Probing millicharge @ electron colliders

- Zuowei Liu
- Nanjing University

University of Science and Technology of China March 25, 2021

photon \downarrow $e Q_f A^{\gamma}_{\mu} \bar{f} \gamma^{\mu} f$

photon $e Q_f A^{\gamma}_{\mu} \bar{f} \gamma^{\mu} f$

photon \downarrow $e Q_f A^{\gamma}_{\mu} \bar{f} \gamma^{\mu} f$

photon $\int e Q_f A^{\gamma}_{\mu} \bar{f} \gamma^{\mu} f$

non-quantized $Q_f \equiv \epsilon \ll 1$ millicharge

Magnetic monopole leads to charge quantization

Quantised singularities in the electromagnetic field,

Paul Adrien Maurice Dirac (St John's Coll., Cambridge) (Sep 1, 1931)

Published in: Proc.Roy.Soc.Lond.A 133 (1931) 821, 60-72

∂ DOI [→ cite

- Dirac's paper on magnetic monopole & charge quantization in 1931
 - [from https://inspirehep.net/]

 \rightarrow 2,263 citations

Magnetic monopole leads to charge quantization

Quantised singularities in the electromagnetic field,

Paul Adrien Maurice Dirac (St John's Coll., Cambridge) (Sep 1, 1931)

Published in: Proc.Roy.Soc.Lond.A 133 (1931) 821, 60-72

∂ DOI [→ cite

magnetic monopole

charge quantization

- Dirac's paper on magnetic monopole & charge quantization in 1931
 - [from https://inspirehep.net/]

 \rightarrow 2,263 citations

e is electric strength

Standard model & grand unified theories

"charge quantization" is not resolved completely in SM

 $SU(3)_c \times SU(2)_L \times U(1)_Y$

Standard model & grand unified theories

"charge quantization" is not resolved completely in SM

Embedded into a bigger gauge group, e.g. SU(5)

charge quantization

- $SU(3)_c \times SU(2)_L \times U(1)_Y$

- [Georgi & Glashow, PRL.32.438, 1974]

Stringent constraints on millicharge in SM

[Siemensen et al., PRD 97, 052004 (2018)]

Millicharge in BSM can be quite "large"

[Jaeckel & Ringwald, 1002.0329]

-1SLAC Accelerators -3 Lamb Shift Ortopositronium ser pol Acc. $\log_{10}(\epsilon)$ Cav. Cavendish BBN CMB SN1987a SN dimming -9 SZ -11 White Dwarfs -13 **Red Giants** -18 - 16 - 14 - 12 - 10 - 8 - 6 - 4 - 2 0 2 4 6 8 10 12 14

 $\log_{10}(m_{\chi}/\text{eV})$

Millicharge in BSM can be quite "large"

[Jaeckel & Ringwald, 1002.0329]

Millicharge in BSM can be quite "large"

[Jaeckel & Ringwald, 1002.0329]

Probing millicharge at electron colliders

Probing millicharge at electron colliders

0.1-10 GeV

accessible at electron colliders

BaBar BESIII Belle II STCF

Millicharged DM explains EDGES 21 cm anomaly

Millicharged DM explains EDGES 21 cm anomaly

colder gas or hotter CMB than expected

Millicharged DM explains EDGES 21 cm anomaly

Outline: discussions on millicharge

2 terrestrial searches

3 electron colliders' sensitivity

[ZL, Zhang, 1808.00983] [Liang, ZL, Ma, Zhang, 1909.06847]

[Feldman, ZL, Nath, hep-ph/0702123, 299 cites]

Models to generate millicharged particles (MCPs)

Kinetic mixing

Mass mixing

[Feldman, ZL, Nath, hep-ph/0702123, 299 cites]

Models to generate millicharged particles (MCPs)

Kinetic mixing

Mass mixing

[Feldman, ZL, Nath, hep-ph/0702123, 299 cites]

Kinetic mixing between two U(1) fields

Kinetic mixing between two U(1) fields: $A_1 \& A_2$

$$\mathscr{L} = -\frac{1}{4} F_{2\mu\nu} F_2^{\mu\nu} - \frac{\delta}{2} F_{2\mu\nu} F_1^{\mu\nu}$$

