
The universal structure of large logarithms in
scattering amplitudes and cross sections

Jian Wang
Shandong University

USTC-ICTS, Heifei

April 29, 2021

Jian Wang universal structure of large logarithms April 29, 2021 1 / 50



Introduction

Scattering amplitudes:

The central objects in theories of fundamental interactions.

A bridge between theories and experiments.

Hidden simple structures, e.g., MHV, BCFW, color-kinematics
duality, double copy.

Connection with mathematics, e.g. algebraic geometry,
combinatorics.

“Scattering amplitudes are the most perfect microscopic structures
in the universe.” —by Lance Dixon

However, it is still in general difficult to calculate scattering
amplitudes at higher orders (loops) and of many external particles.
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Introduction

Cross sections (decay rates): constructed from amplitudes squared

dσ

dO
∼
∑
n=m

∫
dΦn|Mn|2O({pi}) (1)

O is an observable, e.g., transverse momentum, rapidity, event
shape, spin correlation.

Φn is the n-body phase space.

O can depend on m,m + 1,m + 2, ...

Optical theorem can be applied for a few observables.

Most of the observables are difficult to calculate precisely.

Simplicity appears for large scale hierarchy.
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An example
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p5

dσ

σBdT
=
αsCF

2π

[
2(3T 2 − 3T + 2)

T (1− T )
ln

(
2T − 1

1− T

)
− 3(3T − 2)(2− T )

(1− T )

]
with

T ≡ max~nT~n = max~n

∑
i |~n · ~pi |∑
i |~pi |

No analytical NLO results though only one parameter appears.
Numerical NNLO results have been obtained [Gehrmann-De Ridder,

Gehrmann, Glover, Heinrich, ’07]
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An example

In the limit τ ≡ 1− T → 0,

dσ

σBdT
=
αsCF

2π

[
4

τ
ln

(
1

τ

)
+ O(τ 0)

]

Can we obtain this large logarithm without performing the
complicated phase space integral? (Is there a simple way to
calculate this logarithm?)

Actually, since αs ln τ ∼ 1 or even larger than 1, it is not valid any
more to expand the cross section in αs . Infinite higher orders of
such kind of logarithms matter.
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An example: soft limit

In the soft limit of p5 → 0 with p5 ∼ O(λ).

|M(1)
1 |2s = O(λ0), (2)

|M(1)
2 |2s = O(λ0), (3)

2Re[M
(1)
1 M

(1)∗
2 ]s = |MB|2g2

s CF
4s34

s35s45
+O(λ−1) (4)

After phase space integration (factorized),

1

σB

dσ
(1)
s

dτ
=

g2
s CF

2(2π)3

∫
dn+p5dn−p5d

d−2p5⊥δ(p2
5)

4

n+p5n−p5

×
[
δ(τ − n+p5

Ecm
)θ(n−p5 − n+p5) + (n− ↔ n+)

]
=

2αsCF

π

1

ε
τ−1−2εE−2ε

cm +O(ε0) (5)
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An example: collinear limit

In the collinear limit of p5 ‖ p3 with p5 · p3 ∼ O(λ) and
n+p5 = z n+(p3 + p5).

|M(1)
1 |2c = O(λ0), (6)

|M(2)
2 |2c = |MB|2g2

s CF
2

s35
z , (7)

2Re[M
(1)
1 M

(1)∗
2 ]c = |MB|2g2

s CF
2

s35

2(1− z)

z
(8)

After phase space integration (factorized),

1

σB

dσ
(1)
c

dτ
=
g2
s CF

16π2

∫
ds35

∫ 1

0

dz [z(1− z)]−εs−ε35

2

s35

1 + (1− z)2

z
δ(τ − s35

E 2
cm

)

=− αsCF

π

1

ε
τ−1−εE−2ε

cm +O(ε0) (9)
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An example

The sum of the soft and collinear contribution is

1

σB

d(σ
(1)
s + σ

(1)
c + σ

(1)
c̄ )

dτ

=
2αsCF

π
E−2ε

cm

[
1

ε
τ−1−2ε − 1

ε
τ−1−ε

]
(10)

=
2αsCF

π
E−2ε

cm

[
1

ε2
δ(τ)−

(
ln τ

τ

)
+

+O(ε)

]
(11)

The poles are cancelled with virtual corrections ∼ δ(τ), as the
requirement of infra-red safety.

