tau} \delta \tilde{\phi}_{\mathbf{q}}^{\prime} + \left(q^{2} + \frac{1}{H^{2}\tau^{2}} \frac{\partial^{2}V_{0}}{\partial \phi_{0}^{2}}\right) \delta \tilde{\phi}_{\mathbf{q}} = S_{\mathbf{q}} , \qquad \text{• No one before }$$

$$S_{\mathbf{q}} = -\frac{1}{H^{2}\tau^{2}} \left[\frac{\partial V_{1}}{\partial \phi}\right]_{\mathbf{q}} - \left\{\frac{2\Phi_{\mathbf{q}}}{H^{2}\tau^{2}} \left(\frac{\partial V_{0}}{\partial \phi_{0}} + \left[\frac{\partial V_{1}}{\partial \phi}\right]_{0}\right) + \frac{\dot{\phi}_{0}}{H\tau} \left(3\Psi_{\mathbf{q}}^{\prime} + \Phi_{\mathbf{q}}^{\prime}\right)\right\}$$
Pure gravitational, subdominant

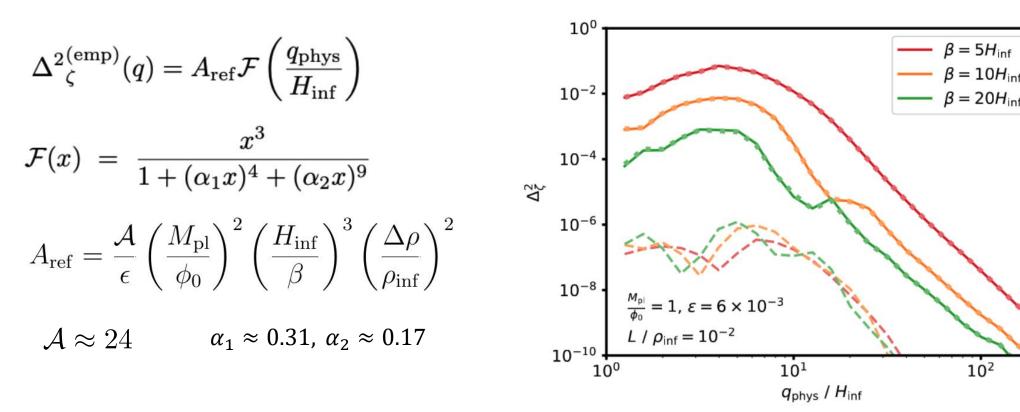
Induced curvature perturbation ζ

• We solve the following equations of motion numerically with a 1000 × 1000 × 1000 lattice

$$\begin{split} &\delta \tilde{\phi}_{\mathbf{q}}^{\prime\prime} - \frac{2}{\tau} \delta \tilde{\phi}_{\mathbf{q}}^{\prime} + \left(q^2 + \frac{1}{H^2 \tau^2} \frac{\partial^2 V_0}{\partial \phi_0^2} \right) \delta \tilde{\phi}_{\mathbf{q}} = \mathcal{S}_{\mathbf{q}} \ , \\ &\tilde{\Psi}_{\mathbf{q}}^{\prime} - \frac{\tilde{\Phi}_{\mathbf{q}}}{\tau} = -4\pi G_N \left(\frac{\dot{\phi}_0 \delta \tilde{\phi}_{\mathbf{q}}}{H_{\mathrm{inf}} \tau} + \left[\frac{\partial_i}{\partial^2} (\sigma' \partial_i \sigma) \right]_{\mathbf{q}} \right) \\ &\tilde{\pi}_{\mathbf{q}}^S = -\frac{3}{2} H_{\mathrm{inf}}^2 \tau^2 q_i q_j q^{-4} \left[(\partial_i \sigma \partial_j \sigma)^{\mathrm{TL}} \right]_{\mathbf{q}} \\ &\zeta_{\mathbf{q}} = -\tilde{\Psi}_{\mathbf{q}} - \frac{H_{\mathrm{inf}} \delta \tilde{\phi}_{\mathbf{q}}}{\dot{\phi}_0} \end{split}$$

Power spectrum of ζ

- After the collision of the bubbles, σ field oscillates and keeps producing ζ .
- The production of ζ lasts about H^{-1} , longer than β^{-1} .



Secondary GWs

- After inflation $\ \zeta \rightarrow \Phi, \Psi$
- Expand the Einstein equation to second order:

$$\begin{split} h_{ij}^{\prime\prime} &+ 2\mathcal{H}h_{ij}^{\prime} - \nabla^{2}h_{ij} = -4\hat{T}_{ij}^{\ lm}\mathcal{S}_{lm} ,\\ \mathcal{S}_{ij} &\equiv 2\Phi\partial^{i}\partial_{j}\Phi - 2\Psi\partial^{i}\partial_{j}\Phi + 4\Psi\partial^{i}\partial_{j}\Psi + \partial^{i}\Phi\partial_{j}\Phi - \partial^{i}\Phi\partial_{j}\Psi - \partial^{i}\Psi\partial_{j}\Phi + 3\partial^{i}\Psi\partial_{j}\Psi \\ &- \frac{4}{3(1+w)\mathcal{H}^{2}}\partial_{i}\left(\Psi^{\prime} + \mathcal{H}\Phi\right)\partial_{j}\left(\Psi^{\prime} + \mathcal{H}\Phi\right) - \frac{2c_{s}^{2}}{3w\mathcal{H}^{2}}\left[3\mathcal{H}(\mathcal{H}\Phi - \Psi^{\prime}) + \nabla^{2}\Psi\right]\partial_{i}\partial_{j}(\Phi - \Psi) . \end{split}$$

Scalar induced GWs

. . .

Matarrese, Mollerach, and Bruni, astro-hp/9707278 Mollerach, Harari, and Matarrese, astro-hp/0310711 Ananda, Clarkson, and Wands, gr-qc/0612013 Baumann, Steinhardt, Takahashi, Ichiki, hep-th/0703290

Secondary GWs

$$\begin{split} \Omega^{(2)}_{\rm GW}(f) &= \Omega_R A_{\rm ref}^2 \mathcal{F}_2 \left(\frac{q_{\rm phys}}{H_{\rm inf}} \right) & A_{\rm ref} &= \frac{\mathcal{A}}{\epsilon} \left(\frac{M_{\rm pl}}{\phi_0} \right)^2 \left(\frac{H_{\rm inf}}{\beta} \right)^3 \left(\frac{\Delta \rho}{\rho_{\rm inf}} \right)^2 \\ f &= \frac{q}{2\pi a_0} = f_{\rm ref} \times \frac{q_{\rm phys}}{H_{\rm inf}} & \mathcal{F}_2^{\rm max} \approx 200 \\ f_{\rm ref} &= 10^{-9} \text{ Hz} \times e^{40 - N_e} \left(\frac{H_{\rm inf}}{10^{14} \text{ GeV}} \right)^{1/2} & 0 & \mathcal{F}_3 / H_{\rm inf} = 4 \\ -\beta / H_{\rm inf} &= 5 & -\beta / H_{\rm inf} = 10, 20 & \mathcal{F}_2^{\rm IR}(x) \approx x^3 \left(\frac{6}{5} \log^2 x + \frac{16}{25} \log x + \frac{28}{125} \right) & \underbrace{\mathfrak{F}_{\rm b}^{\rm N}} & 50 & \mathcal{F}_2^{\rm collects} \text{ information of the transfer functions.} & 20 & 1 & 2 & 5 & 10 & \mathcal{F}_3 / H_{\rm inf} = 10, 20 & \mathcal{F}_3 / H_{\rm inf} =$$

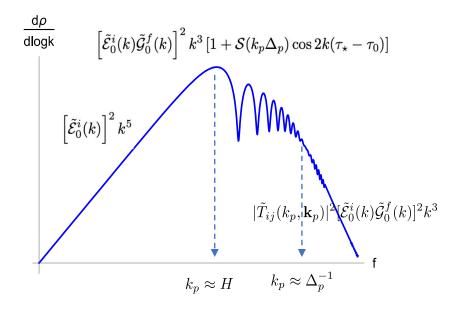
х

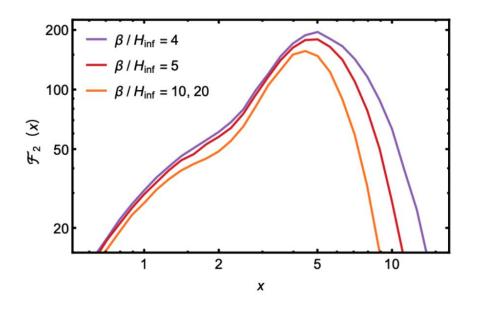
Comparison between primary GW and secondary GW

• Primary

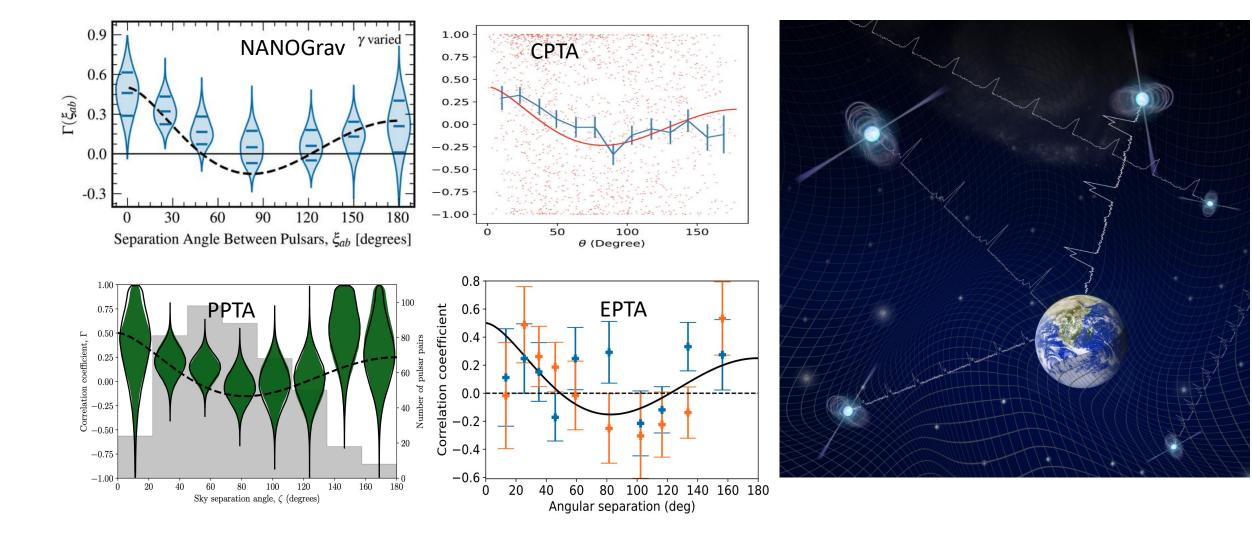
$$\Omega_{\rm GW} \approx \Omega_R \left(\frac{H_{\rm inf}}{\beta}\right)^5 \left(\frac{\Delta \rho_{\rm vac}}{\rho_{\rm inf}}\right)^2$$

$$\Omega_{\rm GW} \approx \Omega_R \left(\frac{\mathcal{A}}{\epsilon}\right)^2 \left(\frac{M_{\rm pl}}{\phi_0}\right)^4 \left(\frac{H_{\rm inf}}{\beta}\right)^6 \left(\frac{\Delta \rho_{\rm vac}}{\rho_{\rm inf}}\right)^4$$