 $-\frac{1}{4}F_{1\mu\nu}F_{1}^{\mu\nu}$ [Holdom, Phys.Lett. 166B, 196 (1986)] [Foot & He, Phys. Lett. 267B, 509 (1991)]

Kinetic mixing between two U(1) fields

Kinetic mixing between two U(1) fields

One example to generate kinetic mixing

[Holdom, Phys.Lett. 166B (1986) 196-198]

2 high scale fermions charged under two U(1)s

One example to generate kinetic mixing

[Holdom, Phys.Lett. 166B (1986) 196-198]

2 high scale fermions charged under two U(1)s

 $\delta = \frac{e_1 e_2}{6\pi^2} \ln \frac{m'_{12}}{m_{12}}$

Models to generate millicharged particles (MCPs)

Kinetic mixing

Mass mixing

Stueckelberg mass mixing between two U(1) fields

Stueckelberg mass mixing between two U(1) fields: $A_1 \& A_2$

$$\mathscr{L} = -\frac{1}{4} F_{2\mu\nu} F_2^{\mu\nu} - \frac{1}{2} (\partial_\mu \sigma + M_1 A_{1\mu} + M_2 A_{2\mu})^2 - \frac{1}{4} F_{1\mu\nu} F_1^{\mu\nu}$$

[Kors & Nath hep-ph/0402047] [Feldman, ZL, Nath, hep-ph/0603039] [Cheung & Yuan hep-ph/0701107]

Stueckelberg mass mixing between two U(1) fields

[Kors & Nath hep-ph/0402047] [Feldman, ZL, Nath, hep-ph/0603039] [Cheung & Yuan hep-ph/0701107]

Stueckelberg mass mixing between two U(1) fields

"Toy" model w/ both kinetic & mass mixings

 $-\frac{1}{4}F_{1\mu\nu}F_{1}^{\mu\nu} - \frac{1}{4}F_{2\mu\nu}F_{2}^{\mu\nu} - \frac{\delta}{2}F_{1\mu\nu}F_{2}^{\mu\nu} + J'_{\mu}A_{1}^{\mu} + J_{\mu}A_{2}^{\mu} - \frac{1}{2}M_{1}^{2}A_{1\mu}A_{1}^{\mu} - \frac{1}{2}M_{1}^{2}\epsilon^{2}A_{2\mu}A_{2}^{\mu} - M_{1}^{2}\epsilon A_{1\mu}A_{2}^{\mu} - M_{1}^{2}\epsilon^{2}A_{2\mu}A_{2}^{\mu} - M_{1}^{2}\epsilon^{2}A_{1\mu}A_{2}^{\mu} - M_{1}^{2}\epsilon^{2}A_{2\mu}A_{2}^{\mu} - M_{1}^{2}\epsilon^{2}A_{1\mu}A_{2}^{\mu} - M_{1}^{2}\epsilon^{2}A_{2\mu}A_{2}^{\mu} - M_{1}^{2}\epsilon^{2}A_{1\mu}A_{2}^{\mu} - M_{1}^{2}\epsilon^{2}A_{2\mu}A_{2}^{\mu} -$

[Feldman, ZL, Nath, hep-ph/0702123, 299 cites] [Fabbrichesi et al., 2005.01515, The Dark Photon, p 7-9]

"Toy" model w/ both kinetic & mass mixings

$$-\frac{1}{4}F_{1\mu\nu}F_{1}^{\mu\nu}-\frac{1}{4}F_{2\mu\nu}F_{2}^{\mu\nu}-\frac{\delta}{2}F_{1\mu\nu}F_{2}^{\mu\nu}+J_{\mu}A_{1}^{\mu}+J_{\mu}A_{2}^{\mu}-\frac{1}{2}M_{1}^{2}A_{1\mu}A_{1}^{\mu}-\frac{1}{2}M_{1}^{2}\epsilon^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}\epsilon A_{1\mu}A_{1}^{\mu}+J_{\mu}A_{2}^{\mu}-\frac{1}{2}M_{1}^{2}A_{1\mu}A_{1}^{\mu}-\frac{1}{2}M_{1}^{2}\epsilon^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}\epsilon A_{1\mu}A_{1}^{\mu}+J_{\mu}A_{2}^{\mu}-\frac{1}{2}M_{1}^{2}A_{1\mu}A_{1}^{\mu}-\frac{1}{2}M_{1}^{2}\epsilon^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}\epsilon A_{1\mu}A_{1}^{\mu}+J_{\mu}A_{2}^{\mu}-\frac{1}{2}M_{1}^{2}A_{1\mu}A_{1}^{\mu}-\frac{1}{2}M_{1}^{2}\epsilon^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}\epsilon A_{1\mu}A_{1}^{\mu}+J_{\mu}A_{2}^{\mu}-\frac{1}{2}M_{1}^{2}A_{1\mu}A_{1}^{\mu}-\frac{1}{2}M_{1}^{2}\epsilon^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}$$