The large logarithm arises from the mismatch of the scales in
the soft and collinear regions; τEcm vs.

√
τEcm.
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An example: Renormalization group view

Scale hierarchy: Ecm �
√
τEcm � τEcm, or equivalently

thard � tcoll � tsoft , or λhard � λcoll � λsoft . The physics at
different scales decouples from each other; no interference between
waves of different length happens; the process factorizes into hard,
jet, and soft functions.

dσ

σBdτ
=|CH(µ)|2

∫
dτsdτcdτc̄δ(τ − τs − τc − τc̄)

J(τc , µ)J(τc̄ , µ)S(τs , µ)

Laplace transform f̃ (N) =
∫∞

0 dxe−xN f (x):

d σ̃(N)

σBdτ
=|CH(µ)|2J̃(N, µ)J̃(N, µ)S̃(N, µ)

The RG equation:

d

d lnµ2
J̃(N, µ) =

[
ΓJ ln

µ2

E 2
cm/N

+ γJ

]
J̃(N, µ) (12)
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Lessons learned

The logarithms (at leading power) can be derived by

1 Factorization of the cross section

2 Calculation of the anomalous dimension of each ingredient

Jian Wang universal structure of large logarithms April 29, 2021 10 / 50



Factorization

Factorization of hard function (integrating out hard fluctuation in
loops)

CH

CH(µ) = 1− αsCF

4π

(
ln2 µ2

E 2
cm

+ 3 ln
µ2

E 2
cm

+ cH

)
(13)

RG equation

d

d lnµ2
CH(µ) =

(
ΓH ln

µ2

E 2
cm

+ γH

)
CH(µ) (14)

Solution

CH(µ) = CH(µh) exp

[
ΓH

2
ln2 µ

2

µ2
h

+ γH ln
µ2

µ2
h

](
E 2

cm

µ2
h

)−ΓH ln µ2

µ2
h

(15)
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Factorization

The interaction between collinear modes in different directions.

All attachments can be summed to a collinear Wilson line

Wc(x) = P exp

[
igs

∫ 0

−∞
dsn̄ · Ac(x + sn̄)

]
Necessary to form a gauge invariant building block, W †

c ξc , which is
independent of the other directions.
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Factorization

Factorization of jet function (integrating out collinear modes in
loops and final states)

J(p2, µ) = Disc




J(p2, µ) = δ(p2) [1 + cJ ] +

ΓJ log p2

µ2 + γJ

p2

[p2,µ2]

?

,

dJ(p2, µ)

d logµ
=

[
−2ΓJ log

p2

µ2
− 2γJ

]
J(p2, µ)+2ΓJ

∫ p2

0

dq2 J(p2, µ)− J(q2, µ)

p2 − q2
.

J(p2, µ) = exp

[
ΓJ

2
log2 µ

2

µ2
j

− γJ log
µ2

µ2
j

]
j̃
(
∂ηj
) [ 1

p2

(
p2

µ2
j

)ηj][p2,µ2
j ]

?

e−γEηj

Γ[ηj ]
,
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Factorization

The factorization of jet function is closely related to the property

|M(1 + 2→ 3 + 4 + 5)|2coll = |M(1 + 2→ 3 + 4′)|2 × P44′(z , ε)
2g2

s

s45

and

dΦ3|coll = dΦ2
1

16π2
dzds45[s45z(1− z)]−ε

A similar factorization happens for the initial-state collinear
splitting. The parton distribution function satisfies

d

d lnµ
fi/N(x , µ) =

∫ 1

x

dz

z
Pij(z)fj/N(x/z , µ)

with the DGLAP evolution kernel

Pqq(z) =
αsCF

2π

(
1 + z2

1− z

)
+
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Factorization

The interaction between the soft modes and collinear modes

M(k , {pi}) =
∑
i

(−gs)Ti

(
ε(k) · pi
k · pi

)
M0({pi}) (16)