Observation from PTAs



Observation from PTAs $\mathcal{F}_{2}^{\mathrm{IR}}(x) \approx x^{3} \left(\frac{6}{5} \log^{2} x + \frac{16}{25} \log x + \frac{28}{125} \right)$ HA, Boye Su, Hanwen Tai, Lian-Tao Wang, Chen Yang, 2308.00070 $-\beta / H_{inf} = 4$ The slope is around 2 in the IR region $\beta / H_{inf} = 5$ $\beta / H_{inf} = 10, 20$ X \mathcal{F}_{2} 50 $= 5H_{inf}, A_{ref} = 3.1 \times 10^{-3}, f_{ref} = 1.2 \times 10^{-8} Hz$ $\beta = 5H_{inf}, A_{ref} = 2.8 \times 10^{-3}, f_{ref} = 7.9 \times 10^{-9} \text{ Hz}$ 10-7 20 $h^2\Omega_{GW}$ 5 10 2 х 10-10 $\Omega_{\rm GW}^{(2)}(f) = \Omega_R A_{\rm ref}^2 \mathcal{F}_2\left(\frac{q_{\rm phys}}{H_{\rm inf}}\right)$ 10⁻¹³ 1. × 10⁻⁹ $f = rac{q}{2\pi a_0} = f_{ m ref} imes rac{q_{ m phys}}{H_{ m inf}}$ 5. × 10⁻⁸ 1. × 10⁻⁷ $5. \times 10^{-9}$ $1. \times 10^{-8}$ f(Hz) $f_{\rm ref} = 10^{-9} \ {\rm Hz} \times e^{40 - N_e} \left(\frac{H_{\rm inf}}{10^{14} \ { m GeV}} \right)^{1/2}$

Observation from PTAs

HA, Boye Su, Hanwen Tai, Lian-Tao Wang, Chen Yang, 2308.00070

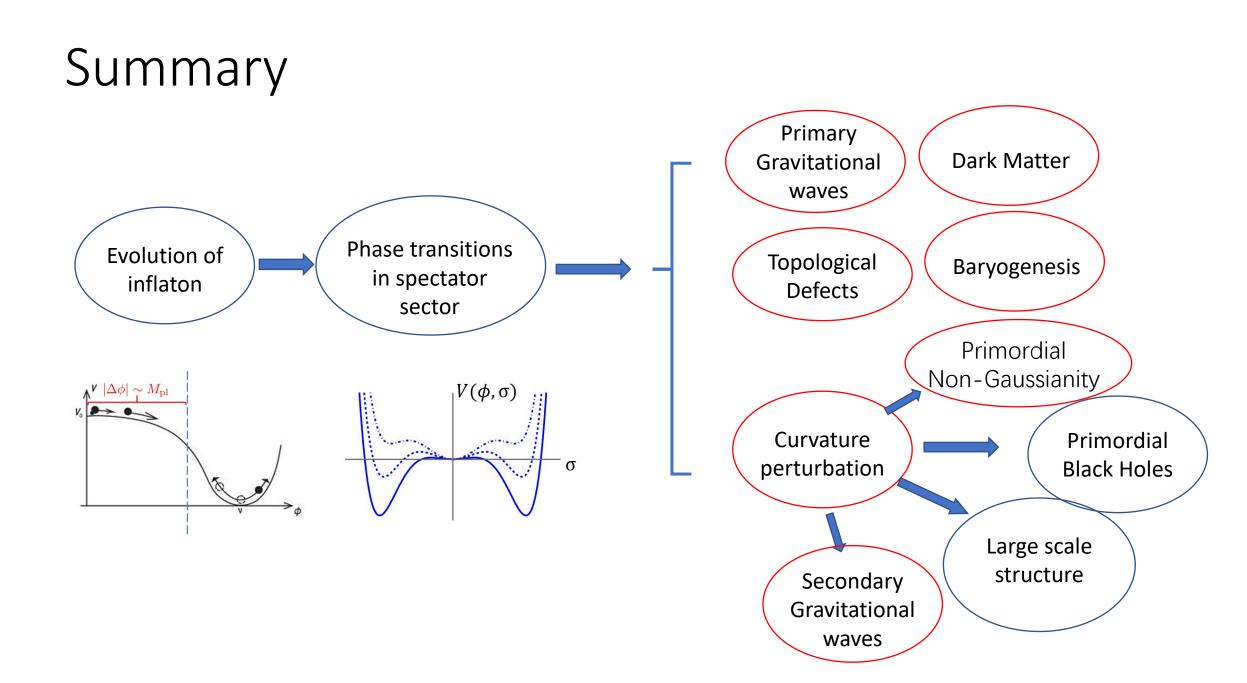
Bayes factor Bayes factor against SMBHB 10 $\beta = 5H_{inf}, A_{ref} = 3.1 \times 10^{-3}, f_{ref} = 1.2 \times 10^{-8} \text{ Hz}$ $\beta = 5H_{inf}, A_{ref} = 2.8 \times 10^{-3}, f_{ref} = 7.9 \times 10^{-9} \text{ Hz}$ 10-7 This work PT PT SIGW SIGW SIGW BOX DELTA GAUSS BUBBLE SOUND $h^2\Omega_{GW}$ 10-10 Excluded by -2.4PBH bound log10 Aref -2.610⁻¹³ 1. × 10⁻⁹ 5. × 10⁻⁹ $1. \times 10^{-7}$ $1. \times 10^{-8}$ $5. \times 10^{-8}$ NG15 -2.8f(Hz) $\Omega_{\rm GW}^{(2)}(f) = \Omega_R \underline{A_{\rm ref}^2} \mathcal{F}_2\left(\frac{q_{\rm phys}}{H_{\rm inf}}\right)$ -3.0 $f_{\rm ref} = 10^{-9} \ {\rm Hz} \times e^{40 - N_e} \left(\frac{H_{\rm inf}}{10^{14} \ {\rm GeV}} \right)^{1/2}$ $f = \frac{q}{2\pi a_0} = f_{\rm ref} \times \frac{q_{\rm phys}}{H_{\rm inf}}$ -8.5-8.0 $\log_{10} f_{\rm ref}/{\rm Hz}$ -7.5

Our model

*

100

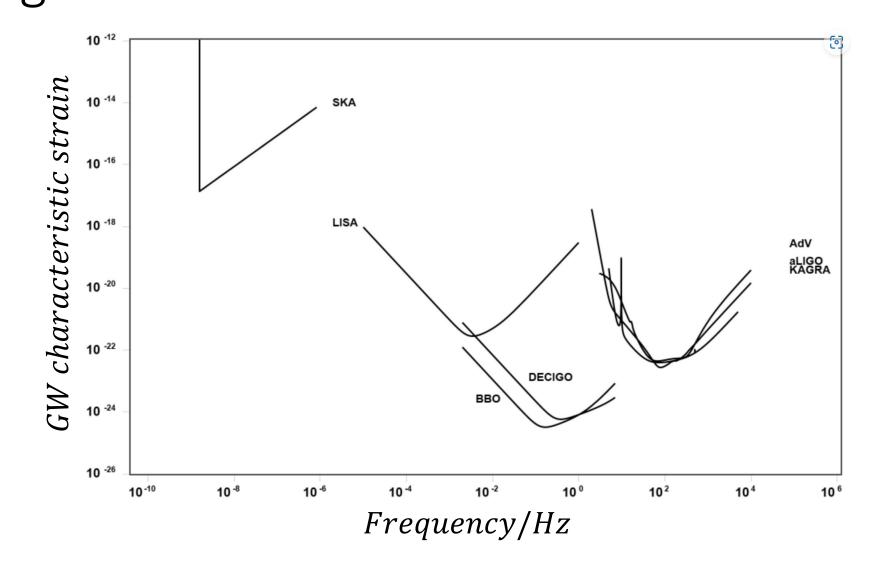
50



Computational challenges

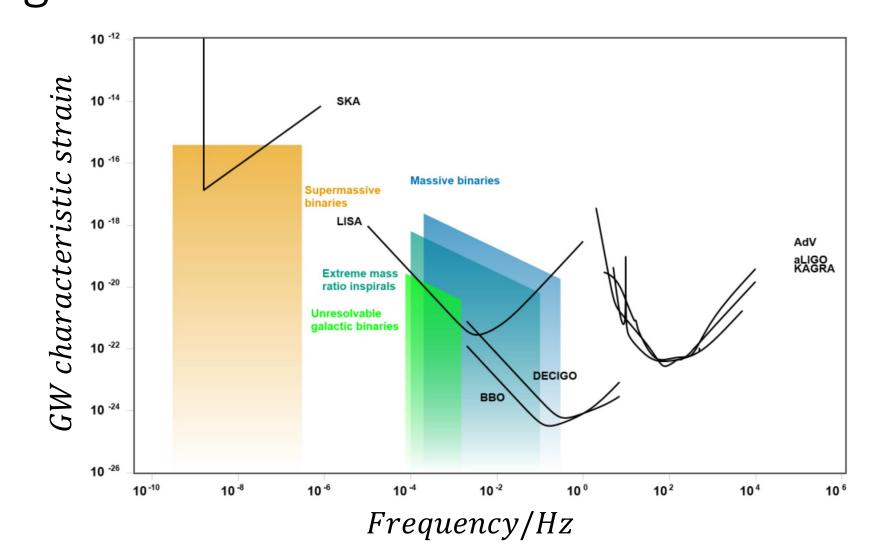
- 1 double : 8bit (c++)
- 1000^3 -> 8GB 1 field
- Complex field: (minimal)
- 2(phi)+2(pi)+9(Tij)+9(hij,sin)+9(hij,cos)+2(Fourier, auxi)+1(fft) ~ 250 GB
- Two scales are important: the wall thickness and the size of the universe
- We need larger box to get more accurate GW spectrum.

Observational challenges: astrophysics foreground Gravitational Wave Sensitivity Curve Plotter (gla.ac.uk)



Observational challenges: astrophysics foreground

Gravitational Wave Sensitivity Curve Plotter (gla.ac.uk)