$$\frac{1}{\sqrt{1-2\delta\epsilon+\epsilon^2}} \left(\frac{\epsilon-\delta}{\sqrt{1-\delta^2}} J_{\mu} + \frac{1-\delta\epsilon}{\sqrt{1-\delta^2}} J_{\mu}' \right) A_M^{\mu} + \frac{1}{\sqrt{1-2\delta\epsilon+\epsilon^2}} \left(J_{\mu} - \epsilon J_{\mu}' \right) A_{\gamma}^{\mu}$$

[Feldman, ZL, Nath, hep-ph/0702123, 299 cites] [Fabbrichesi et al., 2005.01515, The Dark Photon, p 7-9]

after field redefinition & rotation \longrightarrow canonical $(-F^2/4)$ & diagonal mass matrix

"Toy" model w/ both kinetic & mass mixings

$$-\frac{1}{4}F_{1\mu\nu}F_{1}^{\mu\nu}-\frac{1}{4}F_{2\mu\nu}F_{2}^{\mu\nu}-\frac{\delta}{2}F_{1\mu\nu}F_{2}^{\mu\nu}+J_{\mu}A_{1}^{\mu}+J_{\mu}A_{2}^{\mu}-\frac{1}{2}M_{1}^{2}A_{1\mu}A_{1}^{\mu}-\frac{1}{2}M_{1}^{2}\epsilon^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}\epsilon A_{1\mu}A_{1}^{\mu}+J_{\mu}A_{2}^{\mu}-\frac{1}{2}M_{1}^{2}A_{1\mu}A_{1}^{\mu}-\frac{1}{2}M_{1}^{2}\epsilon^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}\epsilon A_{1\mu}A_{1}^{\mu}+J_{\mu}A_{2}^{\mu}-\frac{1}{2}M_{1}^{2}A_{1\mu}A_{1}^{\mu}-\frac{1}{2}M_{1}^{2}\epsilon^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}\epsilon A_{1\mu}A_{1}^{\mu}+J_{\mu}A_{2}^{\mu}-\frac{1}{2}M_{1}^{2}A_{1\mu}A_{1}^{\mu}-\frac{1}{2}M_{1}^{2}\epsilon^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}\epsilon A_{1\mu}A_{1}^{\mu}+J_{\mu}A_{2}^{\mu}-\frac{1}{2}M_{1}^{2}A_{1\mu}A_{1}^{\mu}-\frac{1}{2}M_{1}^{2}\epsilon^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}A_{2\mu}A_{2}$$

$$\frac{1}{\sqrt{1-2\delta\epsilon+\epsilon^2}} \left(\frac{\epsilon-\delta}{\sqrt{1-\delta^2}} J_{\mu} + \frac{1-\delta}{\sqrt{1-\delta^2}} J_{\mu} \right)$$

[Feldman, ZL, Nath, hep-ph/0702123, 299 cites] [Fabbrichesi et al., 2005.01515, The Dark Photon, p 7-9]

after field redefinition & rotation \longrightarrow canonical $(-F^2/4)$ & diagonal mass matrix

 $\frac{\delta\epsilon}{\frac{1}{\sqrt{1-2\delta\epsilon+\epsilon^2}}}J'_{\mu}\bigg)A^{\mu}_{M} + \frac{1}{\sqrt{1-2\delta\epsilon+\epsilon^2}}\left(J_{\mu} - \epsilon J'_{\mu}\right)A^{\mu}_{\gamma}$

