引力子光子振荡

李淼

Gravitational Wave

- Gravity is weak between common objects
- Need to look in the universe for strong gravity
- Need to rotate celestial very fast, better close to speed of light, to generate strong gravitational wave
- Gravitational wave has been detected when two
 - blackholes merge
- LIGO has detected many cases
 - Frequency up to more than 100Hz

Gravitons

- Always assumed by physics community to exist
- $\cdot E = hf$
- Need high frequency to observe quantum properties
 - At least visible light frequency
 - Better $f > 10^14 Hz$
- Impossible for celestial objs.
- Need 10^19 Gev for particles
 - LHC 10^4 GeV

Gravitational Wave and Gravitons

Plane wave

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$$

$$h_{\mu\nu} = e_{\mu\nu}e^{ikx} + e^*_{\mu\nu}e^{-ikx}$$

- Classical gravitational field is measured on $e_{\mu\nu}$
- $e_{\mu\nu}$ much smaller when frequency goes higher
- Single graviton energy higher

• Polarization $k_{\mu} = (\omega, 0, 0, \omega)$

$$e_{\mu
u} = egin{pmatrix} 0 & 0 & 0 & 0 \ 0 & e_{11} & e_{12} & 0 \ 0 & e_{12} & -e_{11} & 0 \ 0 & 0 & 0 & 0 \end{pmatrix}$$

Stress Energy Tensor

$$\langle t_{\mu\nu} \rangle = \frac{k_{\mu}k_{\nu}}{8\pi G} (|e_{11}|^2 + |e_{12}|^2)$$

From Gravitons to Photons

• EM Action with gravity $L = \int \frac{d^4x \sqrt{g}}{D_{\mu}A_{\nu}} \left[-\frac{1}{4} g^{\mu\rho} g^{\nu\sigma} F_{\mu\nu} F_{\rho\sigma} + g^{\mu\nu} j_{\mu}(x) A_{\nu} \right]$ $D_{\nu}A_{\mu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} = F_{\mu\nu}$

$$L(h,A) = \int d^4x \left(\frac{1}{8} h_\rho^{\ \rho} \overline{F}_{\mu\nu} F^{\mu\nu} - \frac{1}{2} \overline{F}_{\mu\rho} F_\nu^{\ \rho} h^{\mu\nu} - \frac{1}{2} h_\nu^{\ \nu} j_\mu A^\mu + j_\mu A_\nu h^{\mu\nu} \right)$$

• Background field help to generate EM radiation, charge doesn't $L(h,A) = -2Re \int d^4x \, [\overline{E}E_1e_{11} + \overline{E}E_2e_{12}]e^{i\omega(z-t)}$

• Background electric or magnetic field perpendicular to gravitational wave propagation generate EM radiation, e_{11} and e_{12} generate different polarization

From Photon to Graviton

• The stress-energy tensor of electro-magnetic field:

$$T_{EM\mu\nu} = F_{\mu\lambda}F^{\lambda}{}_{\nu} - \frac{1}{4}\eta_{\mu\nu}F_{\rho\sigma}F^{\rho\sigma}$$

 Background field breaks angular momentum conservation

Plane wave energy tensor

$$T_{EM\mu
u} = egin{pmatrix} -\omega^2 A^2 & 0 & 0 & \omega^2 A^2 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ \omega^2 A^2 & 0 & 0 & \omega^2 A^2 \end{pmatrix}$$

• With a back ground electric field in x direction, and EM wave polarized in x direction

$$\begin{pmatrix}
-\omega \overline{E}Acos(\omega z - \omega t) & 0 & 0 & \omega \overline{E}Acos(\omega z - \omega t) \\
0 & -\omega \overline{E}Acos(\omega z - \omega t) & 0 & 0 \\
0 & 0 & \omega \overline{E}Acos(\omega z - \omega t) & 0 \\
\omega \overline{E}Acos(\omega z - \omega t) & 0 & \omega \overline{E}Acos(\omega z - \omega t) & 0 \\
0 & 0 & \omega \overline{E}Acos(\omega z - \omega t) & 0 \\
0 & 0 & \omega \overline{E}Acos(\omega z - \omega t) & 0 \\
0 & 0 & -\omega \overline{E}Acos(\omega z - \omega t) & 0 \\
0 & 0 & 0 & 0 \\
0 & -\omega \overline{E}Acos(\omega z - \omega t) & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

• With a back ground electric field in x direction, and EM wave polarized in y direction, the linear term of stress energy tensor is:

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -\omega \overline{E}Acos(\omega z - \omega t) & 0 \\ 0 & -\omega \overline{E}Acos(\omega z - \omega t) & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Computation

• The effective current:

$$\begin{aligned}
 j_x &= 2\omega \overline{E} |e_{11}| cos(\omega z - \omega t) \\
 j_y &= 2\omega \overline{E} |e_{12}| cos(\omega z - \omega t)
 \end{aligned}$$

