3d N=2 from M-theory on CY4 and IIB brane box $$_{2312.17082}$$ w/ Marwan Najjar and Jiahua Tian

Yi-Nan Wang

Peking University

PCFT, USTC, Hefei Jan. 11th, 2024 Classification of CFTs is an interesting but hard question
(1) 2d CFT: Virasoro algebra provides strong constraints, rational CFT
(2) For higher dimensional CFTs (e. g. d ≥ 3), the full operator spectrum, OPEs ... are not known

イロト イポト イラト イラト

-

Classification of CFTs is an interesting but hard question
(1) 2d CFT: Virasoro algebra provides strong constraints, rational CFT
(2) For higher dimensional CFTs (e. g. d ≥ 3), the full operator spectrum, OPEs ... are not known

• In the SCFT cases, partial classification comes from geometric constructions

(1) Superstring/M/F-theory on a non-compact space

(2) Dimensional reduction of 6d SCFTs on a compact space

(3) Worldvolume theory of brane objects in superstring/M/F-theory (AdS/CFT)

ヘロト ヘ河ト ヘヨト ヘヨト

-

• Superstring/M/F-theory on a non-compact space, decouple gravity

きょうきょう

• The CFT degree of freedoms are localized around the origin

(1) 11d M-theory on canonical threefold singularity

(Xie, Yau 15')(Apruzzi, Bhardwaj, Closset, Collinucci, De Marco, Del Zotto, Eckhard, Giacomelli, Heckman, Hubner, Jefferson, Katz, Kim, Lawrie, Lin, Morrison, Mu, Sangiovanni, Saxena, Schafer-Nameki, Tarazi, Tian, Vafa, Valandro, YNW, Zafrir, Zhang...).

(2) Brane web constructions in IIB superstring

(Akhond, van Beest, Bergman, Bourget, Cabrera, Carta, Dwivedi, Eckhard, Ferlito, Giacomelli, Grimminger, Hanany, Hayashi, He, Kalveks, Kim, Kim, Kim, Lee, Mekareeya, Ohmori, Schafer-Nameki, Shimizu, Sperling, Tachikawa, Taki, Uhlemann, Yagi, Zafrir, Zajac, Zoccarato, Zhong ...).

э

Deformations of SCFTs

• Directly study the operator spectrum/ OPE etc. Hard! (1) Coulomb branch: scalars ϕ^i in the vector multiplets have non-zero vev.

(2) Higgs branch: scalars in the hypermultiplets have non-zero vev.

5d CB and M-theory on resolved CY3

 \bullet M-theory on a resolved CY3 \rightarrow CB physics, $\mathit{U}(1)^r+$ massive charged matter

4 3 5 4 3 5 5

Non-abelian and SCFT limit

• Non-abelian gauge theory description exists when the CY3 has a \mathbb{P}^1 -fibration structure, e. g. the local $\mathbb{P}^1 \times \mathbb{P}^1$ gives 5d $SU(2)_0$ theory in the non-abelian limit.

• Similar picture in the IIB (p, q) 5-brane web constructions!

э

What about 3d $\mathcal{N} = 2?$

 \bullet Naturally, M-theory on local CY4 singularity \to 3d ${\cal N}=2$ SCFT, because of the absence of geometric scale

• Build up geometric dictionary, investigate 3d $\mathcal{N}=2$ physics from M-theory on CY4 (Najjar, Tian, YNW 23').

3d $\mathcal{N} = 2$ basics

- Vector multiplet: A_{μ} , λ , $\tilde{\lambda}$, real scalar σ
- Chiral multiplet: ϕ , ψ (same d.o.f. as 4d $\mathcal{N} = 1$ chiral multiplet)
- Anti-chiral multiplet: $\tilde{\phi}$, $\tilde{\psi}$, in the conjugate rep. of chiral multiplet

- Vector multiplet: A_{μ} , λ , $\tilde{\lambda}$, real scalar σ
- Chiral multiplet: ϕ , ψ (same d.o.f. as 4d $\mathcal{N} = 1$ chiral multiplet)
- Anti-chiral multiplet: $\tilde{\phi}, \tilde{\psi}$, in the conjugate rep. of chiral multiplet
- Holomorphic superpotential $W(\phi)$

A 32 b

- Vector multiplet: A_{μ} , λ , $\tilde{\lambda}$, real scalar σ
- Chiral multiplet: ϕ , ψ (same d.o.f. as 4d $\mathcal{N} = 1$ chiral multiplet)
- Anti-chiral multiplet: $\tilde{\phi}, \tilde{\psi}$, in the conjugate rep. of chiral multiplet
- Holomorphic superpotential $W(\phi)$
- \bullet Coulomb branch: $\langle \sigma \rangle \neq$ 0, can be lifted by superpotential/scalar potential