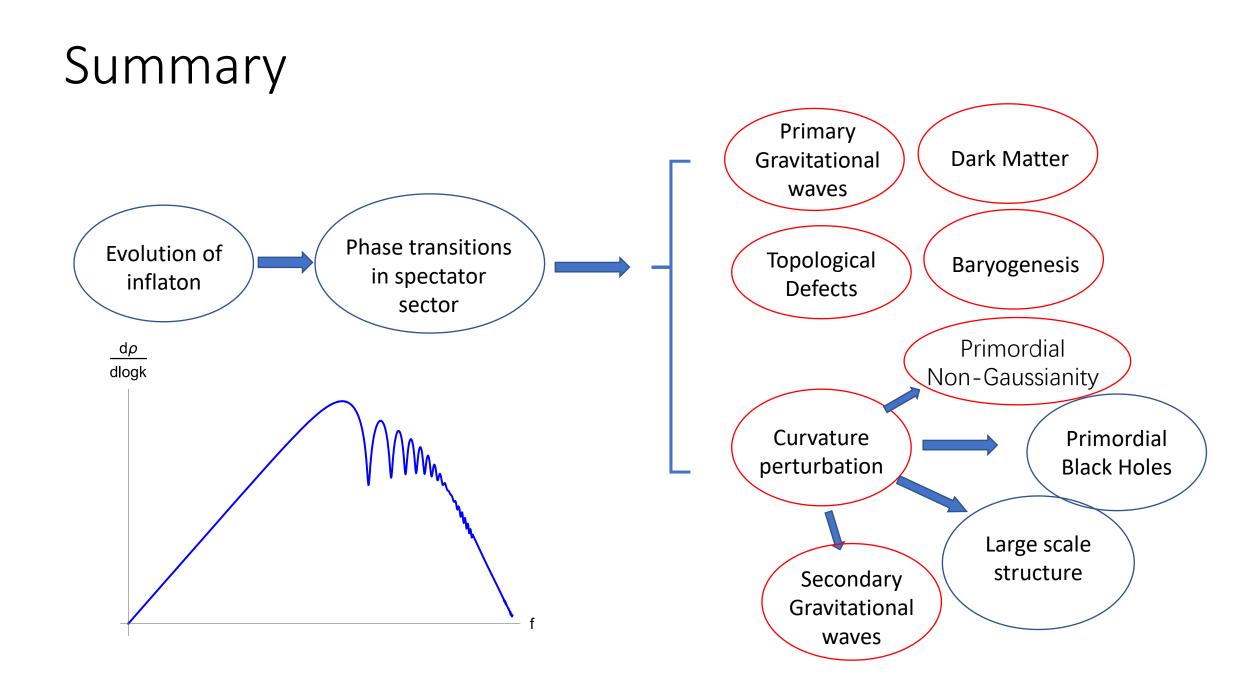


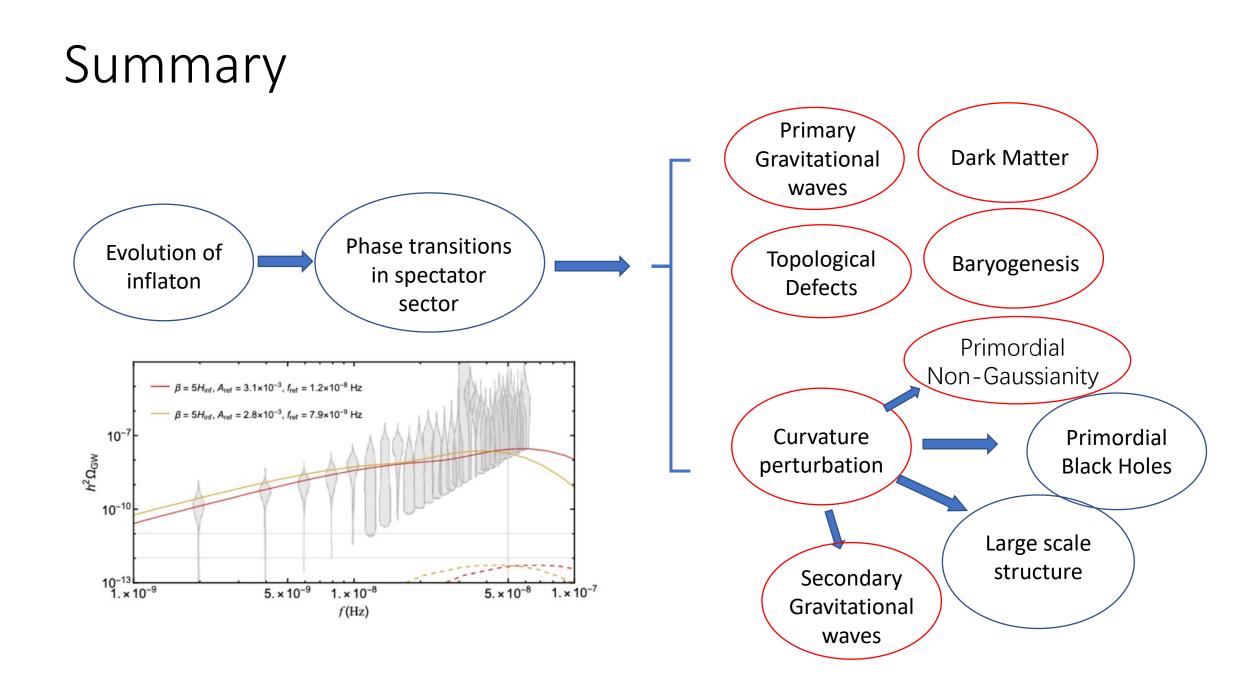
Observational challenges: astrophysics foreground

- Its better that the primordial GW spectrum has features.
- We need to accurately simulate the primordial GW spectrum and the foreground.

Computational challenges

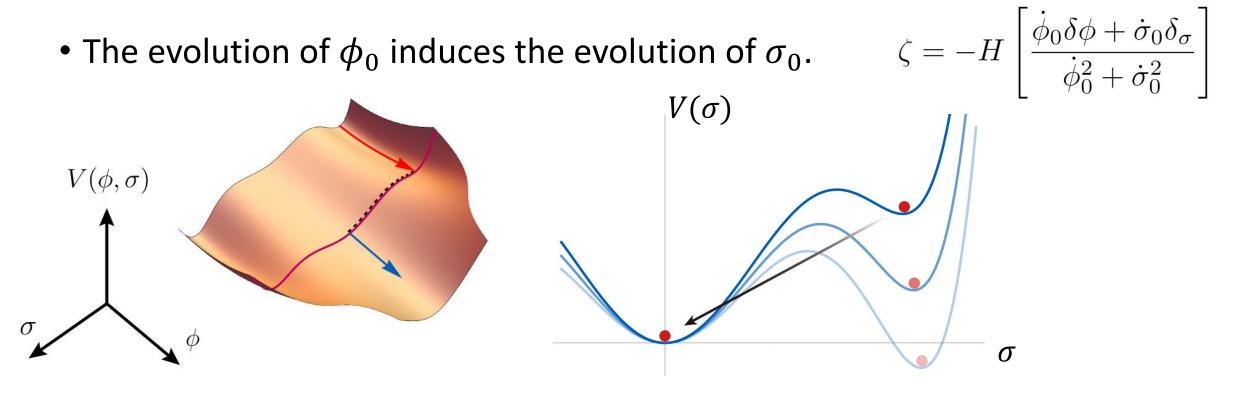
- Two scales are important: the wall thickness and the size of the universe
- The bubble walls are usually boosted.
- We need larger box to get more accurate GW spectrum.
- It cost a lot of memory to do the simulation:
 - 1 double : 8bit
 - 1000^3 -> 8GB 1 field
 - Complex field
 - 2(phi)+2(pi)+9(Tij)+9(hij,sin)+9(hij,cos)+2(Fourier, auxi)+1(fft) ~
 250 GB





Summary

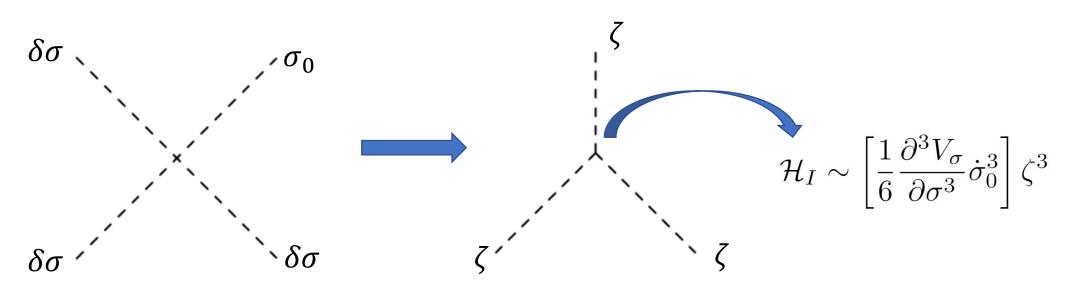
Primordial non-Gaussianity (quantum fluctuation)



• $\delta\sigma$ also contributes to the curvature perturbation, and the interaction in the σ sector is strong.

Primordial non-Gaussianity (quantum fluctuation)

• 3pt function in the symmetry breaking phase



• Relevant operator, important in the IR.

Primordial non-Gaussianity

 Calculate the three-point function using the in-in formalism.

$$\langle Q(t) \rangle = \sum_{N=0}^{\infty} i^{N} \int_{-\infty}^{t} dt_{N} \int_{-\infty}^{t_{N}} dt_{N-1} \cdots \int_{-\infty}^{t_{2}} dt_{1}$$

$$\times \left\langle \left[H_{I}(t_{1}), \left[H_{I}(t_{2}), \cdots \left[H_{I}(t_{N}), Q^{I}(t) \right] \cdots \right] \right] \right\rangle$$
Reheating surface

Last scattering

 δT

δΤ

δΤ

 $\begin{cases} \mathcal{H}_I \sim \left[\frac{1}{6}\frac{\partial^3 V_\sigma}{\partial \sigma^3}\dot{\sigma}_0^3\right]\zeta^3 \end{cases}$

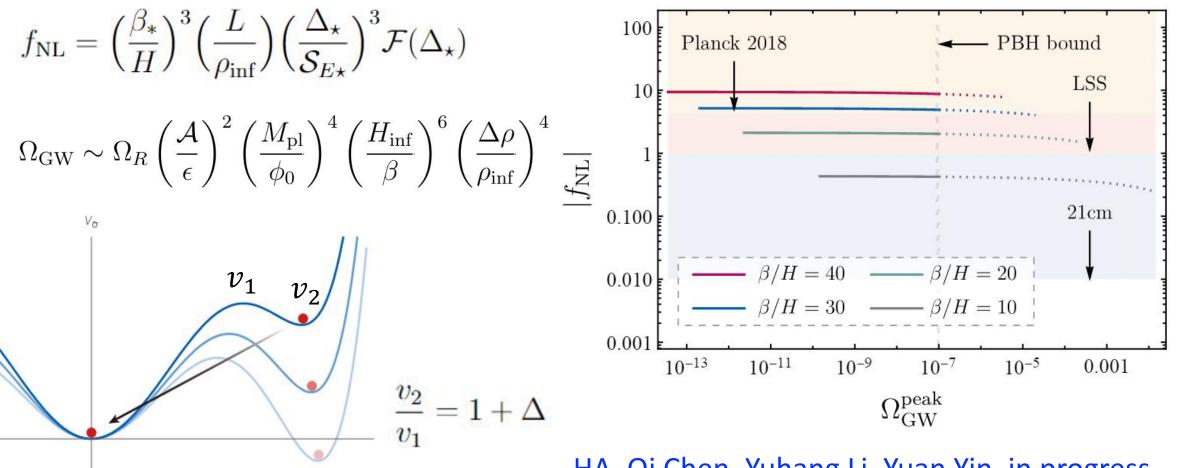
S. Weinberg, hep-th/0506236

Primordial non-Gaussianity

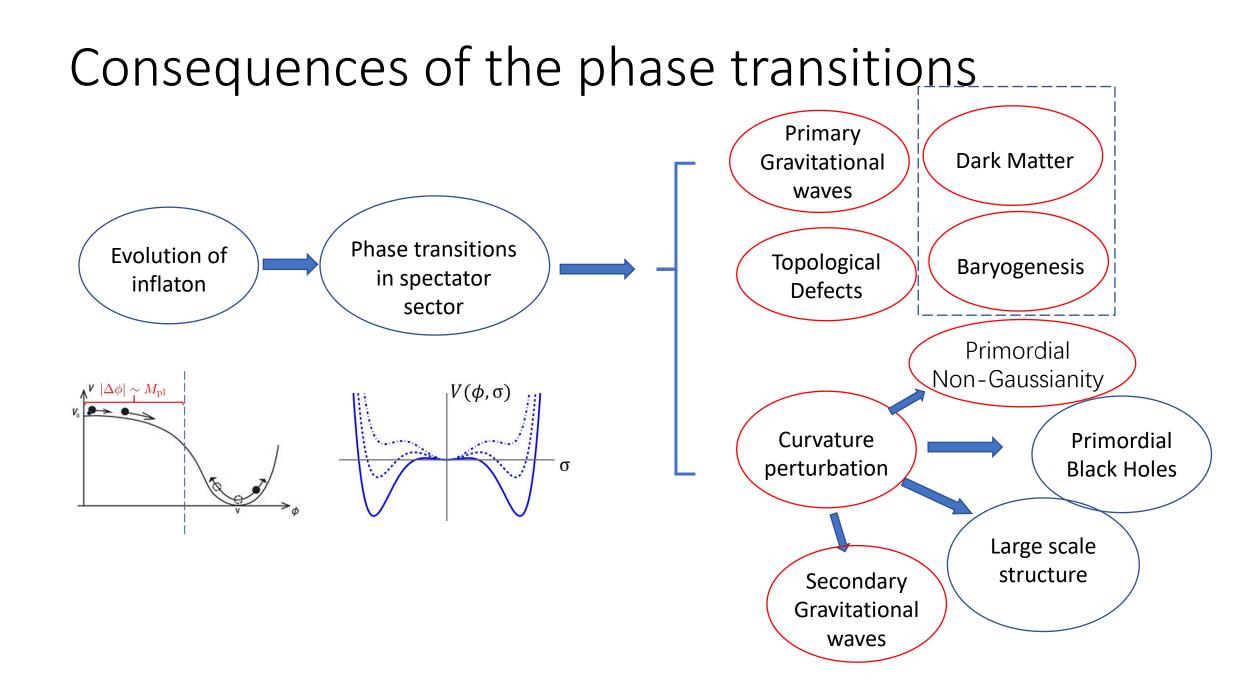
• Calculate the three-point function using the in-in formalism.