"Toy" model w/ both kinetic & mass mixings

$$-\frac{1}{4}F_{1\mu\nu}F_{1}^{\mu\nu}-\frac{1}{4}F_{2\mu\nu}F_{2}^{\mu\nu}-\frac{\delta}{2}F_{1\mu\nu}F_{2}^{\mu\nu}+J_{\mu}A_{1}^{\mu}+J_{\mu}A_{2}^{\mu}-\frac{1}{2}M_{1}^{2}A_{1\mu}A_{1}^{\mu}-\frac{1}{2}M_{1}^{2}\epsilon^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}\epsilon A_{1\mu}A_{1\mu}A_{1}^{\mu}+J_{\mu}A_{2}^{\mu}-\frac{1}{2}M_{1}^{2}A_{1\mu}A_{1}^{\mu}-\frac{1}{2}M_{1}^{2}\epsilon^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}\epsilon A_{1\mu}A_{1}^{\mu}+J_{\mu}A_{2}^{\mu}-\frac{1}{2}M_{1}^{2}A_{1\mu}A_{1}^{\mu}-\frac{1}{2}M_{1}^{2}\epsilon^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}\epsilon A_{1\mu}A_{1}^{\mu}+J_{\mu}A_{2}^{\mu}-\frac{1}{2}M_{1}^{2}A_{1\mu}A_{1}^{\mu}-\frac{1}{2}M_{1}^{2}\epsilon^{2}A_{2\mu}A_{2}^{\mu}-M_{1}^{2}\epsilon A_{1\mu}A_{1}^{\mu}+M_{1}^{2}A_{1}^{\mu}+M_$$

$$\frac{1}{\sqrt{1-2\delta\epsilon+\epsilon^2}} \left(\frac{\epsilon-\delta}{\sqrt{1-\delta^2}} J_{\mu} + \frac{1-\delta}{\sqrt{1-\delta^2}} J_{\mu} \right)$$

[Feldman, ZL, Nath, hep-ph/0702123, 299 cites] [Fabbrichesi et al., 2005.01515, The Dark Photon, p 7-9]

after field redefinition & rotation \longrightarrow canonical $(-F^2/4)$ & diagonal mass matrix

"Toy" model w/ both kinetic & mass mixings

[Feldman, ZL, Nath, hep-ph/0702123, 299 cites] [Fabbrichesi et al., 2005.01515, The Dark Photon, p 7-9]

$${}^{\prime} + J_{\mu}A_{2}^{\mu} - \frac{1}{2}M_{1}^{2}A_{1\mu}A_{1}^{\mu} - \frac{1}{2}M_{1}^{2}\epsilon^{2}A_{2\mu}A_{2}^{\mu} - M_{1}^{2}\epsilon A_{1\mu}A_{1}^{\mu}$$

after field redefinition & rotation \longrightarrow canonical $(-F^2/4)$ & diagonal mass matrix

"Toy" model w/ both kinetic & mass mixings

$${}^{\prime} + J_{\mu}A_{2}^{\mu} - \frac{1}{2}M_{1}^{2}A_{1\mu}A_{1}^{\mu} - \frac{1}{2}M_{1}^{2}\epsilon^{2}A_{2\mu}A_{2}^{\mu} - M_{1}^{2}\epsilon A_{1\mu}A_{1}^{\mu}$$

"Realistic" model w/ both kinetic & mass mixings

common features

[Feldman, ZL, Nath, hep-ph/0702123, 299 cites]

"Realistic" model w/ both kinetic & mass mixings

[Feldman, ZL, Nath, hep-ph/0702123, 299 cites]

Two ways to "detect" millicharged particles

scintillation/ionization/scattering

missing energy

[ZL, Zhang, 1808.00983]

[Liang, ZL, Ma, Zhang, 1909.06847]

Two ways to "detect" millicharged particles

scintillation/ionization/scattering

missing energy

[ZL, Zhang, 1808.00983]

[Liang, ZL, Ma, Zhang, 1909.06847]

SLAC mQ constraints on millicharge

SLAC mQ constraints on millicharge

MilliQan: proposed scintillation detector @ LHC

MilliQan: proposed scintillation detector @ LHC

1 m × 1 m × 3 m plastic scintillators array with 3 sections (pointing to CMS IP), each containing 400 5 cm × 5 cm × 80 cm scintillator bars coupled to PMT. 33 m away from CMS IP.