- Vector multiplet: A_{μ} , λ , $\tilde{\lambda}$, real scalar σ
- Chiral multiplet: ϕ , ψ (same d.o.f. as 4d $\mathcal{N} = 1$ chiral multiplet)
- Anti-chiral multiplet: $\tilde{\phi},\,\tilde{\psi},$ in the conjugate rep. of chiral multiplet
- Holomorphic superpotential $W(\phi)$
- \bullet Coulomb branch: $\langle \sigma \rangle \neq$ 0, can be lifted by superpotential/scalar potential

$$L = L_{YM} + L_{CS} + L_{matter} + L_{superpotential}$$
(1)

- Vector multiplet: A_{μ} , λ , $\tilde{\lambda}$, real scalar σ
- Chiral multiplet: ϕ , ψ (same d.o.f. as 4d $\mathcal{N}=1$ chiral multiplet)
- Anti-chiral multiplet: $\tilde{\phi},\,\tilde{\psi},$ in the conjugate rep. of chiral multiplet
- Holomorphic superpotential $W(\phi)$
- \bullet Coulomb branch: $\langle \sigma \rangle \neq$ 0, can be lifted by superpotential/scalar potential

$$L = L_{YM} + L_{CS} + L_{matter} + L_{superpotential}$$
(1)

• $[1/g_{YM}^2] \sim M^{-1}$, asymptotic freedom in UV, strongly coupled SCFT/gapped TQFT in IR

不同 とうきょうきょうき

- Vector multiplet: A_{μ} , λ , $\tilde{\lambda}$, real scalar σ
- Chiral multiplet: ϕ , ψ (same d.o.f. as 4d $\mathcal{N}=1$ chiral multiplet)
- Anti-chiral multiplet: $\tilde{\phi},\,\tilde{\psi},$ in the conjugate rep. of chiral multiplet
- Holomorphic superpotential $W(\phi)$
- \bullet Coulomb branch: $\langle \sigma \rangle \neq$ 0, can be lifted by superpotential/scalar potential

$$L = L_{YM} + L_{CS} + L_{matter} + L_{superpotential}$$
(1)

- $[1/g_{YM}^2] \sim M^{-1},$ asymptotic freedom in UV, strongly coupled SCFT/gapped TQFT in IR
- Real mass for a Dirac fermion ψ in 3d: $im\bar{\psi}\psi$, $m\in\mathbb{R}$, odd under parity
- \bullet Integrate out "chiral" fermions \rightarrow IR effective Chern-Simons terms

- Vector multiplet: A_{μ} , λ , $\tilde{\lambda}$, real scalar σ
- Chiral multiplet: ϕ , ψ (same d.o.f. as 4d $\mathcal{N}=1$ chiral multiplet)
- Anti-chiral multiplet: $\tilde{\phi},\,\tilde{\psi},$ in the conjugate rep. of chiral multiplet
- Holomorphic superpotential $W(\phi)$
- \bullet Coulomb branch: $\langle \sigma \rangle \neq$ 0, can be lifted by superpotential/scalar potential

$$L = L_{YM} + L_{CS} + L_{matter} + L_{superpotential}$$
(1)

- $[1/g_{YM}^2] \sim M^{-1},$ asymptotic freedom in UV, strongly coupled SCFT/gapped TQFT in IR
- Real mass for a Dirac fermion ψ in 3d: $im\bar{\psi}\psi$, $m\in\mathbb{R}$, odd under parity
- \bullet Integrate out "chiral" fermions \rightarrow IR effective Chern-Simons terms
- Lots of IR dualities (Aharony, Hanany, Intriligator, Seiberg, Strassler 97')....

Resolved CY4 (CB)

• M-theory on resolved local CY4 X_4 , e. g. local $D = \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \rightarrow 3d \mathcal{N} = 2 \text{ U}(1)$ gauge theory+ massive matter fields

Uncharged sector

$$C_3 = \sum_{i=1}^r A_i \wedge \omega_i^{(1,1)} + \sum_{\alpha=1}^f B_\alpha \wedge \omega_\alpha^{(1,1),F}$$
(2)

(1) Dynamical gauge fields A_i

• Gauge rank
$$r = b_6(X_4)$$

• $\omega_i^{(1,1)}$ Poincaré dual to compact divisor (6-cycle) D_i

(2) Background gauge fields B_{α} for geometric flavor symmetries

• Flavor rank
$$f = b_2(X_4) - b_6(X_4)$$

•
$$\omega_{\alpha}^{(1,1),F}$$
 Poincaré dual to non-compact divisor (6-cycle) S_{α}

