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Conformal Field Theories

• Classification of CFTs is an interesting but hard question

(1) 2d CFT: Virasoro algebra provides strong constraints, rational CFT

(2) For higher dimensional CFTs (e. g. d ≥ 3), the full operator

spectrum, OPEs . . . are not known

• In the SCFT cases, partial classification comes from geometric

constructions

(1) Superstring/M/F-theory on a non-compact space

(2) Dimensional reduction of 6d SCFTs on a compact space

(3) Worldvolume theory of brane objects in superstring/M/F-theory

(AdS/CFT)
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Geometric Engineering

• Superstring/M/F-theory on a non-compact space, decouple gravity

String theory on

Compact X

Quantum gravity

String theory on

Non-compact X

QFT

Decompactify
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Geometric Engineering

String theory on

Non-compact X

QFT

Singular limit

String theory on

a singularity

CFT

• The CFT degree of freedoms are localized around the origin
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5d SCFTs

(1) 11d M-theory on canonical threefold singularity

X
Singularity

(Xie, Yau 15’)(Apruzzi, Bhardwaj, Closset, Collinucci, De Marco, Del Zotto, Eckhard,

Giacomelli, Heckman, Hubner, Jefferson, Katz, Kim, Lawrie, Lin, Morrison, Mu,

Sangiovanni, Saxena, Schafer-Nameki, Tarazi, Tian, Vafa, Valandro, YNW, Zafrir,

Zhang. . . ).

(2) Brane web constructions in IIB superstring

(Akhond, van Beest, Bergman, Bourget, Cabrera, Carta, Dwivedi, Eckhard, Ferlito,

Giacomelli, Grimminger, Hanany, Hayashi, He, Kalveks, Kim, Kim, Kim, Lee,

Mekareeya, Ohmori, Schafer-Nameki, Shimizu, Sperling, Tachikawa, Taki, Uhlemann,

Yagi, Zafrir, Zajac, Zoccarato, Zhong . . . ).
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Deformations of SCFTs

• Directly study the operator spectrum/ OPE etc. Hard!

(1) Coulomb branch: scalars ϕi in the vector multiplets have non-zero

vev.

(2) Higgs branch: scalars in the hypermultiplets have non-zero vev.

5d N=1 
UV SCFT 

+relevant
deformation

 
IR non-abelian
gauge theory

UV Higgs
branch 

IR CB EFT

RG flow

Coulomb
Branch
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5d CB and M-theory on resolved CY3

• M-theory on a resolved CY3 → CB physics, U(1)r+ massive charged

matter

CB U(1) gauge field A
from 

M2-brane
wrapping
2-cycle C:
BPS particle
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Non-abelian and SCFT limit

• Non-abelian gauge theory description exists when the CY3 has a

P1-fibration structure, e. g. the local P1 × P1 gives 5d SU(2)0 theory in

the non-abelian limit.

SU(2) gauge theory limit UV SCFT limit
Mass of W-boson→0

M2 wrap 
W-boson

• Similar picture in the IIB (p, q) 5-brane web constructions!
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What about 3d N = 2?

• Naturally, M-theory on local CY4 singularity → 3d N = 2 SCFT,

because of the absence of geometric scale

• Build up geometric dictionary, investigate 3d N = 2 physics from

M-theory on CY4 (Najjar, Tian, YNW 23’).

U(1)r CB

RG flow

IR CB EFT

non-abelian
gauge theory

RG flow

IR EFT

3d N=2
SCFT

Singular limit

GF enhancement 

M-theory (deep UV)

(deep IR)
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3d N = 2 basics

• Vector multiplet: Aµ, λ, λ̃, real scalar σ

• Chiral multiplet: ϕ, ψ (same d.o.f. as 4d N = 1 chiral multiplet)

• Anti-chiral multiplet: ϕ̃, ψ̃, in the conjugate rep. of chiral multiplet

• Holomorphic superpotential W (ϕ)

• Coulomb branch: ⟨σ⟩ ≠ 0, can be lifted by superpotential/scalar

potential

L = LYM + LCS + Lmatter + Lsuperpotential (1)

