Towards a Hamiltonian First Principle Approach Basis Light-Front Quantization

Xingbo Zhao

With

Chandan Mondal, Siqi Xu, Yang Li, James P. Vary,

Hongyao Yu, Zhi Hu, Zhiming Zhu

Institute of Modern Physics, Chinese Academy of Science

非微扰方法及其在高能物理中的应用专题研讨会 **彭恒武高能基**础理论研究中心,中国科技大学,合肥,10/27/2024

Outline

- **B**asis Light-Front Quantization (**BLFQ**)
 - Light-front Quantization
 - QCD Light-front Hamiltonian
 - BLFQ Procedure
- Application to Proton
 - Form Factors (FFs)
 - Parton Distribution Functions (PDFs)
 - Generalized Parton Distribution Functions (GPDs
- Conclusion and Outlook

Major Questions in Nuclear Physics

Electron–Ion Colliders

• Electron-Ion colliders with high collision energy and high luminosity

- EIC in the US is under construction by BNL@New York
- EicC in China is been planned by IMPCAS@Huizhou ∫

Nonperturbative Approach

 Stationary Schrödinger equation universally describes boundstate structure

$$H|\psi\rangle = E|\psi\rangle$$

• Eigenstates $|\psi
angle$ encode full information of the system

Nonrelativistic

atom

Nonrelativistic

nucleus

Relativistic

nucleon

 Major challenges from relativity: frame dependence, particle number not conserving...

Light-front Quantization

[Dirac, 1949]

Main advantage:

 Frame-independent light-front wave functions

Light-Front Field Theory

Light-Front Coordinates

Light-front variables:

 $x^+ = x^0 + x^3$ (light-front time), $x^- = x^0 - x^3$, $x^\perp = x^{1,2}$

 $P^{-} = P^{0} - P^{3}$ (light-front Hamiltonian), $P^{+} = P^{0} + P^{3}$, $P^{\perp} = P^{1,2}$

Dispersion relation:
$$P^{-} = \frac{m^2 + P_{\wedge}^2}{P^{+}}$$
 Light-cone gauge: $A^{+} = 0$

Eigenvalue equation:

$$P^{-}|\beta\rangle = P_{\beta}^{-}|\beta\rangle$$

• **P**⁻: Light-Front Hamiltonian

 $\circ |\beta\rangle$: Eigenstates

 $\circ P_{\beta}^{-}$: Eigenvalues for eigenstates

Baryon Structure

Light-front wave functions

- Frame-independent light-front wave functions
- Observables are defined on the light-front
- Light-front wave functions carry parton interpretation

Basis Light-Front Quantization

Hamiltonian eigenvalue equation:

[Vary, et.al, Phys.Rev.C '10]

- $P^{-}|\beta\rangle = P_{\beta}^{-}|\beta\rangle$
- **P**⁻: Light-Front Hamiltonian
- \circ | β : Eigenstates
- $\circ P_{\beta}^{-}$: Eigenvalues for eigenstates

momentum

Basis setup:

Fock sector expansion: $|\beta_{nucleon}\rangle = |qqq\rangle + |qqqg\rangle + |qqqq\bar{q}\rangle + \cdots$

Single particle basis $|\alpha\rangle = |n_1, m_1, n_2, m_2, n_3, m_3\rangle \otimes |k_1^+, k_2^+, k_3^+\rangle \otimes |\lambda_1, \lambda_2, \lambda_3, C\rangle$ in $|qqq\rangle$: 2-dimension harmonic Discretized longitudinal Helicity and color oscillator

$$\sum_{i} (2n_i + |m_i| + 1) \le N_{\max} \qquad \sum_{i} k$$

$$K_i^+ = K_{\max}$$
 $\Lambda = \sum_i (\lambda_i + m_i)$

\succ Advantages:

- 1. Rotational symmetry in transverse plane
- 2. Exact factorization between center-of-mass motion and intrinsic motion
- 3. Harmonic oscillator basis supplies correct infrared behavior for hadrons

Light-front Hamiltonian

QCD light-front Hamiltonian can be derived from QCD Lagrangian:

BLFQ Procedure

Dimension of Basis States

Expansion in BLFQ basis

$$\begin{split} |\psi_{baryon}\rangle &= |qqq\rangle + |qqqg\rangle + |qqqq\bar{q}\bar{q}\rangle + \cdots \\ |\psi_{meson}\rangle &= |q\bar{q}\rangle + |q\bar{q}g\rangle + |q\bar{q}q\bar{q}\bar{q}\rangle + \cdots \\ |\psi_{deuteron}\rangle &= |qqqqqq\rangle + |qqqqqqg\rangle + \cdots \end{split}$$

For the entire truncation parameters ($N_{max} = 10$, K_{max} =16), the dimension of the Basis states with different Fock sector expansion

Dimension of Basis States

Expansion in BLFQ basis

Challenges: The basis size increases exponentially Parallel computation & GPU acceleration needed

Works on Nucleon

 $|N\rangle = |qqq\rangle + |qqqg\rangle + |qqq u\bar{u}\rangle + |qqq d\bar{d}\rangle + |qqq s\bar{s}\rangle + \cdots$

> Wave Functions:

[PRD,102,016008] (2019) [PRD,108 9, 094002] (2023) [arXiv:2408.11298] (2024)

[arXiv:2408.09988] (2024)

➢ GPDs:

[PRD,104,094036] (2021) [PLB,847,138305] (2023)

[PRD,105,094018] (2022) [PRD,110.056027] (2024)

[PRD,109,014015] (2024)

[PLB,855,138809] (2024)

> TMDs:

[PLB,833,137360] (2022) [PLB,855 138831] (2024) [PRD,108,036009] (2023)

Higher-twist Distribution (GPD,TMD,DPD):

[PRD,109,034031] (2024) [arXiv:2410.11574] (2024)

[PLB,855 138829] (2024)

Gravitational Form Factors: [PRD,110,056027] (2024)

Full BLFQ

 $|N\rangle \rightarrow |qqq\rangle + |qqqg\rangle + |qqqu\bar{u}\rangle + |qqqd\bar{d}\rangle + |qqqs\bar{s}\rangle + |qqqgg\rangle$

Fock Sector Decomposition

$\left| P_{baryon} \right\rangle \rightarrow \left| qqqq \right\rangle + \left| qqqqg \right\rangle + \left| qqqu\bar{u} \right\rangle + \left| qqqd\bar{d} \right\rangle + \left| qqqs\bar{s} \right\rangle + \left| qqqgg \right\rangle$

m _u	m_d	m _s	m_f	g	b	b _{inst}
0.5 GeV	0.45 GeV	0.6 GeV	3.0 GeV	2.5	0.6 GeV	3.0 GeV

Truncation parameter: $N_{\text{max}} = 7$ and $K_{\text{max}} = 10$

Renormalization Scheme

 $|P_{baryon}\rangle \rightarrow |qqq\rangle + |qqqg\rangle + |qqqu\bar{u}\rangle + |qqqd\bar{d}\rangle + |qqqs\bar{s}\rangle + |qqqgg\rangle$

Single particle δm = Particles in bound state δm

On mass shell renormalization

The mass counter term in $|qqq\rangle$: Ο 66660T $M^2 = m_q^2$ For quarks The mass counter term in $|qqq g\rangle$: Ο $M^2 = m_q^2$ For quarks $M^2 = 0$ Forgluon

Renormalization Scheme

Including the higher Fock sector, the mass counter term of the valence was suppressed.

Electromagnetic Form Factor

Elastic scattering of proton

[R. Hofstadter, Nobel Prize 1961]

 $e(p)+h(P) \to e(p')+h(P')$

• Elastic electron scattering established the extended nature of the proton (proton radius).

(q)

The Fourier transformation of these **form factors provide spatial distributions** (*charge and magnetization distributions*).

$$\langle N(p')|J^{\mu}(0)|N(p)\rangle = \bar{u}(p')\left[\gamma^{\mu}F_{1}(q^{2}) + \frac{i\sigma^{\mu\nu}}{2m_{N}}q_{\nu}F_{2}(q^{2})\right]u(p)$$

Dirac Form Factor

Pauli Form Factor

Nucleon Form Factor

Preliminary results

BLFQ results qualitatively agree with the experimental data for Dirac and Pauli FFs

Parton Distribution Functions (PDF)

Deep Inelastic Scattering (SLAC 1968)

$$e(p) + h(P) = e'(p') + X(P')$$

♦ Localized probe:

$$Q^2 = -(p - p')^2 \gg 1 \text{ fm}^{-2}$$
$$\stackrel{1}{\longrightarrow} \quad \frac{1}{Q} \ll 1 \text{ fm}$$