MilliQan sensitivity on millicharged particles

[Ball et al., 1607.04669]

MilliQan sensitivity on millicharged particles

ArgoNeuT @ FermiLab: liquid argo neutrino detector

[Harnik et al., 1902.03246]

[ArgoNeuT, 1911.07996]

ArgoNeuT @ FermiLab: liquid argo neutrino detector

[Harnik et al., 1902.03246]

[ArgoNeuT, 1911.07996]

ArgoNeuT @ FermiLab: liquid argo neutrino detector

Limits from ArgoNeuT & MilliQan demonstrator (1%)

Limits from ArgoNeuT & MilliQan demonstrator (1%)

MCP scatters w/ neutrino experiment target

MCP produced in proton fixed-target experiments

Some future experiments on millicharge (incomplete)

LDMX: electron fixed target NA64: muon fixed target FerMINI: scintillators @ proton fixed target SUBMET: scintillators @ JPARC neutrino experiments

DM experiments

[3] electron colliders' sensitivity

[ZL, Zhang, 1808.00983] [Liang, ZL, Ma, Zhang, 1909.06847]

Probing millicharge at electron colliders

0.1-10 GeV

accessible at electron colliders

BaBar BESIII Belle II STCF

[ZL, Zhang, 1808.00983] [Liang, ZL, Ma, Zhang, 1909.06847]

Probing millicharge at electron colliders

very small ionization signal from millicharge

mono-photon @ electron colliders

very small ionization signal from millicharge

mono-photon @ electron colliders

very small ionization signal from millicharge

millicharge vertex: $e \in A^{\gamma}_{\mu} \bar{\chi} \gamma^{\mu} \chi$

mono-photon @ electron colliders

very small ionization signal from millicharge

mono-photon @ electron colliders

very small ionization signal from millicharge

mono-photon @ electron colliders

[ZL, Zhang, 1808.00983]

monophoton

"invisible" at electron colliders

Irreducible BG (monophoton plus 2 neutrinos)

Irreducible BG: $e^+e^- \rightarrow \gamma \nu \nu$

Irreducible BG (monophoton plus 2 neutrinos)

Irreducible BG: $e^+e^- \rightarrow \gamma \nu \nu$
monophoton cross section @ electron colliders

millicharge process: $e^+e^- \rightarrow \chi \chi$ $\frac{d\sigma}{dE_{\gamma}dz_{\gamma}} = \frac{8\alpha^3 \varepsilon^2 (1+2m_{\chi}^2/s_{\gamma})\beta_{\chi}}{3sE_{\gamma}(1-z_{\gamma}^2)}$ $z_{\gamma} \equiv \cos\theta_{\gamma} \qquad s_{\gamma} = s - 2\sqrt{s}$

$$\int \left[1 + \frac{E_{\gamma}^2}{s_{\gamma}}(1 + z_{\gamma}^2)\right]$$

$$\sqrt{s}E_{\gamma} \qquad \beta_{\chi} = (1 - 4m_{\chi}^2/s_{\gamma})^{1/2}$$

monophoton cross section @ electron colliders

mill

licharge process:
$$\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \chi \chi \chi$$

$$\frac{d\sigma}{dE_{\gamma}dz_{\gamma}} = \frac{8\alpha^{3}\varepsilon^{2}(1+2m_{\chi}^{2}/s_{\gamma})\beta_{\chi}}{3sE_{\gamma}(1-z_{\gamma}^{2})} \left[1+\frac{E_{\gamma}^{2}}{s_{\gamma}}(1+z_{\gamma}^{2})\right]$$

$$z_{\gamma} \equiv \cos\theta_{\gamma} \quad s_{\gamma} = s - 2\sqrt{sE_{\gamma}} \quad \beta_{\chi} = (1-4m_{\chi}^{2}/s_{\gamma})^{1/2}$$
reducible BG: $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \chi \mathbf{v} \mathbf{v}$