• [1/g2
YM ] ∼ M−1, asymptotic freedom in UV, strongly coupled

SCFT/gapped TQFT in IR

• Real mass for a Dirac fermion ψ in 3d: imψ̄ψ, m ∈ R, odd under parity

• Integrate out “chiral” fermions → IR effective Chern-Simons terms

• Lots of IR dualities (Aharony, Hanany, Intriligator, Seiberg, Strassler 97’)....
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Resolved CY4 (CB)

• M-theory on resolved local CY4 X4, e. g. local D = P1 × P1 × P1 →
3d N = 2 U(1) gauge theory+ massive matter fields

U(1) gauge field
from 

M2 wrapping
2-cycle:
massive
particles

Non-compact 6-cycles 
Flavor/Topological U(1)

C
a

C
b

C
c

D (1,0,0)

(0,1,0)

(0,0,1)

(-1,0,0)

(0,0,-1)

S3

(0,-1,0)
S3

S1 S1

S2

S2
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Uncharged sector

C3 =
r∑

i=1

Ai ∧ ω(1,1)
i +

f∑
α=1

Bα ∧ ω(1,1),F
α (2)

(1) Dynamical gauge fields Ai

• Gauge rank r = b6(X4)

• ω(1,1)
i Poincaré dual to compact divisor (6-cycle) Di

(2) Background gauge fields Bα for geometric flavor symmetries

• Flavor rank f = b2(X4)− b6(X4)

• ω(1,1),F
α Poincaré dual to non-compact divisor (6-cycle) Sα
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Kähler form and CB parameters

• To compute volume of various cycles in X4, we need the Kähler

(1,1)-form

J(X4) =
r∑

i=1

aiω
(1,1)
i +

f∑
α=1

bαω
(1,1),F
α . (3)

• It is Poincaré dual to

Jc(X4) =
r∑

i=1

aiDi +
f∑

α=1

bαSα . (4)

(1) ai = ⟨σi ⟩: Coulomb branch parameters

(2) bα = ⟨ξα⟩: vev for the real scalar in the background gauge field

vector multiplet; real mass for flavor symmetry

• Volume of 2-cycles C , 4-cycles S and 6-cycles D are computed as

VC =

∫
C

J , VS =
1

2

∫
S
J ∧ J , VD =

1

6

∫
D

J ∧ J ∧ J . (5)

Yi-Nan Wang 3d N=2 from M-theory on CY4 and IIB brane box 13 / 38



Kähler form and CB parameters

• To compute volume of various cycles in X4, we need the Kähler

(1,1)-form

J(X4) =
r∑

i=1

aiω
(1,1)
i +

f∑
α=1

bαω
(1,1),F
α . (3)

• It is Poincaré dual to
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Gauge coupling

• U(1) Gauge coupling 1/g2 given by what?

• Reduce the kinetic term in 11D SUGRA action on X4 (leading term)

1

2

∫
R1,2×X4

G4 ∧ ⋆G4 =
1

2

∫
R1,2

F ∧ ⋆F
∫
X4

ω(1,1) ∧ ⋆ω(1,1) + (. . . )

=
1

2g2

∫
R1,2

F ∧ ⋆F + (. . . )

(6)

where
1

g2
=

∫
X4

ω(1,1) ∧ ⋆ω(1,1)

= −1

2

∫
X4

ω(1,1) ∧ ω(1,1) ∧ J ∧ J

= −1

2

∫
D·D

J ∧ J

= Vol(−KD) .

(7)

• Volume of the anti-canonical divisor of D!
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Gauge coupling

• In the local P1 × P1 × P1 case, the compact divisor D = P1 × P1 × P1

is toric, 1
g2 given by the sum of the volumes of all 4-cycles (walls)!

Yi-Nan Wang 3d N=2 from M-theory on CY4 and IIB brane box 15 / 38



M2-brane wrapping modes

• BPS states from M2-brane wrapping P1 curves C . Hint from 4d/3d

F/M-duality (Beasley, Heckman, Vafa 08’)(Intriligator, Jockers, Katz, Morrison,

Plesser 12’)(Jockers, Katz, Morrison, Plesser 16’). We first assume no G4 flux

(1) NC |X4
= O ⊕O ⊕O(−2), C is locally a P1 fiber, moduli space is a

4-cycle S.