Discovery of spin ½ quarks and partonic structure

Parton distribution functions (PDFs) are extracted from DIS processes.

$$\Phi^{[\gamma^+]}(x,Q^2) = \int \frac{dz^-}{8\pi} e^{ixP^+z^-/2} \langle P,\Lambda | \bar{\psi}(x)\gamma^+\psi(0) | P,\Lambda \rangle$$

PDFs encode the *distribution of longitudinal momentum and polarization* carried by the constituents

Parton Distribution Function

Parton distribution functions with five Fock sectors

As we include $|qqqgg\rangle$ Fock sector, the endpoint behavior can be improved

Due to Fock sector truncation (no $qqq q\bar{q} g, qqq ggg$), five-particle contribution too small

Our results qualitative agree with experimental results

Preliminary results

Helicity PDFs

Transversity PDFs

Transversity PDF of u and d has an opposite sign

According to current calculations, there is an asymmetry between $ar{u}$, $ar{d}$, and $ar{s}$

As we increase the truncation parameter, our results approach the experimental data.

Tensor Charge: $\delta u = 0.91$, $\delta d = -0.10$ At initial scale

Generalized Parton Distribution Functions

Deeply Virtual Compton Scattering (DVCS)

Encode the information about three dimensional spatial structure the spin and orbital angular momentum

With **increasing momentum transfer** (*t*), the **peaks of distributions** shift to **larger** *x*;

$$t = \Delta^2, x = \frac{k^+}{P^+}, \zeta = \frac{\Delta^+}{P^+} = 0 \qquad b_\perp \stackrel{FT}{\to} \Delta_\perp$$

Generalized Parton Distribution Function

Conclusions

- BLFQ: a non-perturbative approach based on QCD Light-front Hamiltonian
- $|qqq\rangle + |qqqg\rangle + |qqqq\bar{q}\rangle + |qqq\bar{q}g\rangle$ Fock sectors have been included
- Include all QCD interactions except four-gluon interactions
- Results qualitatively agree with global fitting
- Working towards a First Principal Approach

Outlook

The Institute of Modern Physics, Chinese Academy of Sciences, Huizhou Campus, China.

iiii November 25-29, 2024

Physics Topics and Tools

- » Physics of EIC and EicC
- » Hadron spectroscopy and reactions
- » Hadron/nuclear structure
- » Spin physics
- » Relativistic many-body physics
- » QCD phase structure
- » Light-front field theory
- » AdS/CFT and holography
- » Nonperturbative QFT methods
- » Effective field theories
- » Lattice field theories
- » Quantum computing
- » Present and future facilities

International Advisory Committee

- » Stanley J. Brodsky (SLAC)
- » Ho-Meoyng Choi (Kyungpook National U.)
- » Stanislaw D. Glazek (Warsaw U.)
- » Chueng-Ryong Ji (NCSU)
- » Dayashankar Kulshreshtha (Delhi U.)
- » Gerald A. Miller (INT & U. Washington)
- » Wally Melnitchouk (TJNAF)

SCN

- » Barbara Pasquini (Pavia U.)
- » Wayne Nicholas Polyzou (U. of Iowa)
- » Nico G. Stefanis (Ruhr U.)

- » Wojciech Broniowski (JKU & Cracow, INP)
- » Tobias Frederico (ITA)
- » John R. Hiller (Idaho U.)
- » Vladimir Karmanov (Lebedev Inst.)
- » Cédric Lorcé (Ecole Polytechnique)
- » Anuradha Misra (Mumbai U.)
- » Teresa Peña (IST & Lisboa U.)
- » Giovanni Salmè (INFN Roma)
- » James P. Vary (Iowa State U.)

Local Organizing Committee

- » Xingbo Zhao (IMP,chair)
- » Jiangshan Lan (IMP,co-chair)
- » Chandan Mondal (IMP)
- » Satvir Kaur (IMP)
- » Siqi Xu (IMP)
- » Yair Mulian (IMP)
- » Yuxiang Zhao (IMP)

Registration and abstract submission opens : 1st April, 2024 Abstract submission deadline : 1st November, 2024 Registration closes : 1st November, 2024

Iightcone2024@impcas.ac.cn

https://indico.impcas.ac.cn/event/55

Thank you! See you in Huizhou©