$$\begin{split} \langle Q(t) \rangle &= \sum_{N=0}^{\infty} i^N \int_{-\infty}^t dt_N \int_{-\infty}^{t_N} dt_{N-1} \cdots \int_{-\infty}^{t_2} dt_1 \\ &\times \left\langle \left[H_I(t_1), \left[H_I(t_2), \cdots \left[H_I(t_N), Q^I(t) \right] \cdots \right] \right] \right\rangle \\ &\text{S. Weinberg, hep-th/0506236} \\ \langle \zeta(\mathbf{k}_1) \zeta(\mathbf{k}_2) \zeta(\mathbf{k}_3) \rangle' &= \frac{3}{4} \int_{-\infty}^0 \frac{d\tau}{\tau} \frac{H^8}{\dot{\phi}_0^6} \frac{\lambda(\tau)}{k_1^2 k_2^3 k_3^2} f(k_1, k_2, k_3) \\ &\text{Dominated in the region} \\ &|k_1 \tau| \ll 1, |k_2 \tau| \ll 1, |k_3 \tau| \ll 1 \\ &\text{Re} \left[\left(1 + \frac{i}{k_1 \tau} \right) \left(1 + \frac{i}{k_2 \tau} \right) \left(1 + \frac{i}{k_3 \tau} \right) e^{i(k_1 + k_2 + k_3) \tau} \right] \end{split}$$

Primordial non-Gaussianity

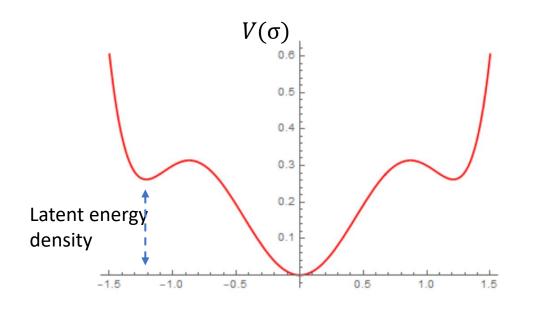


HA, Qi Chen, Yuhang Li, Yuan Yin, in progress

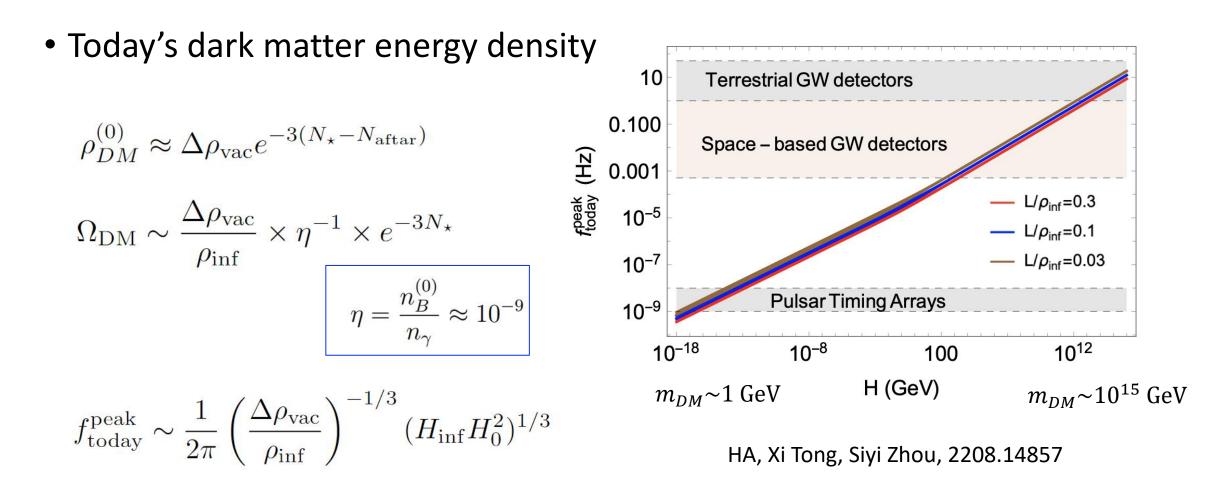


Producing superheavy DM

- Where does the latent energy go?
- σ particles produced during bubble collision and thermalization.
- If the phase transition is *symmetry-restoration*, σ particles can be DM.

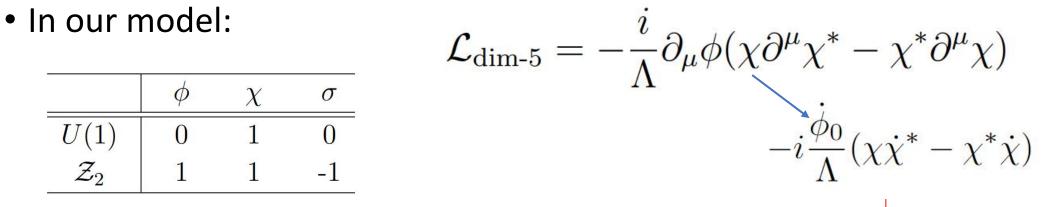


Producing superheavy DM



Baryogenesis during inflation

- Conserved numbers must be diluted as a^{-3} , even for spontaneously broken symmetries.
- For a U(1) number to survive inflation, it must be broken explicitly.



• Explicit U(1) breaking term: $A\sigma^2\chi + h.c.$

Trivial if no explicit broken.

Baryogenesis during inflation

- We use the phase transition of σ as a switch:
- In the Z_2 breaking phase: $A\sigma^2 \chi \rightarrow A\sigma_0^2 \chi$, a tadpole for χ .

$$\sqrt{-g}\mathcal{L} = a^3|\dot{\chi}|^2 - a|\partial_i\chi|^2 + ia^3\mu(\chi\dot{\chi}^* - \chi^*\dot{\chi}) - a^3\left(m_\chi^2|\chi|^2 - Av_\sigma^2(\chi + \chi^*)\right)$$

Chemical potential

Initial U(1) number density:

$$n_{\chi}^{(\rm ini)} = -2\mu v_{\chi}^2 = -\frac{2\mu A^2 v_{\sigma}^4}{m_{\chi}^4 + 9H^2\mu^2}$$

does not dilute with inflation!

Baryogenesis during inflation

- We use the phase transition of σ as a switch:
- In the Z_2 restored phase:
 - No tadpole for χ , the U(1) breaking interactions become perturbative.
 - We need to consider the washout effects from the explicit breaking term.
 - We need to further engineer the model to transfer this U(1) number to the baryon number.
- The phase transition happened in a very short period ($\beta \gg H$), the change of U(1) number during the phase transition can be neglected.

Baryogenesis during inflation

• Today's baryon number

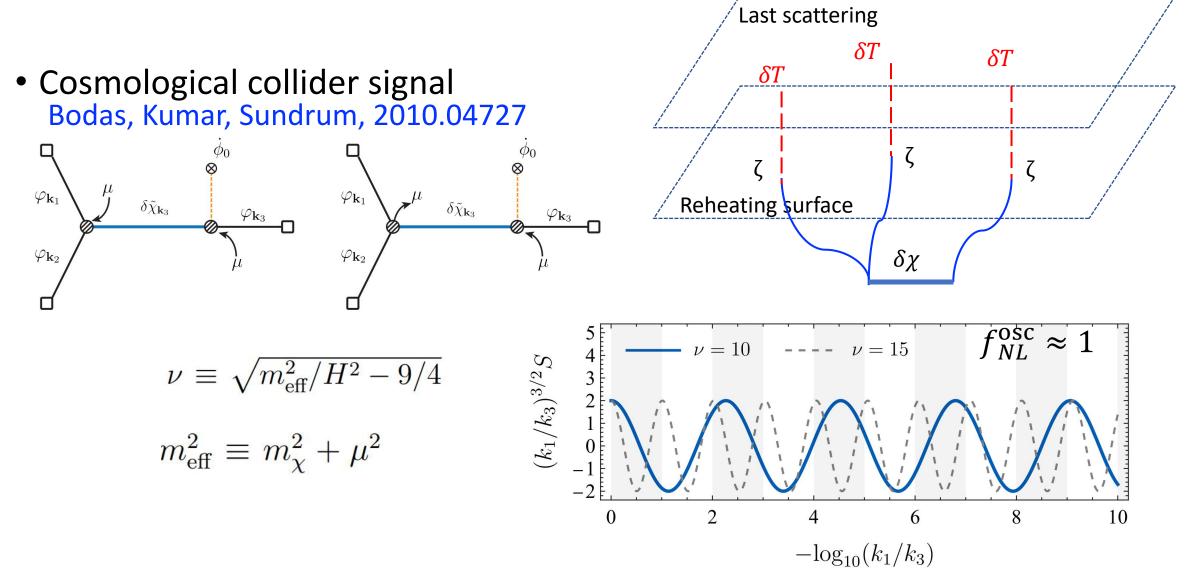
$$n_B^{(0)} = \frac{2\mu A^2 v_{\sigma}^4}{m_{\chi}^4 + 9H^2 \mu^2} z_{\rm ph}^{-3}$$

$$\eta = \frac{n_B^{(0)}}{n_{\gamma}} \approx 10^{-9} \times \left(\frac{H}{10^{14} \text{ GeV}}\right)^{-1/2} \times \frac{c_A^2 c_\mu \theta}{9c_\mu^2 + c_{m_{\chi}}^4} \times e^{-(3N_e - 29)}$$

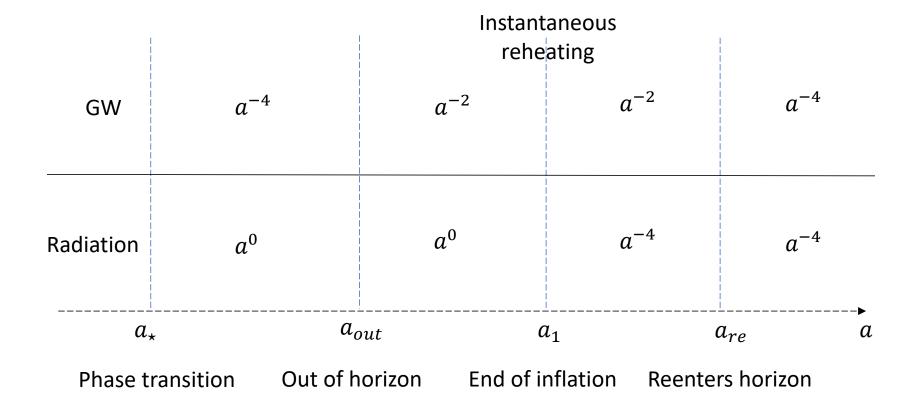
$$c_A = \frac{A}{H} , \ c_\mu = \frac{\mu}{H} , \ c_{m_{\chi}} = \frac{m_{\chi}}{H} , \ \theta = \frac{v_{\sigma}^4}{\rho_{\rm inf}}$$