C

S

• Adiabatically, the zero modes on C is the twisted reduction of 7d

N = 1 vector multiplet on S
• 1 vector multiplet + (h0,1 + h0,2) vector-like pairs of chiral multiplets
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M2-brane wrapping modes

(2) NC |X4
= O⊕O(−1)⊕O(−1), C is locally a P1 fiber, moduli space is

a Riemann surface Σ.

• The zero modes on C is the twisted reduction of 5d N = 1 vector

multiplet on Σ

• BPS states come from zero modes of Dirac operators on Σ →
vector-like pairs chiral multiplets.

• In particular, when Σ = P1, there is no zero mode and thus no BPS

particles.

• In general: mass of the BPS particle m ∝ Area(C )

• Charge under Cartan: q = C · D
• Charge under flavor Cartan qFi = C · Fi
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Local P1 × P1 × P1

• Denote the non-compact divisors to be S1, S2, S3, compact divisor is D

Ca = D · S2 · S3 , Cb = D · S1 · S3 , Cc = D · S1 · S2 (8)

• Ca, Cb, Cc all have normal bundle O ⊕O ⊕O(−2), moduli space

S = P1 × P1

• M2-brane wrapping mode: 1 vector multiplet

• U(1) gauge charge Ca · D = Cb · D = Cc · D = −2, hence one can

choose Ca, Cb or Cc as gauge W-boson.

M2 on Ca :
massive

W-boson

Ca

Cb
Cc

S1

S2

S3
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SU(2) limit

• In the limit of e. g. Area(Ca) → 0, M2-brane wrapping Ca becomes

massless W-boson.

Area(Ca)=0

massless

W-boson

Cb

Cc

M2 on Ca :
massive

W-boson

Ca

Cb
Cc

S1

S2

S3

S3

• 1/g2 ∼Vol(S)

• SU(2) gauge theory+massive charged particle from M2-brane wrapping

Cb and Cc

• Interpreted as disorder operators! (Dyonic instanton in 5d SU(2)0

theory on S2)
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SCFT limit

• Singular limit: all compact cycles shrink to zero volume, 1/g2 → 0

• Absence of scale parameter → SCFT! W = 0

Singular
Limit

Area(Ca)=0
massless
W-boson

Cb

Cc

M2 on Ca :
massive
W-boson

Ca

Cb
Cc

S1

S2

S3

S3
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Shrinkability condition

• Geometric shrinkability condition for the existence of a 3d N = 2 SCFT

at singular point?

(1) At the singular limit when all compact cycles of X4 shrinks to a point,

still have 1/g2
α → ∞ for all non-compact divisors Sα (U(1)f flavor

symmetry still persists).

(Counter example: local D where D is not weak-Fano)

(2) Exists strongly coupled limit 1/g2
i → 0 for all U(1)i gauge groups only

when the 4-cycles on all compact divisors Di in X4 shrink to zero volume.

(Counter example: 3d N = 4 models such as local T 2)
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Flavor symmetry enhancement

• In the singular limit of X4, 3d N = 2 SCFT with non-abelian flavor

symmetry enhancement GF

• Read off from the CB picture from M-theory on resolved CY4

• Identify non-compact 6-cycles Fi generating flavor Cartan U(1)f

• Identify flavor W-bosons as M2 wrapping Ci .

(1) Vector multiplet: NCi |X4
= O ⊕O ⊕O(−2)

(2) Charge under U(1)f forming the Cartan matrix of GF

(3) Neutral under U(1)r gauge symmetry

Yi-Nan Wang 3d N=2 from M-theory on CY4 and IIB brane box 22 / 38
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Flavor symmetry enhancement

• In the example of local (P1)3, flavor Cartans

F1 = S1 − S2 , F2 = S2 − S3 . (9)

• Flavor W-bosons

C1 = D · (S1 − S2) · S3 , C2 = D · (S2 − S3) · S1 . (10)

F1 F2

C1 −2 1

C2 1 −2

, Exactly the Cartan matrix for SU(3)! (11)

• Ca, Cb and Cc form the 3 rep. of SU(3)!