(1) マント (1) マント

= nar

Kähler form and CB parameters

• To compute volume of various cycles in X_4 , we need the Kähler (1,1)-form

$$J(X_4) = \sum_{i=1}^{r} a_i \omega_i^{(1,1)} + \sum_{\alpha=1}^{f} b_\alpha \omega_\alpha^{(1,1),F} .$$
(3)

• It is Poincaré dual to

$$J^{c}(X_{4}) = \sum_{i=1}^{r} a_{i}D_{i} + \sum_{\alpha=1}^{f} b_{\alpha}S_{\alpha}. \qquad (4)$$

・ 回 ト ・ ヨ ト ・ ヨ ト

Kähler form and CB parameters

• To compute volume of various cycles in X_4 , we need the Kähler (1,1)-form

$$J(X_4) = \sum_{i=1}^{r} a_i \omega_i^{(1,1)} + \sum_{\alpha=1}^{f} b_\alpha \omega_\alpha^{(1,1),F} .$$
(3)

• It is Poincaré dual to

$$J^{c}(X_{4}) = \sum_{i=1}^{r} a_{i}D_{i} + \sum_{\alpha=1}^{f} b_{\alpha}S_{\alpha}. \qquad (4)$$

a_i = ⟨σ_i⟩: Coulomb branch parameters
 b_α = ⟨ξ_α⟩: vev for the real scalar in the background gauge field vector multiplet; real mass for flavor symmetry

• Volume of 2-cycles C, 4-cycles S and 6-cycles D are computed as

$$V_{C} = \int_{C} J , \quad V_{S} = \frac{1}{2} \int_{S} J \wedge J , \quad V_{D} = \frac{1}{6} \int_{D} J \wedge J \wedge J . \quad (5)$$

Gauge coupling

- U(1) Gauge coupling $1/g^2$ given by what?
- Reduce the kinetic term in 11D SUGRA action on X_4 (leading term)

$$\frac{1}{2} \int_{\mathbb{R}^{1,2} \times X_4} G_4 \wedge \star G_4 = \frac{1}{2} \int_{\mathbb{R}^{1,2}} F \wedge \star F \int_{X_4} \omega^{(1,1)} \wedge \star \omega^{(1,1)} + (\dots)$$

$$= \frac{1}{2g^2} \int_{\mathbb{R}^{1,2}} F \wedge \star F + (\dots)$$
(6)

where

$$\frac{1}{g^2} = \int_{X_4} \omega^{(1,1)} \wedge \star \omega^{(1,1)}$$

$$= -\frac{1}{2} \int_{X_4} \omega^{(1,1)} \wedge \omega^{(1,1)} \wedge J \wedge J$$

$$= -\frac{1}{2} \int_{D \cdot D} J \wedge J$$

$$= \operatorname{Vol}(-K_D).$$
(7)

• Volume of the anti-canonical divisor of D!

A 32 b

Gauge coupling

• In the local $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ case, the compact divisor $D = \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ is toric, $\frac{1}{g^2}$ given by the sum of the volumes of all 4-cycles (walls)!

きょうきょう

M2-brane wrapping modes

• BPS states from M2-brane wrapping \mathbb{P}^1 curves *C*. Hint from 4d/3d F/M-duality (Beasley, Heckman, Vafa 08')(Intriligator, Jockers, Katz, Morrison, Plesser 12')(Jockers, Katz, Morrison, Plesser 16'). We first assume no G_4 flux

- A - E - N

M2-brane wrapping modes

• BPS states from M2-brane wrapping \mathbb{P}^1 curves *C*. Hint from 4d/3d F/M-duality (Beasley, Heckman, Vafa 08')(Intriligator, Jockers, Katz, Morrison, Plesser 12')(Jockers, Katz, Morrison, Plesser 16'). We first assume no G_4 flux (1) $N_{C|X_4} = \mathcal{O} \oplus \mathcal{O} \oplus \mathcal{O}(-2)$, *C* is locally a \mathbb{P}^1 fiber, moduli space is a 4-cycle *S*.

- \bullet Adiabatically, the zero modes on C is the twisted reduction of 7d $\mathcal{N}=1$ vector multiplet on \mathcal{S}
- 1 vector multiplet + $(h^{0,1} + h^{0,2})$ vector-like pairs of chiral multiplets

4 建市

-

(2) $N_{C|X_4} = \mathcal{O} \oplus \mathcal{O}(-1) \oplus \mathcal{O}(-1)$, *C* is locally a \mathbb{P}^1 fiber, moduli space is a Riemann surface Σ .