The result depends only on the direction and color charge of the
collinear mode. The information about the momentum and spin of
the collinear particle is irrelevant. This is called Eikonal
approximation. All attachments can be summed to a soft Wilson
line

Yn(x) = P exp

[
igs

∫ 0

−∞
dsn · As(x + sn)

]
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Factorization

Factorization of soft function (decouple of the soft interaction with
collinear mode)

S(τs , µ) = F (τs , k)×

with the measurement function

F (τs , k) = δ(τs − n · k)θ(n̄ · k − n · k) + δ(τs − n̄ · k)θ(n · k − n̄ · k)

Only UV poles in S . IR poles cancel between real and virtual
corrections. The RG equation is similar to that of jet function.
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Large logarithms

Summarize the results based on factorization of the cross section,

σ(τ) =
∑
n

αn
s

cnδ(τ) +
2n−1∑
m=0

cnm
lnm τ

τ
+ dnm lnm τ︸ ︷︷ ︸

NLP

+ · · ·


cnm are fully determined by the anomalous dimensions of (the hard
function), jet function and soft function. In this sense, they are
universal.
There are another kind of logarithms, whose coefficients are dnm.
Though they are suppressed, they are numerically important as
well. The question is how to develop a factorization formula for
this power suppressed contribution.
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Recent development

Actually, τ can be the N-jettiness variable, the threshold variable
1−M2/s, the transverse momentum of a lepton pair qT , the mass
ratio m2

h/m
2
b, · · ·

1 Phenomenology: useful for NN(N)LO differential calculations
in qT/N-jettiness slicing methods [Moult, Rothen, Stewart,

Tackmann, Zhu ’16, Boughezal, Liu, Petriello,’16]

2 Theory: NLP factorization and resummation [Bonocore, Laenen,

Magnea, Melville, Vernazza, White, ’15, ’16, Liu, Penin, ’17, Moult, Stewart,

Vita, Zhu, ’18, Beneke, Broggio, Garny, Jaskiewicz, Szafron, Vernazza, JW, ’18,

Laenen, Damste, Vernazza, Waalewijn, Zoppi, ’20, Liu, Mecaj, Neubert, Wang

’20]

3 Amplitude: soft theorem, soft bootstrap [Strominger ’13,Rodina ’18]
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Improvement for subtraction
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Figure: O(α2
s ) correction for DY production with N-jettiness subtraction

from 1612.02911

Without the power corrections, τcut should be set to below
10−3GeV to reproduce the exact NNLO coefficient. The cut can be
relaxed by a factor of 10 when the power corrections are included.
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Recent development

Beyond leading logarithms (at O(αs)) [Boughezal, Isgro, Petriello,

’18, Ebert, Moult, Stewart, Tackmann, Vita, Zhu, ’18 ]

Beyond 2→ 1 or 1→ 2 [Beekveld, Beenakker, Laenen, White

’19,Boughezal, Isgro, Petriello, ’19]

Threshold/Thrust resummation at NLP [Moult, Stewart, Vita, Zhu,

’18, Beneke, Broggio, Garny, Jaskiewicz, Szafron, Vernazza, JW, ’18,

Bahjat-Abbas, Bonocore, Damste, Laenen, Magnea, Vernazza, White ’19,

Ajjath, Mukherjee, Ravindran ’20]

Rapidity divergences in qT spectrum or energy-energy
correlators [Ebert, Moult, Stewart, Tackmann, Vita, Zhu, ’18, Moult, Vita,

Yan, ’19]

Soft quark Sudakov [Liu, Penin, ’17, Moult, Stewart, Vita, Zhu, ’19, Liu,

Mecaj, Neubert, Wang, Fleming, ’20, JW, ’20]

Subleading power effects in B physics and heavy quarkonium
production [Ma, Qiu, Sterman, Zhang ’13, Lee, Sterman ’20, Li, Lü, Sheng

Wang, Wang, Wei, ’17,’20]
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The soft limit at NLP

In the soft limit kµ → 0, (LBK/soft theorem [Low, ’58, Burnett, Kroll,

’68])