Ca

Cb
Cc

S1

S2S3
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Flavor symmetry enhancement

• In the example of local (P1)3, flavor Cartans

F1 = S1 − S2 , F2 = S2 − S3 . (9)

• Flavor W-bosons

C1 = D · (S1 − S2) · S3 , C2 = D · (S2 − S3) · S1 . (10)

F1 F2

C1 −2 1

C2 1 −2

, Exactly the Cartan matrix for SU(3)! (11)

• Ca, Cb and Cc form the 3 rep. of SU(3)!

Ca

Cb
Cc

S1

S2S3

Yi-Nan Wang 3d N=2 from M-theory on CY4 and IIB brane box 23 / 38



Flavor symmetry enhancement

• In the example of local (P1)3, flavor Cartans

F1 = S1 − S2 , F2 = S2 − S3 . (9)

• Flavor W-bosons

C1 = D · (S1 − S2) · S3 , C2 = D · (S2 − S3) · S1 . (10)

F1 F2

C1 −2 1

C2 1 −2

, Exactly the Cartan matrix for SU(3)! (11)

• Ca, Cb and Cc form the 3 rep. of SU(3)!

Ca

Cb
Cc

S1

S2S3
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Flavor symmetry enhancement

• Flavor W-boson being non-effective?

• Similar to the 5d case, local F0 ≈ local F2 (Seiberg rank-1 E1 theory

with GF = SU(2))

• Deformation F0 → F2 gives the same SCFT!

• Flavor W-boson is only an effective curve on F2

F

S

F

S -F
(0) (-2)
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Flavor symmetry enhancement

• CY4 case, toric diagram from local (P1)3:

(0,0,1)

(0,0,-1)

(0,1,0)

(1,0,0)

(0,-1,0)

(-1,-2,0)

(0,0,1)

(2,0,-1)

(0,1,0)

(1,0,0)

(0,-1,0)

(-1,-2,0)

(0,0,1)

(0,0,-1)

(0,1,0)

(1,0,0)

(0,-1,0)

(-1,0,0)

• After the deformation, see the SU(3) flavor symmetry explicitly
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Flavor symmetry duality

• Sometimes, one can assign different sets of flavor W-bosons →
Different non-abelian flavor symmetry enhancements

• Consider a 2d facet of a 3d toric diagram, with two P1-fibration

structures

S2

S3

S1

S4

S5

S6

S7

S8

• SU(3) ↔ SU(2)2 flavor symmetry duality! Phenomenon is not present

in 5d
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1-form symmetry

• 1-form global symmetry symmetry acting on Wilson loops of gauge

theory (Gaiotto, Kapustin, Seiberg, Willett 14’)

• Pure d-dim. U(1) Maxwell theory has a U(1) 1-form symmetry

• U(1)r gauge theory w/ charged matter ϕi with charge qij under U(1)j ,

matter breaks the U(1)r 1-form symmetry to a subgroup Γ

• Compute Smith Normal Form D

D =



l1 0 . . . 0

0 l2 . . . 0
...

...
. . . 0

0 0 . . . lr

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0


= A{qij}B (12)

Γ =
r⊕

i=1

(Z/liZ) (13)
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1-form symmetry

• On the resolved X4 CB,

(1) U(1)r gauge fields from compact divisors Dj

(2) Charged particles from M2-brane wrapping 2-cycles Ci

• qij = Ci · Dj , compute SNF, get 1-form symmetry

• Local P1 × P1 × P1 example: all particles have even U(1) charges →
Γ = Z2 1-form symmetry!

• In the toric CY4 case, equivalent computation using SNF of list of toric

rays (Morrison, Schafer-Nameki, Willett 19’)
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G4 flux

• For M-theory/F-theory on CY4, (free) G4 flux is usually a crucial

ingredient

G4 +
1

2
c2(X4) ∈ H4(X4,Z) (14)

• In the non-compact CY4 case, G4 should have compact support (dual

to a compact 4-cycle)(Gukov, Vafa, Witten, 99’)

(1) Induce non-zero chirality of matter fields

• Integrating out chiral matter → deep IR Chern-Simons term

SCS =
1

4π

∫ r∑
i,j=1

kijAi ∧ Fj . (15)

kij =

∫
X4

G4 ∧ ω(1,1)
i ∧ ω(1,1)

j

= G c
4 · Di · Dj .