HA, Qi Chen, Yuan Yin, 2409.05833

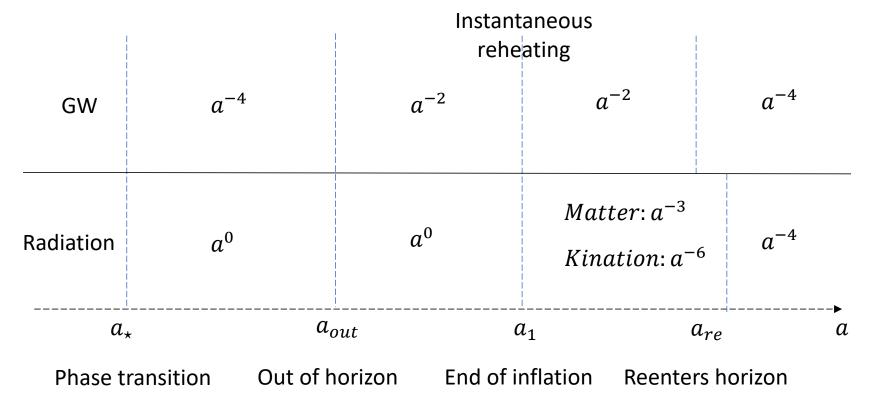
Baryogenesis during inflation



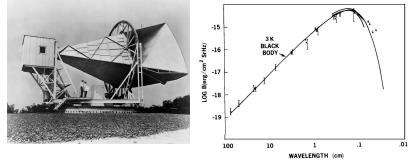
Redshifts of the GW signal



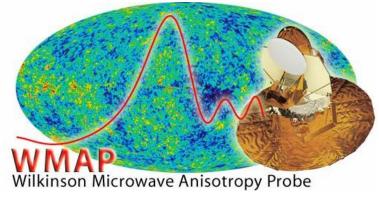
Intermediate stages between inflation and reheating



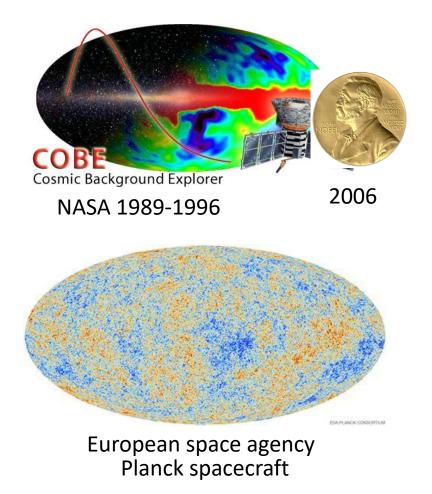
Why do we need inflation?



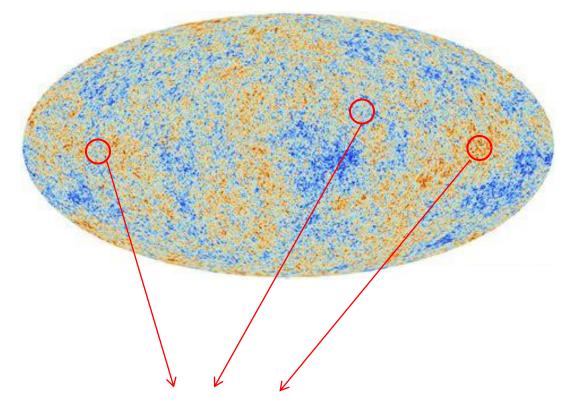
Bell Laboratory Penzias and Wilson 1964



NASA 2001-2010



The causality problem

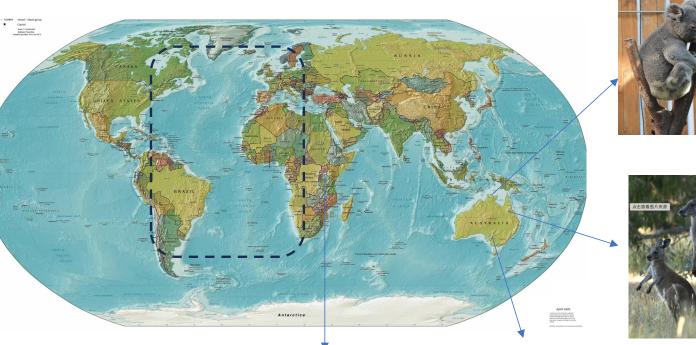


Big Bang Sigularity

Same temperature and similar fluctuations.

Causality problems usually indicate big discoveries!

Alfred Wegener: **Continental drift** hypothesis



Animals with brood pouch 育儿袋

ostrich

emu

Causality problems usually indicate big discoveries!

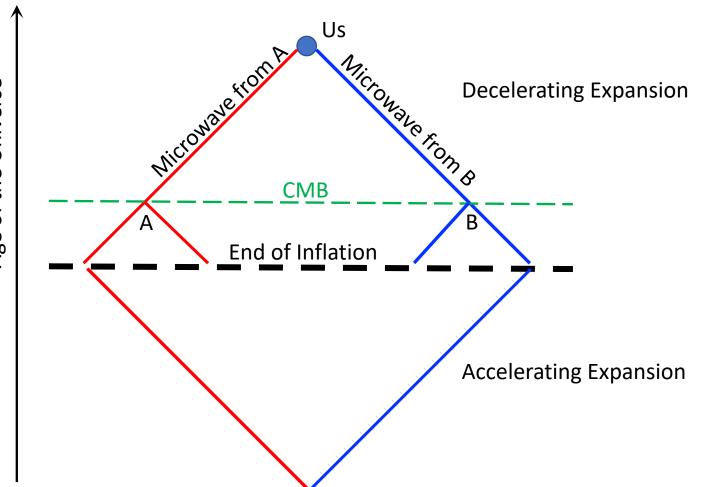
Alfred Wegener: Continental drift hypothesis

Animals with brood pouch 育儿袋

ostrich

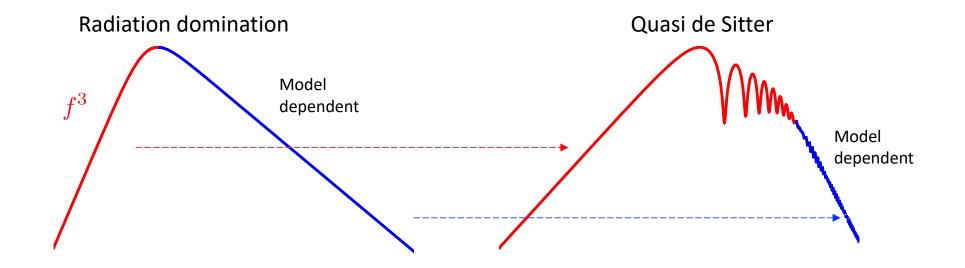
emu

Inflation theory



Backups

Spectrum distortion by inflation



GW from instantaneous and local sources (qualitative study)

• E.O.M. of GW

$$h_{ij}'' + \frac{2a'}{a}h_{ij}' - \nabla^2 h_{ij} = 16\pi^2 G_N a^2 \sigma_{ij}$$

• For an instantaneous and local source,

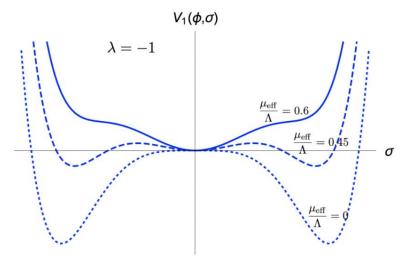
Traceless and transverse

 $ds^{2} = a^{2}(\tau) \left[-d\tau^{2} + (\delta_{ij} + h_{ij})dx^{i}dx^{j} \right]$

 $\sigma_{ij} \sim \delta(\mathbf{x})\delta(\tau - \tau')$

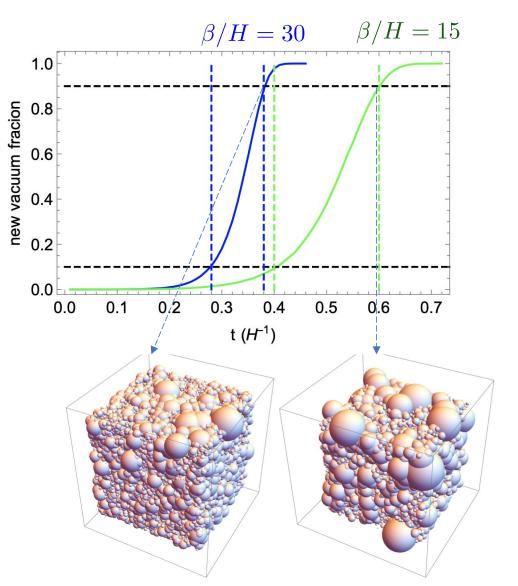
• E.O.M. in Fourier space

$$h''(\tau, \mathbf{k}) + \frac{2a'}{a}h'(\tau, \mathbf{k}) + k^2h(\tau, \mathbf{k}) = 16\pi G_N a^{-1}T\delta(\tau - \tau')$$

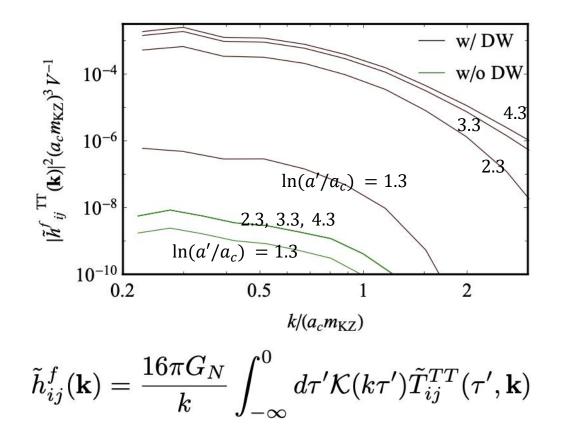


 S_4 becomes smaller during

- $\beta = -\frac{dS_4}{dt}$, determines the rate of the phase transition.
- Phase transition completes if $\beta \gg H$.



Calculation of GWs



With domains, the dominant contribution to \tilde{h}^f happens around $\ln (a'/a_c) \sim 2$ to 3.

Without domains $(\delta \sigma \rightarrow |\delta \sigma|)$, the dominant contribution to \tilde{h}^f stops around $\ln (a'/a_c) \sim 2$, and the magnitude is much smaller.

The dominant contribution to GWs is from domain walls.

Formation of domain walls

• Landau-Ginzburg type

$$W=-rac{1}{2}m_{ ext{eff}}^2\sigma^2+rac{\lambda}{4}\sigma^4$$
 $m_{ ext{eff}}^2=y\phi^2-m^2$
Inflaton field

• Kibble-Zurek mechanism

c for critial

$$V_{\rm KZ} = -\frac{1}{2}m_{\rm KZ}^3 a_c^{-1} (\tau - \tau_c)\sigma^2 + \frac{\lambda}{4}\sigma^4$$

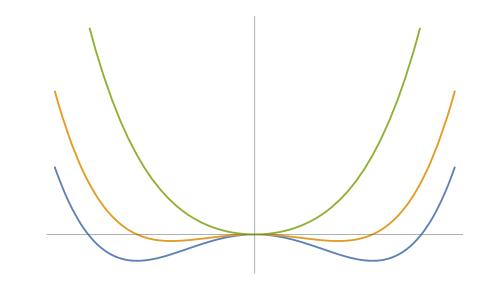
- $m_{\rm KZ}$ determines the average distances between the domain walls.