M(k , {pi}) =
∑
i

(−gs)Ti

(
ε(k) · pi
k · pi

+
εµkνJ

µν
i

k · pi

)
M0({pi}) (17)

with

Jµνi = pµi
∂

∂piν
− pνi

∂

∂piµ
+ Σµν

i , Σµν
i =

1

4
[γµ, γν ] (18)

Integrating over the constrained phase space,∫
ddkδ(k2)θ(k0)

1

k · pi
1

k · pj
f (k) (19)

1

ε
τ ε =

1

ε
+ ln τ (20)

1

ε2
τ ε =

1

ε2
+

ln τ

ε
+

1

2
ln2 τ (21)
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LBK Theorem

Consider a process ud → ud + g .

p1

k

(a) (b) (c)

(e)(d)

A(k, {pi}) =
∑
i

(−gs)Ti

(
ε(k) · pi
k · pi

+
εµkνJ

µν
i

k · pi

)
A0({pi}) (22)
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LBK Theorem

Jµνi = pµi
∂

∂piν
−pνi

∂

∂piµ
+ Σµν

i (23)

We expand the propagators in diagram (a)

(/p1
− /k)/ε

(p1 − k)2
=

p1 · ε
−p1 · k

+
iΣµνεµkν
−p1 · k

(24)

1

(p1 − p3 − k)2
=

1

(p1 − p3)2
−k · ∂

∂p1

1

(p1 − p3)2
(25)

Where is the blue part? It comes from diagram (e), or from gauge
invariance.
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Subleading power operators

Understanding from the effective field theory [Beneke, Garny, Szafron,

JW, ’17,’18]

LSCET =
N∑
i=1

Li (ψi , ψs) + Ls(ψs) (26)

The general structure of subleading operators

J =

∫
dt C ({tik}) Js(0)

N∏
i=1

Ji (ti1 , ti2 , . . . ) (27)

where

Ji (ti1 , ti2 , . . . ) =

ni∏
k=1

ψik (tikni+) (28)

with gauge-invariant collinear “building blocks”

ψi (tini+) ∈
{
χi (tini+) ≡W †

i ξi collinear quark

Aµ⊥i (tini+) ≡W †
i [iDµ

⊥iWi ] collinear gluon
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Subleading power operators

LP:
JA0
i (ti ) = ψi (tini+) . (29)

NLP [O(λ),O(λ2)]:

i∂⊥ → JA1 = i∂⊥J
A0

in−Ds ≡ in−∂ + gsn−As → eliminated by E.o.M

more building blocks → JB1 = ψi1(ti1ni+)ψi2(ti2ni+)

new building blocks, e.g., n−A → eliminated by E.o.M

pure soft sector Js , e.g., q ∼ O(λ3),Fµνs ∼ O(λ4), not needed
at NLP

time-ordered product operators

JT1
i (ti ) = i

∫
d4x T

{
JA0
i (ti ),L(1)

i (x)
}

(30)
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LBK Theorem

JA0

L(2)
JA1

L(1)

We reproduce LBK theorem with two time-ordered products∫
d4xT{JA0,L(2)(x)},

∫
d4xT{JA1,L(1)(x)}

No operators with soft fields needed!
No Ward identity needed!
JA1 is related to JA0.
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Factorization of Drell-Yan process at LP

At LP, the factorization picture is given by [Becher, Neuber, Xu, ’08]

dσDY

dQ2
=

4πα2
em

3NcQ4

∑
a,b

∫ 1

0
dxadxb fa/A(xa)fb/B(xb) σ̂ab(z)

σ̂(z) = H(Q2)QSDY(Q(1− z))

SDY(Ω) =

∫
dx0

4π
e ix

0Ω/2 1

Nc
Tr 〈0|T̄(Y †+(x0)Y−(x0)) T(Y †−(0)Y+(0))|0〉
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Factorization of Drell-Yan process at NLP

At NLP, the picture is more complicated [Beneke, Broggio, Garny,

Jaskiewicz, Szafron, Vernazza, JW ’18]

σ̂(z) =
∑

terms

∫
dωid ω̄idω

′
id ω̄

′
i D(−ŝ;ωi , ω̄i )D

∗(−ŝ;ω′i , ω̄
′
i )

×Q2

∫
d3~q

(2π)3 2
√

Q2 + ~q 2

1

2π

∫
d4x e i(xapA+xbpB−q)·x

S̃(x ;ωi , ω̄i , ω
′
i , ω̄
′
i ) .
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Factorization of Drell-Yan process at NLP

The D function combines the hard and jet function (at the
amplitude level).