 \bullet The zero modes on ${\cal C}$ is the twisted reduction of 5d ${\cal N}=1$ vector multiplet on Σ

- \bullet BPS states come from zero modes of Dirac operators on $\Sigma \to$ vector-like pairs chiral multiplets.
- In particular, when $\Sigma=\mathbb{P}^1,$ there is no zero mode and thus no BPS particles.

A (1) A (2) A (

(2) $N_{C|X_4} = \mathcal{O} \oplus \mathcal{O}(-1) \oplus \mathcal{O}(-1)$, *C* is locally a \mathbb{P}^1 fiber, moduli space is a Riemann surface Σ .

 \bullet The zero modes on ${\cal C}$ is the twisted reduction of 5d ${\cal N}=1$ vector multiplet on Σ

- \bullet BPS states come from zero modes of Dirac operators on $\Sigma \to$ vector-like pairs chiral multiplets.
- In particular, when $\Sigma=\mathbb{P}^1,$ there is no zero mode and thus no BPS particles.
- In general: mass of the BPS particle $m \propto Area(C)$
- Charge under Cartan: $q = C \cdot D$
- Charge under flavor Cartan $q_i^F = C \cdot F_i$

・ 周 ト ・ ヨ ト ・ ヨ ト

Local $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$

• Denote the non-compact divisors to be S_1 , S_2 , S_3 , compact divisor is D

$$C_a = D \cdot S_2 \cdot S_3 , \ C_b = D \cdot S_1 \cdot S_3 , \ C_c = D \cdot S_1 \cdot S_2$$
(8)

- C_a , C_b , C_c all have normal bundle $\mathcal{O} \oplus \mathcal{O} \oplus \mathcal{O}(-2)$, moduli space $\mathcal{S} = \mathbb{P}^1 \times \mathbb{P}^1$
- M2-brane wrapping mode: 1 vector multiplet
- U(1) gauge charge $C_a \cdot D = C_b \cdot D = C_c \cdot D = -2$, hence one can choose C_a , C_b or C_c as gauge W-boson.

SU(2) limit

• In the limit of e. g. $Area(C_a) \rightarrow 0$, M2-brane wrapping C_a becomes massless W-boson.

• $1/g^2 \sim Vol(S)$

- SU(2) gauge theory+massive charged particle from M2-brane wrapping C_b and C_c
- Interpreted as disorder operators! (Dyonic instanton in 5d $SU(2)_0$ theory on S^2)

SCFT limit

- ullet Singular limit: all compact cycles shrink to zero volume, $1/g^2 \rightarrow 0$
- Absence of scale parameter \rightarrow SCFT! W = 0

A 10

э

 \bullet Geometric shrinkability condition for the existence of a 3d $\mathcal{N}=2$ SCFT at singular point?

くぼ ト く ヨ ト く ヨ ト

• Geometric shrinkability condition for the existence of a 3d $\mathcal{N}=2$ SCFT at singular point?

(1) At the singular limit when all compact cycles of X_4 shrinks to a point, still have $1/g_{\alpha}^2 \to \infty$ for all non-compact divisors S_{α} ($U(1)^f$ flavor symmetry still persists).

(Counter example: local D where D is not weak-Fano)

A (1) A (2) A (2) A

 \bullet Geometric shrinkability condition for the existence of a 3d $\mathcal{N}=2$ SCFT at singular point?

(1) At the singular limit when all compact cycles of X_4 shrinks to a point, still have $1/g_{\alpha}^2 \to \infty$ for all non-compact divisors S_{α} ($U(1)^f$ flavor symmetry still persists). (Counter example: local D where D is not weak-Fano)

(2) Exists strongly coupled limit $1/g_i^2 \to 0$ for all $U(1)_i$ gauge groups only when the 4-cycles on all compact divisors D_i in X_4 shrink to zero volume. (Counter example: 3d $\mathcal{N} = 4$ models such as local T^2)

- In the singular limit of X_4 , 3d $\mathcal{N}=2$ SCFT with non-abelian flavor symmetry enhancement G_F
- Read off from the CB picture from M-theory on resolved CY4

< A > < A > >

- A - E - N

- In the singular limit of X_4 , 3d $\mathcal{N}=2$ SCFT with non-abelian flavor symmetry enhancement G_F
- Read off from the CB picture from M-theory on resolved CY4
- Identify non-compact 6-cycles F_i generating flavor Cartan $U(1)^f$

・ 回 ト ・ ラ ト ・ ラ ト

- In the singular limit of X_4 , 3d $\mathcal{N} = 2$ SCFT with non-abelian flavor symmetry enhancement G_F
- Read off from the CB picture from M-theory on resolved CY4
- Identify non-compact 6-cycles F_i generating flavor Cartan $U(1)^f$
- Identify flavor W-bosons as M2 wrapping C_i .
- (1) Vector multiplet: $N_{C_i|X_4} = \mathcal{O} \oplus \mathcal{O} \oplus \mathcal{O}(-2)$
- (2) Charge under $U(1)^{f}$ forming the Cartan matrix of G_{F}
- (3) Neutral under $U(1)^r$ gauge symmetry