$$\frac{d\sigma}{dE_{\gamma}dz_{\gamma}} = \frac{\alpha G_{F}^{2}s_{\gamma}^{2}}{4\pi^{2}sE_{\gamma}(1-z_{\gamma}^{2})}f(s_{W}) \left[1+\frac{E_{\gamma}^{2}}{s_{\gamma}}(1+z_{\gamma}^{2})\right]$$

$$s_{W} \equiv \sin\theta_{W} \qquad f(s_{W}) = 8s_{W}^{4} - 4s_{W}^{2}/3 + 1$$
[Ma, Okada
[Gaemers + 2]

irre

$$\frac{d\sigma}{dE_{\gamma}dz_{\gamma}} = \frac{8\alpha^{3}\varepsilon^{2}(1+2m_{\chi}^{2}/s_{\gamma})\beta_{\chi}}{3sE_{\gamma}(1-z_{\gamma}^{2})} \left[1+\frac{E_{\gamma}^{2}}{s_{\gamma}}(1+z_{\gamma}^{2})\right]$$

$$z_{\gamma} \equiv \cos\theta_{\gamma} \quad s_{\gamma} = s - 2\sqrt{s}E_{\gamma} \quad \beta_{\chi} = (1-4m_{\chi}^{2}/s_{\gamma})^{1/2}$$

$$\frac{d\sigma}{dE_{\gamma}dz_{\gamma}} = \frac{\alpha G_{F}^{2}s_{\gamma}^{2}}{4\pi^{2}sE_{\gamma}(1-z_{\gamma}^{2})}f(s_{W}) \left[1+\frac{E_{\gamma}^{2}}{s_{\gamma}}(1+z_{\gamma}^{2})\right]$$

$$s_{W} \equiv \sin\theta_{W} \quad f(s_{W}) = 8s_{W}^{4} - 4s_{W}^{2}/3 + 1$$

$$[ZL, Zhang, 180]$$

$$[ZL, Zhang, 180]$$

$$[ZL, Zhang, 180]$$

$$s_W \equiv \sin \theta_W$$

"Low" colliding energy is better to probe MCPs

if irreducible BG is the only important BG

"Low" colliding energy is better to probe MCPs

if irreducible BG is the only important BG

"Low" colliding energy is better to probe MCPs

if irreducible BG is the only important BG

BESIII detectors & reducible BG

[Chao, Wang et al. 0809.1869]

Main drift chamber (MDC)

 $|\cos(\Theta_{\gamma})| < 0.93$

Time-of-Flight (TOF)

|cos(**O**_Y)|<0.83

 $0.85 < |\cos(\Theta_{y})| < 0.95$

Electromagnegtic calorimeter (EMC)

 $|\cos(\Theta_{\gamma})| < 0.83$

 $0.85 < |\cos(\Theta_{\gamma})| < 0.93$

BESIII detectors & reducible BG

Main drift chamber (MDC)

 $|\cos(\Theta_{\gamma})| < 0.93$

Time-of-Flight (TOF)

|cos(**O**_Y)|<0.83

 $0.85 < |\cos(\Theta_{y})| < 0.95$

Electromagnegtic calorimeter (EMC)

 $|\cos(\Theta_{\gamma})| < 0.83$

 $0.85 < |\cos(\Theta_{\gamma})| < 0.93$

ECL angles (lab frame) $12.4^{\circ} < \theta < 31.4^{\circ}$ $32.2^{\circ} < \theta < 128.7^{\circ}$ $130.7^{\circ} < \theta < 155.1^{\circ}$

[Belle II 1808.10567]

DESY. Dark Sectors at Low Energy Colliders (Torben Ferber)

B: Invisible Dark Photon searches

Photon.

- / dark matter, g-2 anomaly...
- el: Dark matter particle x e boson A' as s-channel $_{A'} > 2m_{v})$

*Holdom, Phys. Lett B166, 1986

→ "Kinetic Mixing"* of ith the SM photon

[taken from Torben Ferber's talk]

ee→3γ 1_Y in ECL BWD gap 1γ out of ECL acceptance

Millicharged particles can appear in kinetic mixing or Stueckelberg mass mixing models

A number of terrestrial experiments have been carried out or proposed to search for millicharged particles

We propose to search for millicharged particles at electron colliders, including BESIII, Belle-II and STCF, which can probe currently unexplored parameter regions: $\epsilon \leq O(10^{-3})$ for 100 MeV $\leq m \leq$ several GeV