(16)

(2) GVW superpotential, D-term superpotential

WGVW =

∫
X4

G4 ∧ Ω4 , WD =

∫
X4

G4 ∧ J ∧ J . (17)

Yi-Nan Wang 3d N=2 from M-theory on CY4 and IIB brane box 29 / 38



G4 flux

• For M-theory/F-theory on CY4, (free) G4 flux is usually a crucial

ingredient

G4 +
1

2
c2(X4) ∈ H4(X4,Z) (14)

• In the non-compact CY4 case, G4 should have compact support (dual

to a compact 4-cycle)(Gukov, Vafa, Witten, 99’)

(1) Induce non-zero chirality of matter fields

• Integrating out chiral matter → deep IR Chern-Simons term

SCS =
1

4π

∫ r∑
i,j=1

kijAi ∧ Fj . (15)

kij =

∫
X4

G4 ∧ ω(1,1)
i ∧ ω(1,1)

j

= G c
4 · Di · Dj .

(16)

(2) GVW superpotential, D-term superpotential

WGVW =

∫
X4

G4 ∧ Ω4 , WD =

∫
X4

G4 ∧ J ∧ J . (17)

Yi-Nan Wang 3d N=2 from M-theory on CY4 and IIB brane box 29 / 38



G4 flux

• For M-theory/F-theory on CY4, (free) G4 flux is usually a crucial

ingredient

G4 +
1

2
c2(X4) ∈ H4(X4,Z) (14)

• In the non-compact CY4 case, G4 should have compact support (dual

to a compact 4-cycle)(Gukov, Vafa, Witten, 99’)

(1) Induce non-zero chirality of matter fields

• Integrating out chiral matter → deep IR Chern-Simons term

SCS =
1

4π

∫ r∑
i,j=1

kijAi ∧ Fj . (15)

kij =

∫
X4

G4 ∧ ω(1,1)
i ∧ ω(1,1)

j

= G c
4 · Di · Dj .

(16)

(2) GVW superpotential, D-term superpotential

WGVW =

∫
X4

G4 ∧ Ω4 , WD =

∫
X4

G4 ∧ J ∧ J . (17)

Yi-Nan Wang 3d N=2 from M-theory on CY4 and IIB brane box 29 / 38



G4 flux

• On the resolved X4 (CB)

(1) G4 = 0 → no CS term in the deep IR

(2) G4 ̸= 0 → CS term in the deep IR

U(1)r CB

RG flow

IR CB EFT

non-abelian
gauge theory

RG flow

IR EFT

3d N=2
SCFT

Singular limit

GF enhancement 

M-theory (deep UV)

(deep IR)

• Adding G4 obstructs the singular limit of X4! Because G4 cannot pass

through shrinking 4-cycles

• To have the SCFT description at singular limit, G4 = 0
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Superpotential

• A detailed computation of superpotential W is still unknown, several

sources

(1) Euclidean M5 brane wrapping compact 6-cycle D with

h0,1(D) = h0,2(D) = h0,3(D) = 0 (Witten, 96’)

WEM5 = T (mα)e
−VD . (18)

• Exists for any toric divisor!

• Coefficient T (mα) depends on other moduli, e. g. complex structure

moduli. The Kähler moduli and c. s. moduli are mixed in CY4

• Volume of divisor VD ̸= 1/g2! VD has no known physical

correspondence in 3d N = 2 field theory

(2) Eucliean M2 brane wrapping rigid 3-cycles, absent in toric CY4.

(3) GVW superpotential w/ G4 flux

• A detailed calculation of W in the future?
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Brane web picture in IIB

• In the case of toric CY4, a dual brane web description in IIB! (Leung,

Vafa 97’)

• First consider M-theory on T 3 (8, 9, 10) directions

• The toric CY4 is equivalent to the system of (6 + 1)-dim. KK7M

monopoles

0 1 2 3 4 5 6 7 S1
8 S1

9 S1
10

KK7M(10) ✓ ✓ ✓ • • • ✓ ✓ ✓ ✓ TN

KK7M(9) ✓ ✓ ✓ • • ✓ • ✓ ✓ TN ✓

KK7M(8) ✓ ✓ ✓ • • ✓ ✓ • TN ✓ ✓
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Brane web picture in IIB