・ 回 ト ・ ヨ ト ・ ヨ ト

 \bullet In the example of local $(\mathbb{P}^1)^3,$ flavor Cartans

$$F_1 = S_1 - S_2$$
, $F_2 = S_2 - S_3$. (9)

• Flavor W-bosons

$$C_1 = D \cdot (S_1 - S_2) \cdot S_3$$
, $C_2 = D \cdot (S_2 - S_3) \cdot S_1$. (10)

< 回 > < 回 > < 回 >

э

 \bullet In the example of local $(\mathbb{P}^1)^3,$ flavor Cartans

$$F_1 = S_1 - S_2$$
, $F_2 = S_2 - S_3$. (9)

• Flavor W-bosons

$$C_1 = D \cdot (S_1 - S_2) \cdot S_3$$
, $C_2 = D \cdot (S_2 - S_3) \cdot S_1$. (10)

$$\begin{array}{c|cccc} F_1 & F_2 \\ \hline C_1 & -2 & 1 \\ C_2 & 1 & -2 \end{array} , \quad \text{Exactly the Cartan matrix for } SU(3)! \quad (11) \\ \end{array}$$

(人間) システン イラン

3

 \bullet In the example of local $(\mathbb{P}^1)^3,$ flavor Cartans

$$F_1 = S_1 - S_2$$
, $F_2 = S_2 - S_3$. (9)

• Flavor W-bosons

$$C_1 = D \cdot (S_1 - S_2) \cdot S_3$$
, $C_2 = D \cdot (S_2 - S_3) \cdot S_1$. (10)

$$\begin{array}{c|cccc} F_1 & F_2 \\ \hline C_1 & -2 & 1 \\ C_2 & 1 & -2 \end{array} , \quad \text{Exactly the Cartan matrix for } SU(3)! \quad (11) \end{array}$$

• C_a , C_b and C_c form the **3** rep. of SU(3)!

- Flavor W-boson being non-effective?
- Similar to the 5d case, local $\mathbb{F}_0\approx$ local \mathbb{F}_2 (Seiberg rank-1 E_1 theory with $G_F=SU(2))$
- Deformation $\mathbb{F}_0 \to \mathbb{F}_2$ gives the same SCFT!
- \bullet Flavor W-boson is only an effective curve on \mathbb{F}_2

• CY4 case, toric diagram from local $(\mathbb{P}^1)^3$:

• After the deformation, see the SU(3) flavor symmetry explicitly

Flavor symmetry duality

 \bullet Sometimes, one can assign different sets of flavor W-bosons \to Different non-abelian flavor symmetry enhancements

 \bullet Consider a 2d facet of a 3d toric diagram, with two $\mathbb{P}^1\text{-}\mathsf{fibration}$ structures

• $SU(3) \leftrightarrow SU(2)^2$ flavor symmetry duality! Phenomenon is not present in 5d

A 34 b

1-form symmetry

- 1-form global symmetry symmetry acting on Wilson loops of gauge theory (Gaiotto, Kapustin, Seiberg, Willett 14')
- Pure d-dim. U(1) Maxwell theory has a U(1) 1-form symmetry

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

= nar

1-form symmetry

- 1-form global symmetry symmetry acting on Wilson loops of gauge theory (Gaiotto, Kapustin, Seiberg, Willett 14')
- Pure *d*-dim. U(1) Maxwell theory has a U(1) 1-form symmetry
- $U(1)^r$ gauge theory w/ charged matter ϕ_i with charge q_{ij} under $U(1)_j$, matter breaks the $U(1)^r$ 1-form symmetry to a subgroup Γ
- Compute Smith Normal Form D

$$D = \begin{pmatrix} l_1 & 0 & \dots & 0 \\ 0 & l_2 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \dots & l_r \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix} = A\{q_{ij}\}B \qquad (12)$$
$$\Gamma = \bigoplus_{i=1}^r (\mathbb{Z}/l_i\mathbb{Z}) \qquad (13)$$

1-form symmetry

- On the resolved X_4 CB,
- (1) $U(1)^r$ gauge fields from compact divisors D_j
- (2) Charged particles from M2-brane wrapping 2-cycles C_i
- $q_{ij} = C_i \cdot D_j$, compute SNF, get 1-form symmetry

・ 同 ト ・ ヨ ト ・ ヨ ト

- On the resolved X_4 CB,
- (1) $U(1)^r$ gauge fields from compact divisors D_j
- (2) Charged particles from M2-brane wrapping 2-cycles C_i
- $q_{ij} = C_i \cdot D_j$, compute SNF, get 1-form symmetry
- Local $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ example: all particles have even U(1) charges $\rightarrow \Gamma = \mathbb{Z}_2$ 1-form symmetry!