[Feldman, ZL, Nath, hep-ph/0702123, 299 cites]

[ZL, Zhang, 1808.00983] [Liang, ZL, Ma, Zhang, 1909.06847]

additional slides

Different STCF colliding energies

STCF low-E mode: better for low mass

BaBar sensitivity on millicharge

high-E data has better sensitivity to light mass

Mass growth via Stueckelberg

Make massive QED gauge invariant by adding axion σ

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{m^2}{2} A_{\mu}^2$$

$$\implies -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{2}(mA_{\mu} + \partial_{\mu}\sigma)^2$$

invariant under gauge transformation

 $\delta A_{\mu} = \partial_{\mu} \lambda, \quad \delta \sigma = -m\lambda$

 σ : longitudinal mode of the vector boson

- [E.C.G. Stueckelberg, Helv. Phys. Acta 11, 225 (1938)]

Stueckelberg in extra dimensions

- compactification of a 5D theory on half-circle S^1/Z_2
 - $\mathcal{L}_5 = -\frac{1}{A} F_{ab}(z) F^{ab}(z), a, b = 0, 1, 2, 3, 5$ $z^{a} = (x^{\mu}, y), \mu = 0, 1, 2, 3$ $A_{a} = (A_{\mu}(z), \phi(z))$
- infinite number of massive KK modes in 4D
 - $\mathcal{L}_{4} = -\frac{1}{4} \sum F_{\mu\nu}^{(n)}(x) F^{\mu\nu(n)}(x)$ $-\frac{1}{2}\sum M_{q}$
- Stueckelberg mass in 4D due to compactification

$$I_n^2 \left(A_\mu^{(n)}(x) + \frac{1}{M_n} \partial_\mu \phi^{(n)}(x) \right)^2$$

[Nath 0812.0958]

Stueckelberg vs Higgs

U(1) boson w/ a Higgs potential

Decompose the Higgs field in polar coordinates

$$\phi = \left(\frac{v+h}{\sqrt{2}}\right) e^{i\frac{\sigma}{v}}$$

Unitary gauge $\phi^U = \frac{v+h}{\sqrt{2}}$

$$\mathcal{L} = -\frac{F_U^2}{4} + \frac{(\partial_\mu h)^2}{2} + \frac{g^2}{2}(h+v)^2 A^U_\mu A^{U\mu} - \frac{\lambda}{4}(h^2 + 2hv)^2 + \frac{\lambda}{4}v^4$$

 $M_A = gv$

$\mathcal{L} = -\frac{1}{\Lambda} F_{\mu\nu} F^{\mu\nu} + \left[(\partial_{\mu} + igA_{\mu})\phi \right]^2 - \left[\mu^2 \phi^* \phi + \lambda (\phi^* \phi)^2 \right]$

$$v = \sqrt{\frac{-\mu^2}{\lambda}}$$

$$\frac{h}{2} \quad \& \quad A^U_\mu = A_\mu - \frac{1}{gv} \partial_\mu \sigma$$

 $M_h = \sqrt{2\lambda}v$

σ disappears

decouple the Higgs particle

Take the limits $-\mu^2 \to \infty$, $\lambda \to \infty$ with $v = \sqrt{-\mu^2/\lambda}$ fixed. In this case, the Higgs field $M_h = \sqrt{2\lambda}v$ becomes infinitely heavy and decouples, whereas the gauge boson mass $M_A = gv$ remains unchanged.

Low e

nergy effective theory
$$\mathcal{L} = -\frac{F_U^2}{4} + \frac{M_A^2}{2} A_\mu^U A^{U\mu}$$
$$A_\mu^U = A_\mu - \frac{1}{M_A} \partial_\mu \sigma$$
$$\mathcal{L} = -\frac{F_{\mu\nu}^2}{4} + \frac{1}{2} \left(M_A A_\mu - \partial_\mu \sigma \right)^2$$

The Higgs mechanism leads to the Stueckelberg mechanism.

[Allen, Bowick, Lahiri, Mod. Phys. Lett. A 6, 559, (1991)] [Nath, arXiv:0812.0958]₄₆ [Nelson, Scholtz, arXiv:1105.2812]