• M-theory on S1
10 → IIA

0 1 2 3 4 5 6 7 S1
8 S1

9

D
(1,0,0)
6 ✓ ✓ ✓ • • • ✓ ✓ ✓ ✓

KK6A(0,1,0) ✓ ✓ ✓ • • ✓ • ✓ ✓ TN

KK6A(0,0,1) ✓ ✓ ✓ • • ✓ ✓ • TN ✓

• T-duality along S1
9 → IIB on S̃1

9

0 1 2 3 4 5 6 7 S1
8 S̃1

9

D
(1,0,0)
5 ✓ ✓ ✓ • • • ✓ ✓ ✓ •

NS
(0,1,0)
5 ✓ ✓ ✓ • • ✓ • ✓ ✓ •

KK6B(0,0,1) ✓ ✓ ✓ • • ✓ ✓ • TN ✓
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Brane web picture in IIB

• M2-brane wrapping P1: Ca, Cb, Cc :

0 1 2 3 4 5 6 7 S1
8 S1

9 S1
10

M2(1,0,0) ✓ • • • • ✓ • • • • ✓

M2(0,1,0) ✓ • • • • • ✓ • • ✓ •
M2(0,0,1) ✓ • • • • • • ✓ ✓ • •

• In IIB description

0 1 2 3 4 5 6 7 S1
8 S̃1

9

F
(1,0,0)
1 ✓ • • • • ✓ • • • •

D
(0,1,0)
1 ✓ • • • • • ✓ • • •

D
(0,0,1)
3 ✓ • • • • • • ✓ ✓ ✓
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Brane web picture in IIB

• Can be viewed as a web of (p, q, r) 4-branes in 8d SUGRA (remove 8,

9 directions)! (Leung, Vafa 97’)(Lu, Roy 98’)

• (p, q, r) transforms under SL(3,Z) (part of 8d U-duality)

0 1 2 3 4 5 6 7

(1,0,0) 4-brane ✓ ✓ ✓ • • • ✓ ✓

(0,1,0) 4-brane ✓ ✓ ✓ • • ✓ • ✓

(0,0,1) 4-brane ✓ ✓ ✓ • • ✓ ✓ •

(1,0,0)-string ✓ • • • • ✓ • •
(0,1,0)-string ✓ • • • • • ✓ •
(0,0,1)-string ✓ • • • • • • ✓

• M2-brane wrapping P1: Ca, Cb, Cc : (1, 0, 0), (0, 1, 0), (0, 0, 1) strings!

• M2-brane wrapping 2-cycle in M-theory ↔ open string modes on

4-string junction!

Yi-Nan Wang 3d N=2 from M-theory on CY4 and IIB brane box 35 / 38



Brane web picture in IIB

(1,0,0)

(0,1,0)

(0,0,1)(0,0,1)

(1,0,0)

(0,1,0)

• Generally for (p, q, r)-string, mass of BPS open strings states

m ∼ length× T(p,q,r) (19)

• U(1) gauge field given by a linear combination of U(1)s of all finite

4-branes

• Electric charge of a string state Qe = −Nb, total # of end points of

the string
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Flavor branes giving flavor symmetry

• Flavor branes in IIB: classified by exotic branes

• Flavor branes in 8D SUGRA: 5-brane objects

0 1 2 3 4 5 6 7

S̃1
9 × S1

8 -wrapped (D7,NS7) ✓ ✓ ✓ ✓ ✓ • • ✓

(NS5,522) ✓ ✓ ✓ ✓ ✓ ✓ • •
(D5,523) ✓ ✓ ✓ ✓ ✓ • ✓ •

523NS7

522

D5 D7

NS5••

g−1
s

g−2
s

g−3
s
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What’s next?

• Superpotential from geometry? Hard even for 3d N = 2 SU(2) + Nf F!

• Higher derivative/quantum correction to the 11D SUGRA action, more

precise formula for 1/g2

• Realize known 3d N = 2 dualities, e. g. SQED-XYZ duality

• Relations to other 3d N = 2 constructions, e. g. 6d (2,0) on

3-manifolds?

• 4d N = 1 uplift in the elliptic cases

• Higgs branch?

• Detailed study of C4/Γ orbifolds, 4d McKay correspondence

Thank you for your attention!
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