Kibble 1976, Zurek 1985

$$m_{\mathrm{KZ}(B)}^3 = -ya_c \frac{d\phi_0^2}{d\tau} = \frac{2^{3/2}\varepsilon^{1/2}m^2HM_{\mathrm{pl}}}{\phi_0(\tau_c)}$$

Murayama & Shu, 0905.1720

$$H^2 \ll m_{\rm KZ}^2 \ll m^2$$



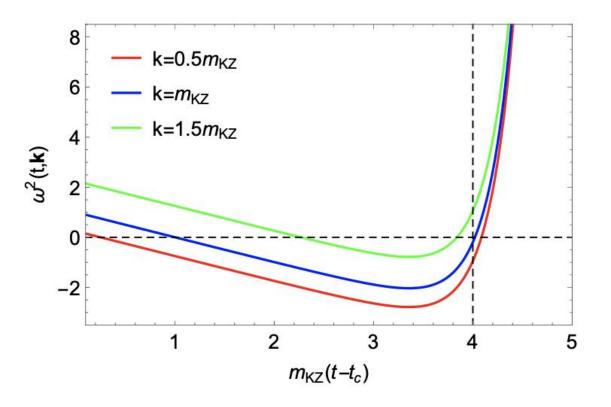
Formation of domain walls

• Stop of the tachyonic growth

$$k^2 - a_c^2 m_{\mathrm{KZ}}^3(\tau - \tau_c) + \frac{\lambda}{2} \langle \sigma^2(\tau, \mathbf{x}) \rangle$$

Growth exponentially

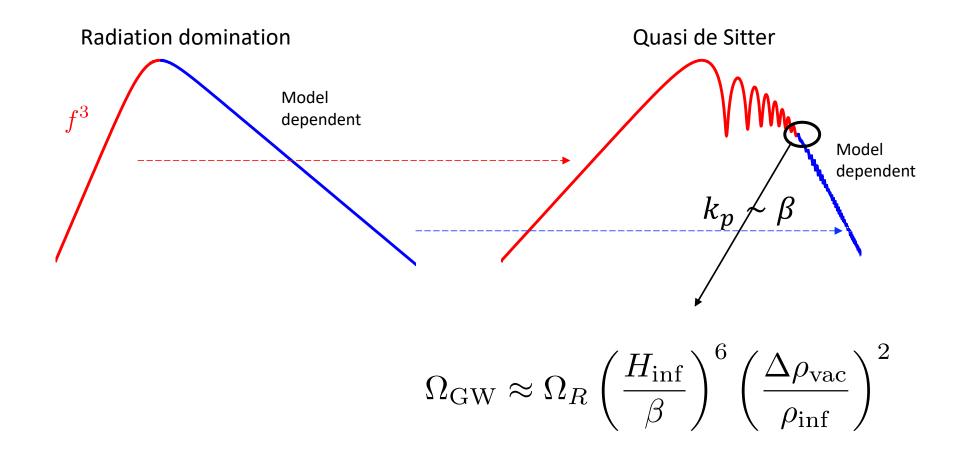
• Only modes with k smaller than about m_{KZ} can have a chance to grow exponentially.



Outlook

- The fate of the domain walls.
- Other topologcial defects.
- Application to high scale particle physics models.
- Baryogenesis (work in progress)

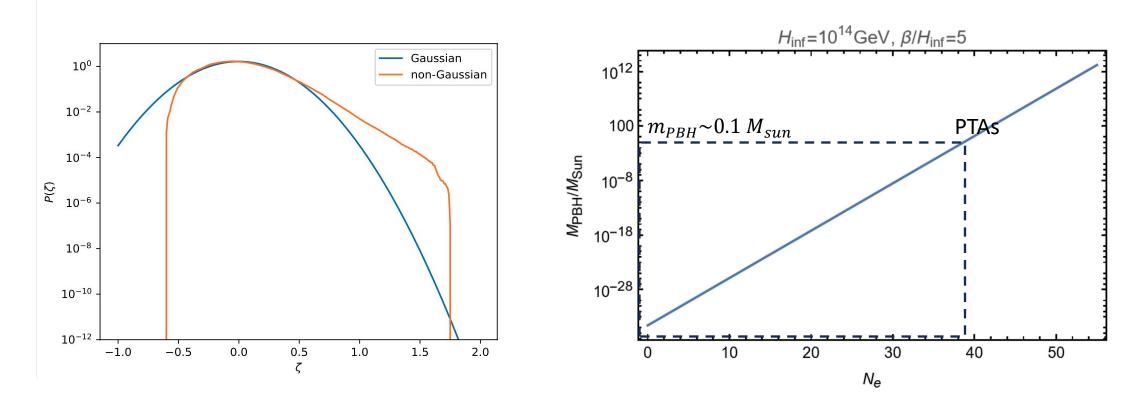
Spectrum distortion by inflation



Primordial Black Holes

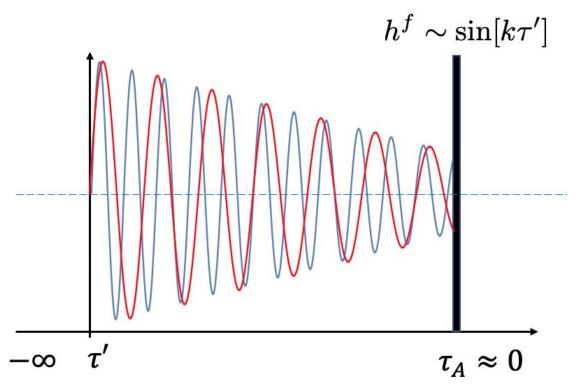
HA, Boye Su, Lian-Tao Wang, Chen Yang, work in progress

- PBHs will form if $\Delta_{\zeta}^2 \sim 0.01$
- The power spectrum is highly non-Gaussian



GW from instantaneous and local sources (qualitative study)

- The conformal time between the source and the horizon is fixed.
- The phase of *h* at the source is fixed.
- The value of h^f at the horizon oscillates with k.
- h^f is the initial condition for later evolution.