D(−ŝ;ωi , ω̄i ) =

∫
d(n+pi )d(n−p̄i )C (n+pi , n−p̄i )

× J(n+pi , xan+pA;ωi ) J̄(n−p̄i ,−xbn−pB ; ω̄i ) .

The complexity comes from the fact that the soft modes do not
decouple from the collinear modes beyond LP, as seen from the
LBK theorem. We have to keep more indices (quantum
information) in both the jet and soft function.

L(2)
2ξ =

1

2
χ̄cx

µ
⊥x

ν
⊥
[
i∂ν in−∂B+

µ

] /n+

2
χc , Bµ± = Y †± [iDµ

s Y±]
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Factorization of Drell-Yan process at NLP

Factorization of the collinear mode:

i

∫
d4z T

[
χc,αa(tn+)L(2)

2ξ (z)
]

= 2π

∫
du

∫
d(n+z)

2

J̃2ξ;αβ,abde

(
t, u;

n+z

2

)
χPDF
c,βb (un+)

∂µ⊥
in−∂

B+
⊥µ;de(z−) .

LO result:

J2ξ;αβ,abde(n+p, n+p
′; ω) ≡ J2ξ;αβ,abde(n+p; ω)δ(n+p − n+p

′)

= − 1

n+p
δ(n+p − n+p

′)δαβδadδeb .

We evolve other scales to the collinear scale. So we do not
calculate the NLO result.
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Factorization of Drell-Yan process at NLP

Factorization of the soft mode: We introduce the soft operator

S̃2ξ (x , z−) = T̄
[
Y †+(x)Y−(x)

]
T

[
Y †−(0)Y+(0)

i∂ν⊥
in−∂

B+
⊥ν(z−)

]
,

and the Fourier transform of its (colour-traced) vacuum matrix
element

S2ξ(Ω, ω) =

∫
dx0

4π

∫
d(n+z)

4π
e ix

0Ω/2−iω(n+z)/2 1

Nc
Tr 〈0|S̃2ξ(x

0, z−)|0〉 .

Divergences in LO result:

S2ξ(Ω, ω) =
αsCF

2π

{
θ(Ω)δ(ω)

(
−1

ε
+ ln

Ω2

µ2

)
+

[
1

ω

]
+

θ(ω)θ(Ω− ω)

}
,

Do we need additive renormalization?
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Factorization of Drell-Yan process at NLP

Introduce auxiliary soft function

Sx0(Ω) =

∫
dx0

4π
e ix

0Ω/2 −2i

x0 − iε

1

Nc

Tr 〈0|T̄
[
Y †+(x0)Y−(x0)

]
T
[
Y †−(0)Y+(0)

]
|0〉.

S2ξ(Ω, ω)|ren =

∫
dΩ′

∫
dω′ Z2ξ,2ξ(Ω, ω; Ω′, ω′)S2ξ(Ω′, ω′)|bare

+

∫
dΩ′ Z2ξ,x0(Ω, ω; Ω′)Sx0(Ω′)|bare

Z2ξ,2ξ(Ω, ω; Ω, ω′) = δ(Ω− Ω′)δ(ω − ω′) +O(αs) ,

Z2ξ,x0(Ω, ω; Ω′) =
αsCF

2π

1

ε
δ(Ω− Ω′)δ(ω) +O(α2

s ) .
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Renormalization of soft operator at NLP

Consider 〈g |S2ξ|0〉. The renormalization factor of the soft function
is obtained by projecting on the colour singlet part.

n− n−

n+ n+

z−

n− n−

n+ n+

z−

The filled square and the two solid lines connected to it stand for
the soft covariant derivative and the Wilson lines contained in
i∂⊥µ

in−∂
Bµ+ =

i∂⊥µ

in−∂
Y †+[iDµ

s Y+], respectively.