- On the resolved X_4 CB,
- (1) $U(1)^r$ gauge fields from compact divisors D_j
- (2) Charged particles from M2-brane wrapping 2-cycles C_i
- $q_{ij} = C_i \cdot D_j$, compute SNF, get 1-form symmetry
- Local $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ example: all particles have even U(1) charges $\rightarrow \Gamma = \mathbb{Z}_2$ 1-form symmetry!
- In the toric CY4 case, equivalent computation using SNF of list of toric rays (Morrison, Schafer-Nameki, Willett 19')

くちゃ 不得 とうきょう モン・デー

G_4 flux

• For M-theory/F-theory on CY4, (free) G_4 flux is usually a crucial ingredient

$$G_4 + \frac{1}{2}c_2(X_4) \in H^4(X_4, \mathbb{Z})$$
 (14)

• In the non-compact CY4 case, G_4 should have compact support (dual to a compact 4-cycle)(Gukov, Vafa, Witten, 99')

くぼ ト く ヨ ト く ヨ ト

• For M-theory/F-theory on CY4, (free) G_4 flux is usually a crucial ingredient

$$G_4 + rac{1}{2}c_2(X_4) \in H^4(X_4, \mathbb{Z})$$
 (14)

- In the non-compact CY4 case, *G*₄ should have compact support (dual to a compact 4-cycle)(Gukov, Vafa, Witten, 99')
- (1) Induce non-zero chirality of matter fields
- \bullet Integrating out chiral matter \rightarrow deep IR Chern-Simons term

$$S_{CS} = \frac{1}{4\pi} \int \sum_{i,j=1}^{r} k_{ij} A_i \wedge F_j . \qquad (15)$$
$$k_{ij} = \int_{X_4} G_4 \wedge \omega_i^{(1,1)} \wedge \omega_j^{(1,1)}$$
$$= G_4^c \cdot D_i \cdot D_j . \qquad (16)$$

・ 回 ト ・ ラ ト ・ ラ ト

• For M-theory/F-theory on CY4, (free) G_4 flux is usually a crucial ingredient

$$G_4 + \frac{1}{2}c_2(X_4) \in H^4(X_4, \mathbb{Z})$$
 (14)

- In the non-compact CY4 case, *G*₄ should have compact support (dual to a compact 4-cycle)(Gukov, Vafa, Witten, 99')
- (1) Induce non-zero chirality of matter fields
- \bullet Integrating out chiral matter \rightarrow deep IR Chern-Simons term

$$S_{CS} = \frac{1}{4\pi} \int \sum_{i,j=1}^{r} k_{ij} A_i \wedge F_j . \qquad (15)$$
$$k_{ij} = \int_{X_4} G_4 \wedge \omega_i^{(1,1)} \wedge \omega_j^{(1,1)}$$
$$= G_4^c \cdot D_i \cdot D_j . \qquad (16)$$

(2) GVW superpotential, D-term superpotential

$$W_{GVW} = \int_{X_4} G_4 \wedge \Omega_4 , \ W_D = \int_{X_4} G_4 \wedge J \wedge J . \tag{17}$$

29/38

• On the resolved X_4 (CB)

(1) $\textit{G}_4=0 \rightarrow no~CS$ term in the deep IR

(2) $G_4 \neq 0 \rightarrow CS$ term in the deep IR

イロト イボト イヨト イヨト

э

• On the resolved X_4 (CB)

(1) ${\it G}_4=0$ \rightarrow no CS term in the deep IR

(2) $G_4 \neq 0 \rightarrow$ CS term in the deep IR

• Adding G_4 obstructs the singular limit of X_4 ! Because G_4 cannot pass through shrinking 4-cycles

• To have the SCFT description at singular limit, $G_4 = 0$

A D b 4 A b

 \bullet A detailed computation of superpotential W is still unknown, several sources

(1) Euclidean M5 brane wrapping compact 6-cycle D with $h^{0,1}(D)=h^{0,2}(D)=h^{0,3}(D)=0$ (Witten, 96')

$$W_{EM5} = T(m_{\alpha})e^{-V_D}. \qquad (18)$$

・ 回 ト ・ ラ ト ・ ラ ト

 \bullet A detailed computation of superpotential W is still unknown, several sources

(1) Euclidean M5 brane wrapping compact 6-cycle D with $h^{0,1}(D)=h^{0,2}(D)=h^{0,3}(D)=0$ (Witten, 96')

$$W_{EM5} = T(m_{\alpha})e^{-V_D}. \qquad (18)$$

• Exists for any toric divisor!