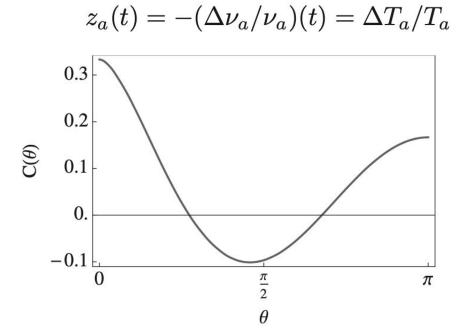


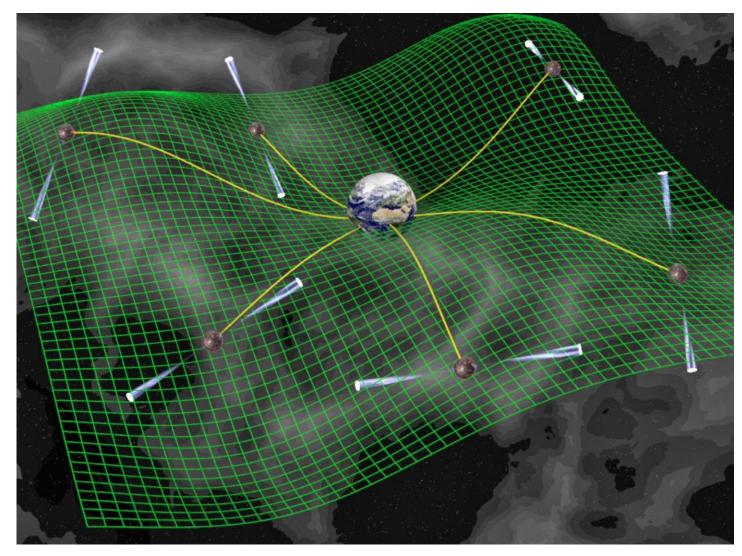
Observation from PTAs

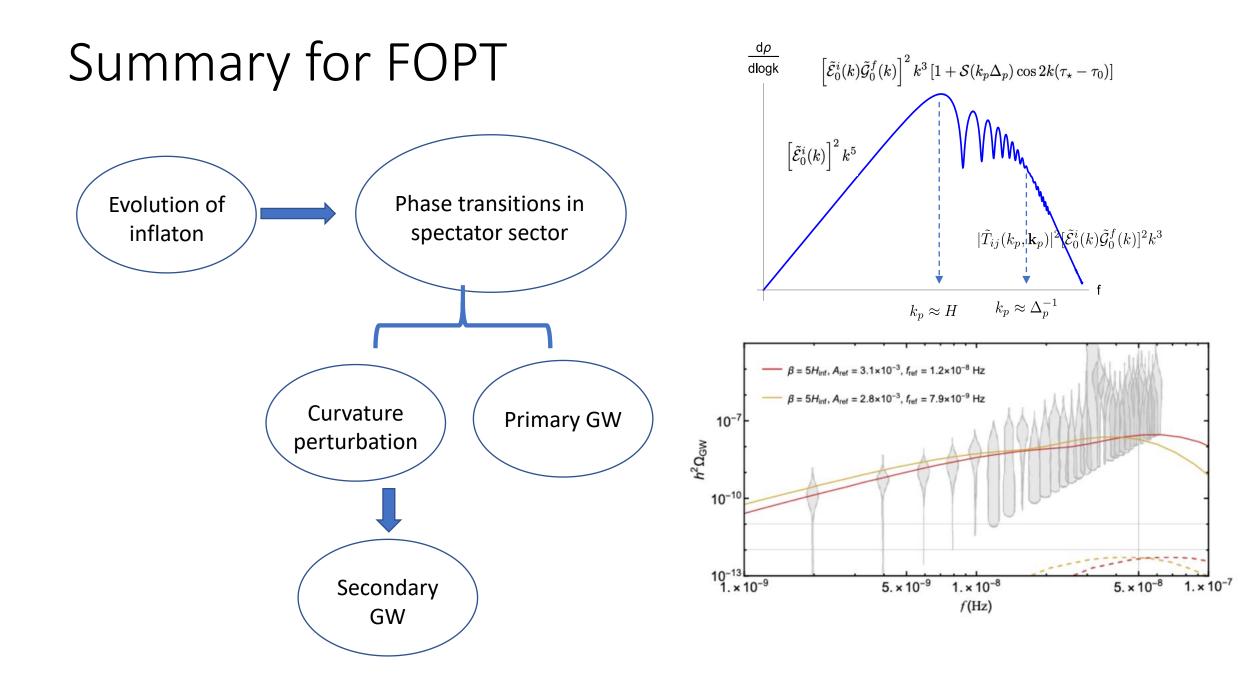
• Hellings-Downs curve

$$\langle z_a(t)z_b(t)\rangle = C(\theta_{ab})\int_0^\infty df\,S_h(f)$$

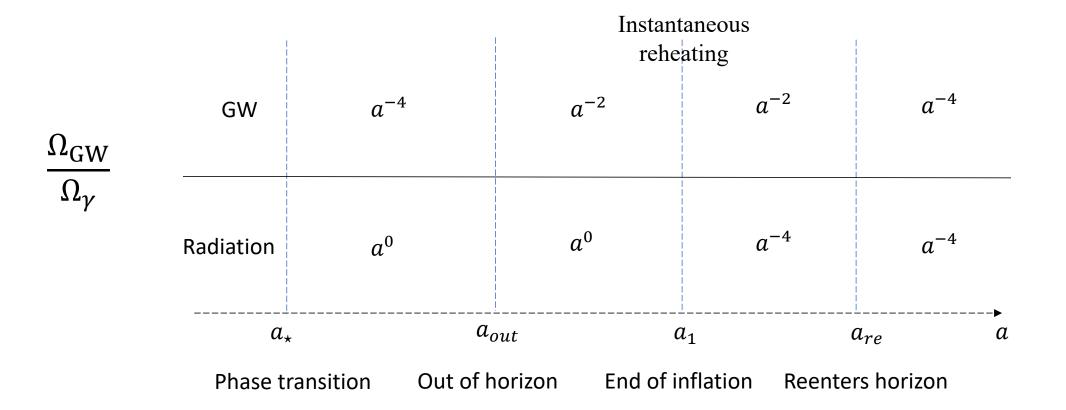
Angular correlation



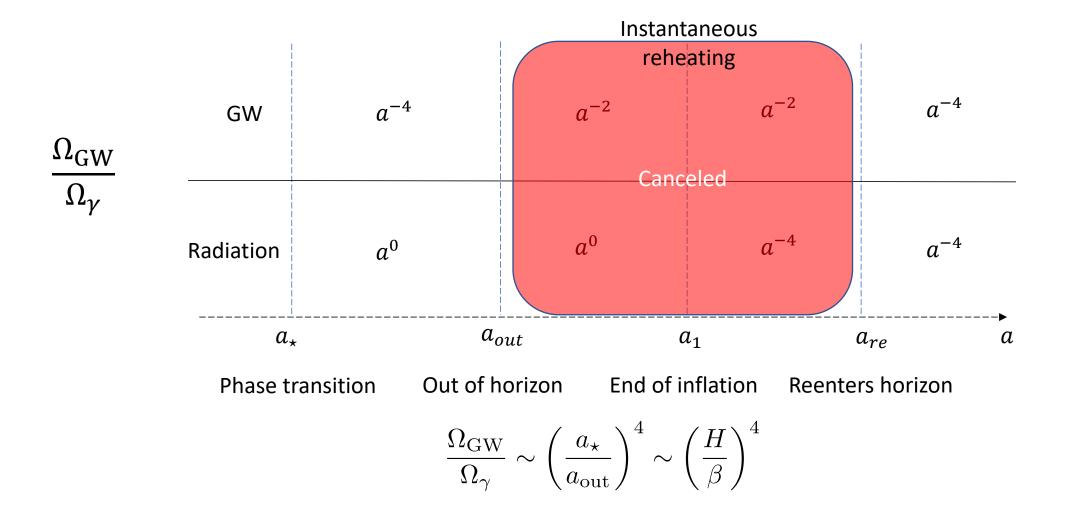




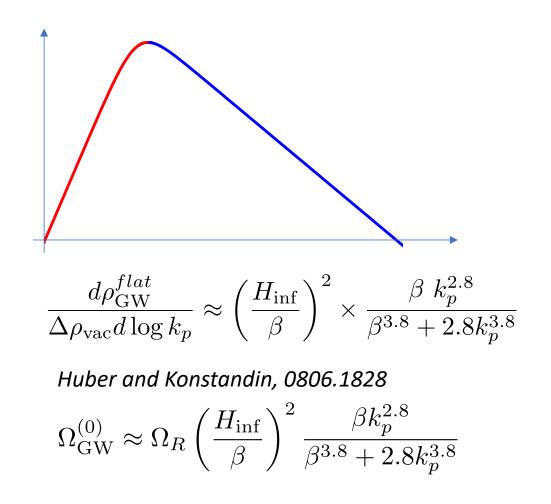
Redshifts of the GW signal

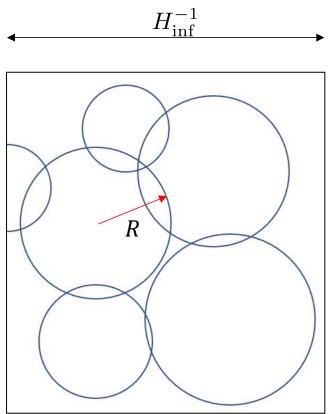


Redshifts of the GW signal



GWs produced in flat space-time





•
$$\beta = \left| \frac{dS_4}{dt} \right| = \frac{dS_4}{d\log\mu_{\text{eff}}^2} \times \left| \frac{2\dot{\phi}}{\phi\left(1 - \frac{\mu^2}{c^2\phi^2}\right)} \right|$$

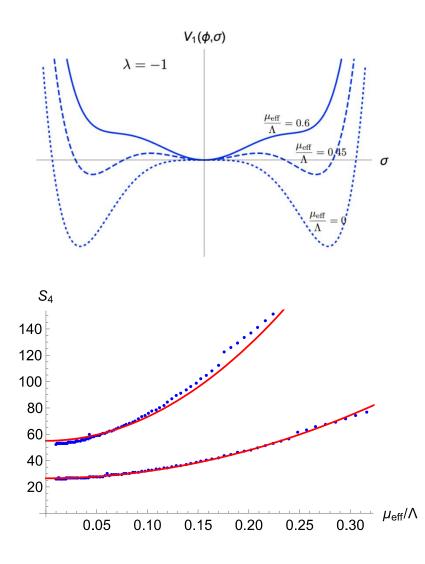
$$\longrightarrow \quad \frac{\beta}{H} = \left| \frac{dS_4}{d\log\mu_{\text{eff}}^2} \right| (2\epsilon)^{1/2} \times \frac{M_{\text{pl}}}{\left| \phi\left(1 - \frac{\mu^2}{c^2\phi^2}\right) \right|}$$

$$\int_{\phi_{\text{end}}}^{\phi_{\text{PT}}} \frac{d\phi}{\sqrt{2\epsilon}M_{\text{pl}}} = N_{\text{e}}$$

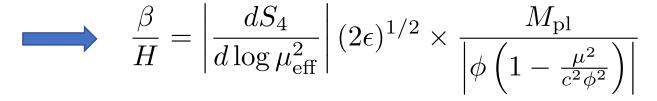
$$\sim \mu_{\text{eff}}^2/\Lambda^2$$

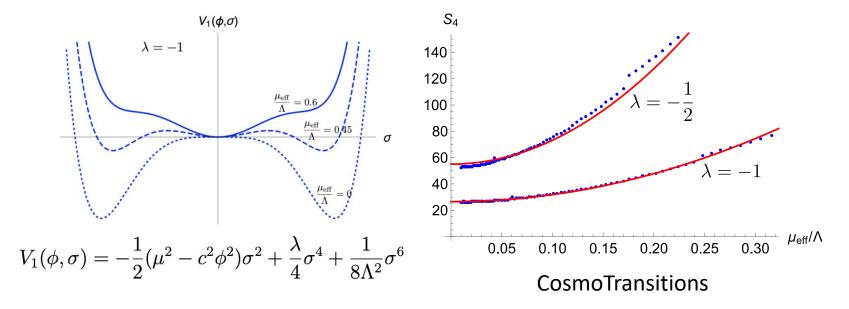
$$\frac{\beta}{H} \sim \left| \frac{dS_4}{d\log\mu_{\text{eff}}^2} \right| \times \frac{\Lambda^2}{\mu_{\text{eff}}^2} \times \frac{1}{N_e}$$

It is natural to have $\beta/H \sim O(10)$.



$$\beta = \left| \frac{dS_4}{dt} \right| = \frac{dS_4}{d\log\mu_{\text{eff}}^2} \times \left| \frac{2\dot{\phi}}{\phi\left(1 - \frac{\mu^2}{c^2\phi^2}\right)} \right| \qquad \mu_{\text{eff}}^2 = -(\mu^2 - c^2\phi^2)$$

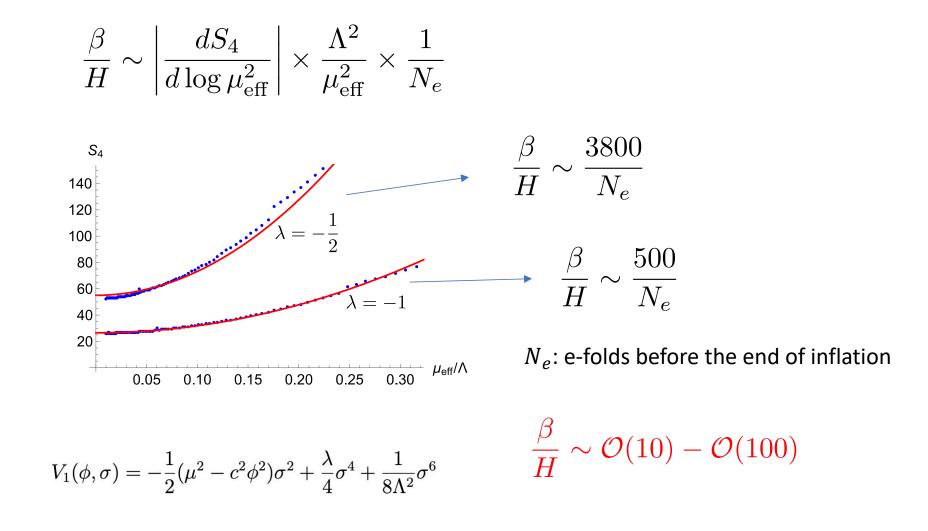




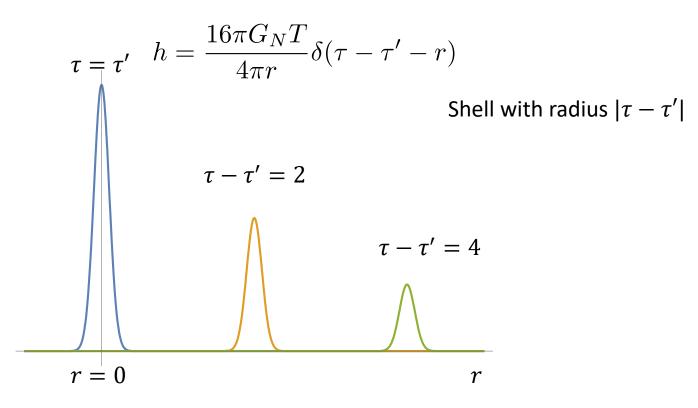
 $V_1(\phi,\sigma)$ lacksquare $\sim \mu_{
m eff}^2/\Lambda^2$ $\int_{\phi_{\rm end}}^{\varphi_{\rm PT}} \frac{d\phi}{\sqrt{2\epsilon}M_{\rm e}} = N_{\rm e}$

$$\frac{\beta}{H} \sim \left| \frac{dS_4}{d\log\mu_{\rm eff}^2} \right| \times \frac{\Lambda^2}{\mu_{\rm eff}^2} \times \frac{1}{N_e}$$

•



- What is the spatial configuration of h_{ij} ?
- In Minkovski space



- What is the spatial configuration of h_{ij} ?
- In de Sitter space

$$h_{ij}(\tau, \mathbf{k}) = -16\pi G_N H T_{ij} \tau \Theta(\tau - \tau') \left[\frac{\sin k(\tau - \tau')}{k} + \left(\frac{1}{k^2 \tau} - \frac{1}{k^2 \tau'} \right) \cos k(\tau - \tau') + \frac{1}{k^3 \tau \tau'} \sin k(\tau - \tau') \right]$$

- What is the spatial configuration of h_{ij} ?
- In de Sitter space

$$\frac{\tau}{4\pi x} \delta(\tau - \tau' - |\mathbf{x}|)$$

$$h_{ij}(\tau, \mathbf{k}) = -16\pi G_N H T_{ij} \tau \Theta(\tau - \tau') \left[\frac{\sin k(\tau - \tau')}{k}\right]$$

$$+\left(\frac{1}{k^{2}\tau}-\frac{1}{k^{2}\tau'}\right)\cos k(\tau-\tau')+\frac{1}{k^{3}\tau\tau'}\sin k(\tau-\tau')\right]$$
$$\frac{1}{4\pi}\Theta(\tau-\tau'-|\mathbf{x}|)$$

- What is the spatial configuration of h_{ij} ?
- In de Sitter space

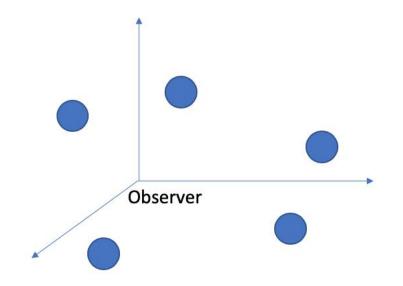
$$h(\tau, \mathbf{x}) \sim \frac{\tau}{4\pi x} \delta(\tau - \tau' - x) + \frac{1}{4\pi} \Theta(\tau - \tau' - x)$$