〈gA(p)|S2ξ(Ω, ω)|0〉tree = gsT
A

(
p⊥ · ε∗⊥
n−p

− p2
⊥n−ε

∗

(n−p)2

)
δ(Ω)δ(ω−n−p).

Choose n−ε = 0 for simplicity.
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Renormalization of soft operator at NLP

n−

n+n+

n−

z−

(m) (n) (o)

n−

n+

n+

n−

z−

n−

n+

(j) (k) (l)

n+

n−

z−

n−

n+

n−

n+n+

n−

z−

n−

n+n+

n−

z−

n−

n+n+

n− n−

n+n+ n+

n−

z−

n−

z−

(q)

n−

n+n+

n−

z−

n+

n−

z−

n−

n+n+

n−

z−

n−

n+

(p) (r)

n+

n−

z−

n−

n+n+

n−

n+

n−

z−
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Renormalization of soft operator at NLP

(d) (e) (f )

n−

n+n+

n−

n+n+

n−

z−

n−

z−

n+

n−

z−

n−

n+n+

n−

z−

n−

n+

(a) (b) (c)

n−

n+ n+

n−

z−

n−

n+

n−

n+n+

n−

z−

n−

n+n+

n−

z−

n+

n−

z−

n+

n−

z−

n−

n+

(g) (h) (i)

n−

n+n+

n−

z−

n−

n+n+

n−

z−

n−

n+n+

n−

z−
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Renormalization of soft function at NLP

RG equation:

d

d lnµ

(
S2ξ (Ω, ω)
Sx0 (Ω)

)
=
αs

π

 4CF ln
µ

µs
−CF δ(ω)

0 4CF ln
µ

µs

( S2ξ (Ω, ω)
Sx0 (Ω)

)
,

Solution:

SLL
2ξ (Ω, ω, µ) =

2CF

β0
ln
αs(µ)

αs(µs)
exp

[
−4SLL(µs , µ)

]
θ(Ω)δ(ω) .

with

SLL(ν, µ) =
CF

β2
0

4π

αs(ν)

(
1− αs(ν)

αs(µ)
+ ln

αs(ν)

αs(µ)

)
.

→ −αsCF

2π
ln2 µ

ν
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Resummed cross section at NLP

σ̂LL
NLP(z , µ) = exp

[
4SLL(µh, µ)− 4SLL(µs , µ)

]
× −8CF

β0
ln
αs(µ)

αs(µs)
θ(1− z) ,

Expansion to fixed orders: First N3LO agrees with [Kramer, Laenen,

Spiar, ’96]

σ̂LL
NLP(z , µ) = − θ(1− z)

{
4CF

αs

π

[
ln(1− z)− Lµ

]
+8C 2

F

(αs

π

)2 [
ln3(1− z)− 3Lµ ln2(1− z) + 2L2

µ ln(1− z)
]

+8C 3
F

(αs

π

)3 [
ln5(1− z)− 5Lµ ln4(1− z) + 8L2

µ ln3(1− z)− 4L3
µ ln2(1− z)

]
+

16

3
C 4
F

(αs

π

)4 [
ln7(1− z)− 7Lµ ln6(1− z) + 18L2

µ ln5(1− z)− 20L3
µ ln4(1− z)

+ 8L4
µ ln3(1− z)

]
+

8

3
C 5
F

(αs

π

)5 [
ln9(1− z)− 9Lµ ln8(1− z) + 32L2

µ ln7(1− z)− 56L3
µ ln6(1− z)

+ 48L4
µ ln5(1− z)− 16L5

µ ln4(1− z)
]}

+ O(α6
s × (log)11) ,
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Double logarithms in off-diagonal splitting kernel

The above result is shown for qq̄ → Z (gg → H). If we consider
qg → Z + X (qg → H + X ), we need the evolution of parton
g → q (q → g).
The DGLAP splitting kernel [Vogt ’10]