• Coefficient $T(m_{\alpha})$ depends on other moduli, e. g. complex structure moduli. The Kähler moduli and c. s. moduli are mixed in CY4

・回り イラト イラト

• A detailed computation of superpotential *W* is still unknown, several sources

(1) Euclidean M5 brane wrapping compact 6-cycle D with $h^{0,1}(D)=h^{0,2}(D)=h^{0,3}(D)=0$ (Witten, 96')

$$W_{EM5} = T(m_{\alpha})e^{-V_D}. \qquad (18)$$

• Exists for any toric divisor!

• Coefficient $T(m_{\alpha})$ depends on other moduli, e. g. complex structure moduli. The Kähler moduli and c. s. moduli are mixed in CY4

• Volume of divisor $V_D \neq 1/g^2$! V_D has no known physical correspondence in 3d $\mathcal{N} = 2$ field theory

化间面 化苯基酚 化苯酚

 \bullet A detailed computation of superpotential W is still unknown, several sources

(1) Euclidean M5 brane wrapping compact 6-cycle D with $h^{0,1}(D)=h^{0,2}(D)=h^{0,3}(D)=0$ (Witten, 96')

$$W_{EM5} = T(m_{\alpha})e^{-V_D}. \qquad (18)$$

• Exists for any toric divisor!

• Coefficient $T(m_{\alpha})$ depends on other moduli, e. g. complex structure moduli. The Kähler moduli and c. s. moduli are mixed in CY4

- Volume of divisor $V_D \neq 1/g^2$! V_D has no known physical correspondence in 3d $\mathcal{N}=2$ field theory
- (2) Eucliean M2 brane wrapping rigid 3-cycles, absent in toric CY4.
- (3) GVW superpotential w/ G_4 flux
- A detailed calculation of W in the future?

- 4 周 ト 4 日 ト 4 日 ト - 日

• In the case of toric CY4, a dual brane web description in IIB! (Leung, Vafa 97')

- First consider M-theory on T^3 (8,9,10) directions
- \bullet The toric CY4 is equivalent to the system of (6 + 1)-dim. KK7M monopoles

	0	1	2	3	4	5	6	7	S_{8}^{1}	S_{9}^{1}	S_{10}^{1}
KK7M ⁽¹⁰⁾	\checkmark	\checkmark	\checkmark	•	•	•	\checkmark	\checkmark	\checkmark	\checkmark	ΤN
KK7M ⁽⁹⁾	\checkmark	\checkmark	\checkmark	•	•	\checkmark	•	\checkmark	\checkmark	ΤN	\checkmark
KK7M ⁽⁸⁾	\checkmark	\checkmark	\checkmark	•	•	\checkmark	\checkmark	•	TN	\checkmark	\checkmark

ullet M-theory on $S^1_{10}
ightarrow {
m IIA}$

	0	1	2	3	4	5	6	7	S_{8}^{1}	S_{9}^{1}
$D_{6}^{(1,0,0)}$	\checkmark	\checkmark	\checkmark	•	•	•	\checkmark	\checkmark	\checkmark	\checkmark
KK6A ^(0,1,0)	\checkmark	\checkmark	\checkmark	•	•	\checkmark	•	\checkmark	\checkmark	ΤN
KK6A ^(0,0,1)	\checkmark	\checkmark	\checkmark	•	•	\checkmark	\checkmark	•	TN	\checkmark

イロン イロン イヨン イヨン

ullet M-theory on $S^1_{10}
ightarrow {
m IIA}$

	0	1	2	3	4	5	6	7	S_{8}^{1}	S_{9}^{1}
$D_{6}^{(1,0,0)}$	\checkmark	\checkmark	\checkmark	•	•	•	\checkmark	\checkmark	\checkmark	\checkmark
KK6A ^(0,1,0)	\checkmark	\checkmark	\checkmark	•	•	\checkmark	•	\checkmark	\checkmark	TN
KK6A ^(0,0,1)	\checkmark	\checkmark	\checkmark	•	•	\checkmark	\checkmark	•	TN	\checkmark

$$ullet$$
 T-duality along $S_9^1
ightarrow {\sf IIB}$ on \widetilde{S}_9^1

	0	1	2	3	4	5	6	7	S_{8}^{1}	\widetilde{S}_{9}^{1}
$D_{5}^{(1,0,0)}$	\checkmark	\checkmark	\checkmark	•	•	•	\checkmark	\checkmark	\checkmark	•
$NS_{5}^{(0,1,0)}$	\checkmark	\checkmark	\checkmark	•	•	\checkmark	•	\checkmark	\checkmark	•
KK6B ^(0,0,1)	\checkmark	\checkmark	\checkmark	•	•	\checkmark	\checkmark	•	ΤN	\checkmark