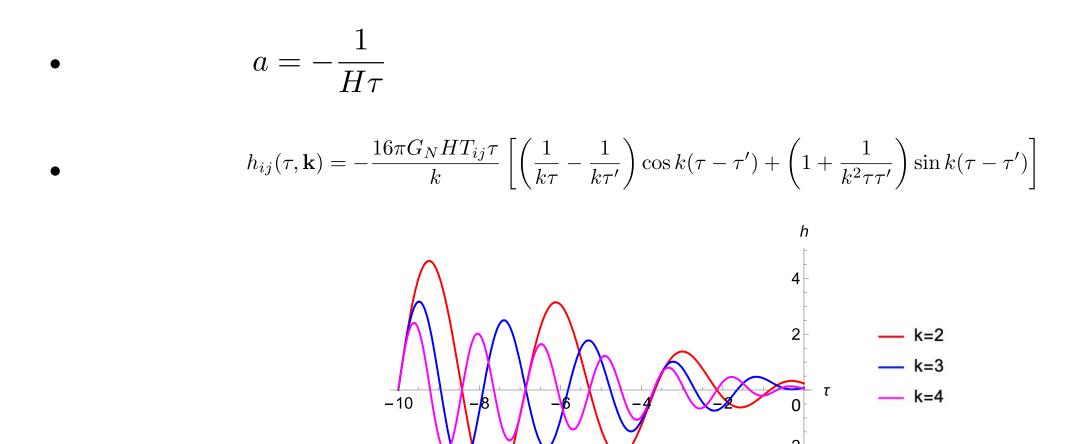
Similar to Minkovski Intrinsic in de Sitter
Decreases with both x and τ constant

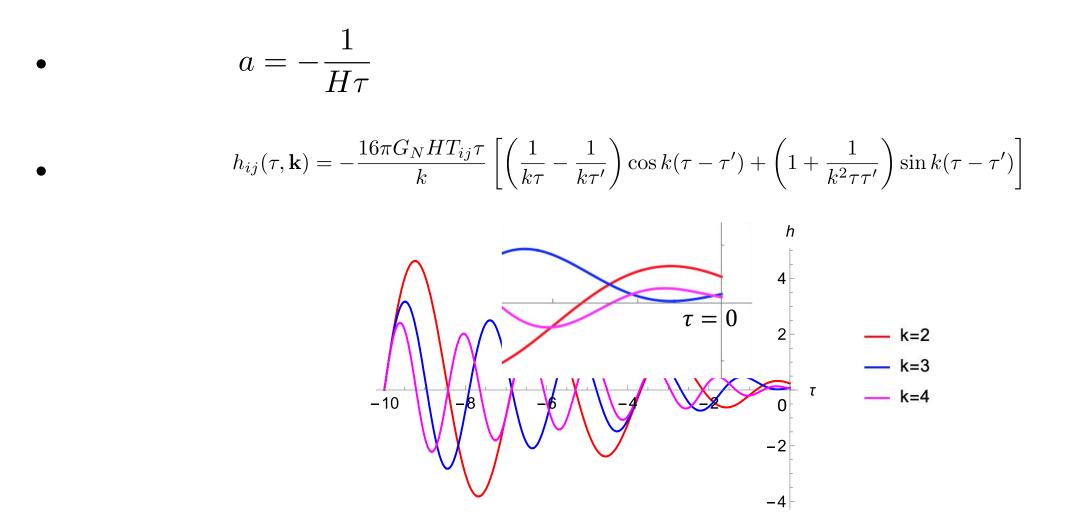
Vanishes out of horizon

• At
$$\tau \to 0$$
 $h(\tau, \mathbf{x}) \sim \frac{1}{4\pi} \Theta(|\tau'| - x)$

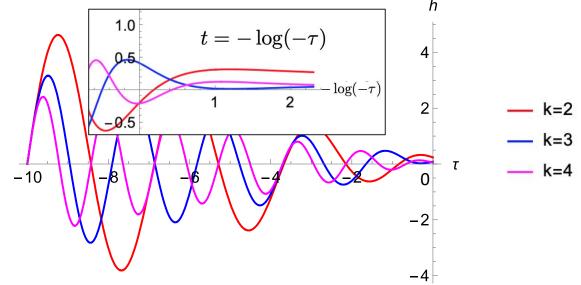
- A ball of GW, with radius $|\tau'|$
- *h* uniformally distributed inside the GW balls.
- All the balls have the same radius.





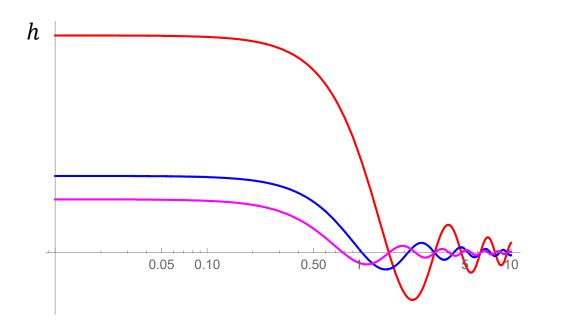


•
$$a = -\frac{1}{H\tau}$$
•
$$h_{ij}(\tau, \mathbf{k}) = -\frac{16\pi G_N H T_{ij}\tau}{k} \left[\left(\frac{1}{k\tau} - \frac{1}{k\tau'} \right) \cos k(\tau - \tau') + \left(1 + \frac{1}{k^2\tau\tau'} \right) \sin k(\tau - \tau') \right]$$



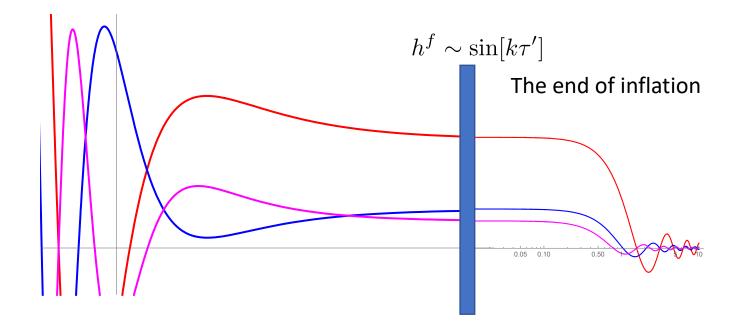
After inflation

- $h^{f}(k)$ is the initial amplitude for the GW oscillation after inflation.
- All the modes start to oscillate with the same phase.
- Example, in RD, the oscillation is $\frac{\sin k\tau}{k\tau}$

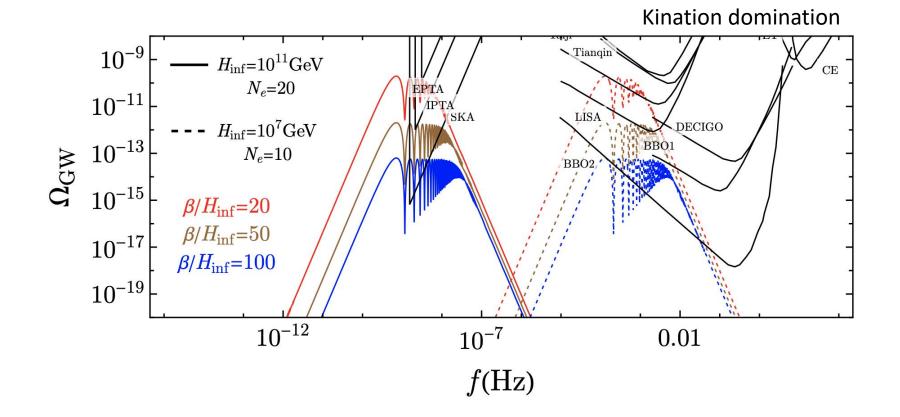


After inflation

- $h^{f}(k)$ is the initial amplitude for the GW oscillation after inflation.
- All the modes start to oscillate with the same phase.
- Example, in RD, the oscillation is $\frac{\sin k\tau}{k\tau}$

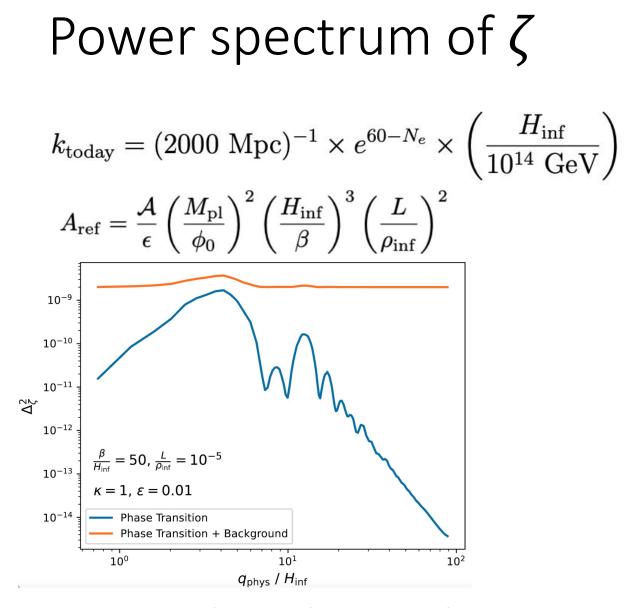


• Signal strength is also sensitive to intermediate stages

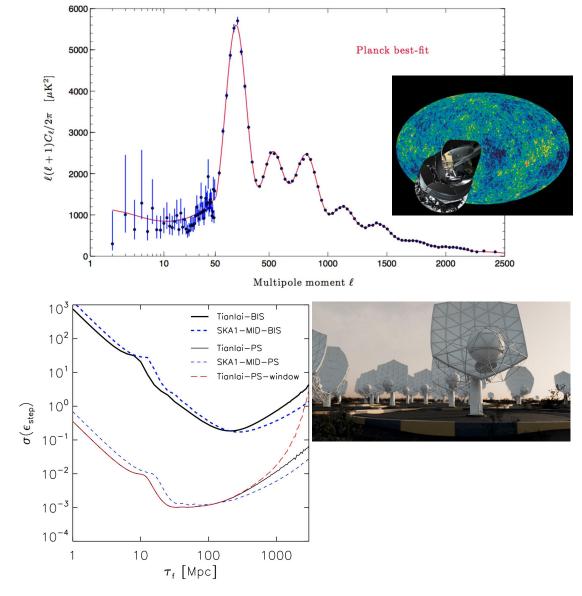


 10^{-9} Tiangir - $H_{\rm inf} = 10^{11} {\rm GeV}$ CE $N_e=20$ EPTA 10^{-11} **IPTA** SKA LISA $\begin{array}{c} H_{\mathrm{inf}}{=}10^{7}\mathrm{GeV}\\ N_{e}{=}10 \end{array}$ DECIGO 10^{-13} BBO1 Ω_{GW} BBO 10^{-15} $egin{aligned} eta/H_{\mathrm{inf}} = 20 \ eta/H_{\mathrm{inf}} = 50 \ eta/H_{\mathrm{inf}} = 100 \end{aligned}$ 10^{-17} 10^{-19} 10^{-12} 10^{-7} 0.01f(Hz)

With kination domination intermediate stage



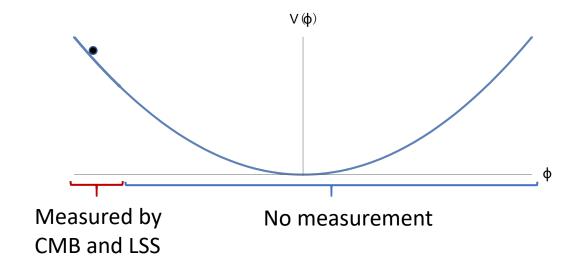
HA, Boye Su, Yidong Xu, Chen Yang, work in progress.



Xu, Hamann, Chen, 1607.00817

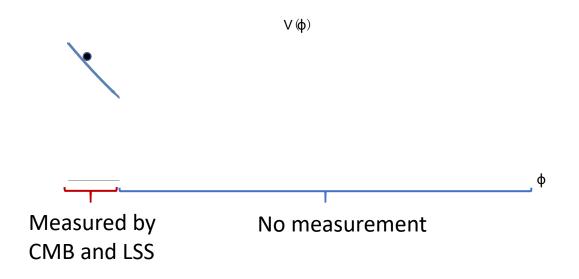
Slow roll models

- We usually assume a potential.
- Use it to calculate n_s , r ...



Slow roll models

- We usually assume a potential.
- Use it to calculate n_s , r ...



Slow roll models

- We usually assume a potential.
- Use it to calculate n_s , r ...