PLL
gq (N) =

1

N

αsCF

π
B0(a), a =

αs

π
(CF − CA) ln2 N , (31)

where

B0(x) =
∞∑
n=0

Bn

(n!)2
xn ,Bn = 1,

−1

2
, 0,

1

6
, 0,
−1

30
, 0,

1

42
· · · (32)

Compared to
PLL
qq (N) = −2Γcusp(αs) lnN (33)
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Off-diagonal DIS cross section

To calculate the splitting kernel, we consider the off-diagonal DIS
process. The partonic process contains IR divergences which must
be absorbed into the PDF. [Beneke, Garny, Jaskiewicz, Szafron, Vernazza, JW

’20]

q(p1)

1/z

z

(1− z)

φ∗(q)
g(p2)

q(p)

Wφ,q

∣∣
qφ∗→qg

=

∫ 1

0
dz

(
µ2

sqgzz̄

)ε
Pqg (sqg , z)

∣∣∣
sqg=Q2 1−x

x

Pqg (sqg , z) ≡ eγE εQ2

16π2Γ(1− ε)
|Mqφ∗→qg |2
|M0|2

=
αsCF

2π

z̄2

z
+O(ε, λ2)

The z → 0 limit generats a pole. This is an IR pole caused by Soft
quark. No simple soft Wilson line.
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Off-diagonal DIS cross section

One loop virtual corrections.

(2) (3) (4) (5)(1)

(6) (7) (8) (9)
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Off-diagonal DIS cross section

Pqg (sqg , z)|1−loop = Pqg (sqg , z)|tree
αs

π

1

ε2(
T1 · T0

(
µ2

zQ2

)ε
+ T2 · T0

(
µ2

z̄Q2

)ε
+ T1 · T2

[(
µ2

Q2

)ε
−
(
µ2

zQ2

)ε
+

(
µ2

zsqg

)ε ])
(34)

We get the terms with T1 · T0 and T2 · T0 by standard method.
Caution: Keep z−ε! End-point singularity

1

ε2

∫ 1

0
dz

1

z1+ε
(1− z−ε) = − 1

2ε3
(35)

1

ε2

∫ 1

0
dz

1

z1+ε

(
ε ln z − ε2

2!
ln2 z +

ε2

3!
ln3 z + · · ·

)
= − 1

ε3
+

1

ε3
− 1

ε3
+· · · .
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Off-diagonal DIS cross section
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Off-diagonal DIS cross section
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Off-diagonal DIS cross section

A new scale
√
zQ emerges dynamically.

Two step matching:

CA0
(
Q2,Q2

)
exp

[
−αsCA

2π

1

ε2

(
Q2

µ2

)−ε]
,

DB1
(
zQ2, zQ2

)
exp

[
−αs

2π
(CF − CA)

1

ε2

(
zQ2

µ2

)−ε]
. (36)

Pqg ,hard =
αsCF

2π

1

z
exp

[
αs

π

1

ε2

(
− CA

(
µ2

Q2

)ε
+ (CA − CF )

(
µ2

zQ2

)ε )]
,
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Off-diagonal DIS cross section

Wφ,q

∣∣∣hard
qφ∗→qg

=

∫ 1

0
dz

(
µ2

sqgz

)ε
Pqg ,hard (sqg , z)

∣∣∣
sqg=Q2(1−x)

=
αsCF

2π

(
−1

ε

) (
µ2

Q2(1− x)

)ε
exp

[
− αsCA

π

1

ε2

(
µ2

Q2

)ε ]

×
exp

[
αs(CA−CF )

π
1
ε2

(
µ2

Q2

)ε]
− 1

αs(CA−CF )
π

1
ε2

(
µ2

Q2

)ε
The result can be expanded in the strong coupling,

Wφ,q

∣∣∣hard
qφ∗→qg

=
∑
n=1

(αs

4π

)n
c

(n)
n1

1

ε2n−1

(
µ2n

Q2n(1− x)

)ε
with

c
(n)
n1 =

(−4)n

2n!
CF (Cn−1

F + Cn−2
F CA + · · ·+ Cn−1

A )
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Consistency relations for DIS

W =
∑
i

Wφ,i fi =
∑
k

C̃φ,k f̃k

Multiplicative renormalization factors

f̃k = Zki fi , Wφ,i = C̃φ,kZki ,

The splitting kernels are given by

Pij = −γij =
dZik

d lnµ
(Z−1)kj .