イロン イロン イヨン イヨン

• M2-brane wrapping \mathbb{P}^1 : C_a , C_b , C_c :

	0	1	2	3	4	5	6	7	S_{8}^{1}	S_{9}^{1}	S_{10}^{1}
M2 ^(1,0,0)	\checkmark	•	•	•	•	\checkmark	•	•	•	•	\checkmark
M2 ^(0,1,0)	\checkmark	•	•	•	•	•	\checkmark	•	•	\checkmark	•
M2 ^(0,0,1)	\checkmark	•	•	•	•	•	•	\checkmark	\checkmark	•	•

• In IIB description

	0	1	2	3	4	5	6	7	S_{8}^{1}	\widetilde{S}_{9}^{1}
$F_{1}^{(1,0,0)}$	\checkmark	•	•	•	•	\checkmark	•	•	•	•
$D_{1}^{(0,1,0)}$	\checkmark	•	•	•	•	•	\checkmark	•	•	•
$D_3^{(0,0,1)}$	\checkmark	•	•	•	•	•	•	\checkmark	\checkmark	\checkmark

くぼ ト く ヨ ト く ヨ ト

- Can be viewed as a web of (p, q, r) 4-branes in 8d SUGRA (remove 8, 9 directions)! (Leung, Vafa 97')(Lu, Roy 98')
- (p, q, r) transforms under $SL(3, \mathbb{Z})$ (part of 8d U-duality)

	0	1	2	3	4	5	6	7
(1,0,0) 4-brane	\checkmark	\checkmark	\checkmark	•	•	•	\checkmark	\checkmark
(0,1,0) 4-brane	\checkmark	\checkmark	\checkmark	•	•	\checkmark	•	\checkmark
(0,0,1) 4-brane	\checkmark	\checkmark	\checkmark	•	•	\checkmark	\checkmark	•
(1,0,0)-string	\checkmark	٠	•	•	•	\checkmark	•	•
(0,1,0)-string	\checkmark	•	•	•	•	•	\checkmark	•
(0,0,1)-string	\checkmark	•	•	•	•	•	•	\checkmark

- M2-brane wrapping \mathbb{P}^1 : C_a , C_b , C_c : (1,0,0), (0,1,0), (0,0,1) strings!
- M2-brane wrapping 2-cycle in M-theory \leftrightarrow open string modes on 4-string junction!

・回り イラト イラト

• Generally for (p, q, r)-string, mass of BPS open strings states

$$m \sim \text{length} \times T_{(p,q,r)}$$
 (19)

ヨート

• Generally for (p, q, r)-string, mass of BPS open strings states

$$m \sim \text{length} \times T_{(p,q,r)}$$
 (19)

- U(1) gauge field given by a linear combination of U(1)s of all finite 4-branes
- Electric charge of a string state $Q_e = -N_b$, total # of end points of the string

Flavor branes giving flavor symmetry

- Flavor branes in IIB: classified by exotic branes
- Flavor branes in 8D SUGRA: 5-brane objects

- Superpotential from geometry? Hard even for 3d $\mathcal{N} = 2 SU(2) + N_f \mathbf{F}!$
- \bullet Higher derivative/quantum correction to the 11D SUGRA action, more precise formula for $1/g^2$
- \bullet Realize known 3d $\mathcal{N}=2$ dualities, e. g. SQED-XYZ duality
- Relations to other 3d $\mathcal{N}=2$ constructions, e. g. 6d (2,0) on 3-manifolds?
- \bullet 4d $\mathcal{N}=1$ uplift in the elliptic cases
- Higgs branch?
- \bullet Detailed study of \mathbb{C}^4/Γ orbifolds, 4d McKay correspondence

くぼう くまう くまう

- Superpotential from geometry? Hard even for 3d $\mathcal{N} = 2 SU(2) + N_f \mathbf{F}!$
- \bullet Higher derivative/quantum correction to the 11D SUGRA action, more precise formula for $1/g^2$
- \bullet Realize known 3d $\mathcal{N}=2$ dualities, e. g. SQED-XYZ duality
- Relations to other 3d $\mathcal{N} = 2$ constructions, e. g. 6d (2,0) on 3-manifolds?
- \bullet 4d $\mathcal{N}=1$ uplift in the elliptic cases
- Higgs branch?
- \bullet Detailed study of \mathbb{C}^4/Γ orbifolds, 4d McKay correspondence

Thank you for your attention!

・ 回 ト ・ ラ ト ・ ラ ト