Use Green's Function

$$A_{x}\left(r,\vec{\hat{k}},t\right) \approx \int_{inside} d^{3}x' \frac{\omega \overline{E}|e_{11}|}{2\pi r} \cos\left[\omega\left(z'-t+r-\vec{\hat{k}}\cdot\vec{x}'\right)\right]$$

• Probability for a graviton turning into photon in background electric field

$$\epsilon_{G-EM} = P_{EM}/P_G = 4\pi G \epsilon_0 \overline{E}^2 L^2/c^4$$

In background magnetic field

$$\epsilon_{G-EM} = P_{EM}/P_G = 4\pi G L^2 \overline{B}^2/\mu_0 c^4$$

Analysis

- •As a graviton travels in background EM field, it slowly turns into a photon, the probability amplitude is proportional to distance, the probability is proportional to distance square.
- •In the lab and in the universe, it is easier to have a stronger magnetic field than electric field.

$$\epsilon_{G-EM} = 8.2 \times 10^{-38} \left(\frac{\text{BL}}{\text{T} \cdot \text{m}}\right)^2$$

- A photon travels in the background EM field will have the same probability to turn into graviton. Given a long enough distance, there will be oscillation
- The key is that both photon and graviton travels in the speed of light

• If we make a graviton detector with 30T magnetic field and 10km length

 $\epsilon_{G-EM} = 7.2 \times 10^{-27}$

- for 1W wave of $\omega = 10^{14}Hz$, we will get about 2 events a month.
- For non-constant magnetic field, when wave length small compares to the distance scale of variation

$$\epsilon_{G-EM} = 4\pi G/\mu_0 c^4 \left[\left(\int B_x dl \right)^2 + \left(\int B_y dl \right)^2 \right]$$

QED 1-loop Correction

- Quantum field theory effects makes EM non-linear
- Euler-Heisenberg Lagrangian:

$$L_{1QED} = -\frac{2\alpha^2}{45m_e^4} \int d^4x \left[\left(\vec{E}^2 - \vec{B}^2 \right)^2 + 7 \left(\vec{E} \cdot \vec{B} \right)^2 \right]$$

• Consider background field, $A_{\nu} \rightarrow \overline{A_{\nu}} + A_{\nu}$, with a background magnetic field

$$F_{23} = F^{23} = -F_{32} = -F^{32} = \overline{B}$$

$$= -\int d^4x \left[\left(\frac{1}{4} - \frac{2\alpha^2 \overline{B}^2}{45m_e^4} \right) F_{\mu\nu} F^{\mu\nu} + \frac{\alpha^2 \overline{B}^2}{45m_e^4} (8B_1^2 + 14E_1^2) \right]$$

• For non-constant magnetic field, when wave length small compares to the distance scale of variation

$$\epsilon_{G-EM} = 4\pi G/\mu_0 c^4 \left[\left(\int B_x dl \right)^2 + \left(\int B_y dl \right)^2 \right]$$

QED 1-loop Correction

• Speed of light is changed under background EM field.

$$v_{x-photon} = 1 - \frac{14\alpha^2 \overline{B}^2}{45m_e^4}$$

$$v_{y-photon} = 1 - \frac{8\alpha^2 \overline{B}^2}{45m_e^4}$$

$$\frac{\alpha^2 \overline{B}^2}{m_e^4} \rightarrow \frac{\alpha^2 \hbar^3 \overline{B}^2}{\mu_0 c^5 m_e^4} = 3 \times 10^{-23} (\frac{\overline{B}}{T})^2$$

- QED effect has no impact on ground experiment
- **QED** significantly impact Magnetars and Neutron stars

Implications

- There are more gravitons in the universe than we believed, a typical galaxy has a size of 100000 light years $(10^{21}m)$ and an average magnetic field of $10^{-9}T$, and most of the field are not turbulent, the switching probability is on the order of 10^{-14} (versus $\sim 10^{-40}$ thermal radiation).
- Neutron stars and Magnetars
- Creating/detecting gravitons in the lab
 - 60's Hertz Experiment considered
 - Quantum optics from 80-90's
 - Receive gravitons from the universe
 - Fixed direction, background problems
 - Detecting missing photons
 - Relative low cost

Is Gravitational Field a Quantum Field?

- From this phenomenon, we know that classical general relativity + Quantum Electro-Magnetism is not consistent
- Quantum general relativity is not consistent so far
- This is THE experiment that can prove the existence of gravitons!
- More convincing than seeing photon from gravitons

Can gravitational field remain classic while others are quantized?

Blackbody radiation? Weak

On-going Research

- Graviton-Atom interfaction
- Crystal
- Ordinary matters
- Neutrino Experiment

Conclusion

- ●In gravity, experiments lags behind theory for ~100 years
 - Newton's gravitational law Cavendish experiment
 - Einstein general relativity discovery of gravitational wave
- Quantum gravity phenomenology and experiment can make important progress in this century
- No need to go to Planck Energy