The four relevant virtualities (scales) are:

hard, p2 = Q2

anti-hardcollinear, p2 = Q2λ2 = Q2/N

collinear, p2 = Λ2

softcollinear, p2 = Λ2λ2 = Λ2/N
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Consistency relations for DIS

The LP is simple.

Wφ,g fg = fg (Λ)×
∑
n

(αs

4π

)n 1

ε2n

n∑
k=0

n∑
j=0

b
(n)
kj (ε)

(
µ2nN j

Q2kΛ2(n−k)

)ε
+O

(
1

N

)
k : hard + anti-hardcollinear, j : anti-hardcollinear and softcollinear.
Boundary condition:

W LP,LL
φ,g

∣∣∣
hard loops

= exp

[
−αsCA

π

1

ε2

(
µ2

Q2

)ε ]
Solution:

(Wφ,g fg )LP,LL = exp

[
αsCA

π

1

ε2

{(
µ2

Q2

)ε
−
(
µ2

Λ2

)ε}
(Nε − 1)

]
fg (Λ)
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Consistency relations for DIS

Clearly, the above equation factorizes into

W LP,LL
φ,g = exp

[
αsCA

π

1

ε2

(
µ2

Q2

)ε
(Nε − 1)

]
f LP,LLg = exp

[
−αsCA

π

1

ε2

(
µ2

Λ2

)ε
(Nε − 1)

]
fg (Λ)

MS Renormalization factor:

ZLP,LL
gg = exp

[
αsCA

π

lnN

ε

]
,

C̃φ,g = exp

[
αsCA

π

1

ε2

((
µ2

Q2

)ε
(Nε − 1)− ε lnN

)]
Anomalous dimension:

PLP,LL
gg (N) = −αsCA

π
2 lnN
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Consistency relations for DIS

∑
i

(Wφ,i fi )
NLP = WNLP

φ,q f LPq +WNLP
φ,q̄ f LPq̄ +WNLP

φ,g f LPg +W LP
φ,g f

NLP
g

Using the boundary condition of Wφ,q

∣∣∣hard

qφ∗→qg
, we obtain

WNLP,LP
φ,q =

1

2N lnN

CF

CF − CA
exp

[
αsCF

π

lnN

ε

]
w

ew − 1

(
ea/we ŜA − e ŜF

)
with

w ≡ −ε lnN, a =
αs

π
(CF − CA) ln2 N

Ŝi =
αsCi

π

1

ε2

{(
µ2

Q2

)ε
(Nε − 1)− ε lnN

}
, i = A,F
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Off-diagonal DIS cross section

WNLP
φ,q = C̃NLP

φ,q ZLP
qq + C̃LP

φ,gZ
NLP
gq

Define

F (w , a) ≡ wea/w

ew − 1
= Fpole(w , a) + Ffin(w , a)

ZNLP,LL
gq =

1

2N lnN

CF

CF − CA
exp

[
αsCF

π

lnN

ε

]
Fpole(w , a)

The off-diagonal splitting kernel

PNLP,LL
gq (N) = − 1

N

αsCF

π

[
Fpole(w , a)− w

d

da
Fpole(w , a)

]
=

1

N

αsCF

π
B0(a)
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Summary

The universal structure of the large logarithms in cross
sections is controlled by the factorization formula and the
anomalous dimensions.

The picture at leading power has been understood up to
higher order corrections.

At subleading power, the factorization becomes complicated.

For the diagonal channel, the soft function exhibits
divergences. One needs to introduce new soft function to
perform renormalization.
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Summary

For the off-diagonal channel, the end-point singularity appears.
The traditional factorization breaks down. We have to work in
d-dimension in order to generate the correct all order result.

A new scale in the end-point region indicates a two-step
matching. Using the consistency relations, we obtain the
off-diagonal DGLAP evolution kernel to all orders, which
contains double logarithms in itself.

Thank you !
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