3d $\mathrm{N}=2$ from M-theory on CY4 and IIB brane box

2312.17082 w/ Marwan Najjar and Jiahua Tian

Yi-Nan Wang

Peking University
PCFT, USTC, Hefei
Jan. 11th, 2024

Conformal Field Theories

- Classification of CFTs is an interesting but hard question
(1) 2d CFT: Virasoro algebra provides strong constraints, rational CFT
(2) For higher dimensional CFTs (e. g. $d \geq 3$), the full operator spectrum, OPEs ... are not known

Conformal Field Theories

- Classification of CFTs is an interesting but hard question
(1) 2d CFT: Virasoro algebra provides strong constraints, rational CFT
(2) For higher dimensional CFTs (e. g. $d \geq 3$), the full operator spectrum, OPEs ... are not known
- In the SCFT cases, partial classification comes from geometric constructions
(1) Superstring/M/F-theory on a non-compact space
(2) Dimensional reduction of 6d SCFTs on a compact space
(3) Worldvolume theory of brane objects in superstring/M/F-theory (AdS/CFT)

Geometric Engineering

- Superstring/M/F-theory on a non-compact space, decouple gravity

String theory on
Non-compact X

QFT
Quantum gravity

Geometric Engineering

String theory on
Non-compact X

String theory on a singularity

CFT

QFT

- The CFT degree of freedoms are localized around the origin

5d SCFTs

(1) 11d M-theory on canonical threefold singularity

(Xie, Yau 15')(Apruzzi, Bhardwaj, Closset, Collinucci, De Marco, Del Zotto, Eckhard, Giacomelli, Heckman, Hubner, Jefferson, Katz, Kim, Lawrie, Lin, Morrison, Mu, Sangiovanni, Saxena, Schafer-Nameki, Tarazi, Tian, Vafa, Valandro, YNW, Zafrir, Zhang...).
(2) Brane web constructions in IIB superstring
(Akhond, van Beest, Bergman, Bourget, Cabrera, Carta, Dwivedi, Eckhard, Ferlito, Giacomelli, Grimminger, Hanany, Hayashi, He, Kalveks, Kim, Kim, Kim, Lee, Mekareeya, Ohmori, Schafer-Nameki, Shimizu, Sperling, Tachikawa, Taki, Uhlemann, Yagi, Zafrir, Zajac, Zoccarato, Zhong).

Deformations of SCFTs

- Directly study the operator spectrum/ OPE etc. Hard!
(1) Coulomb branch: scalars ϕ^{i} in the vector multiplets have non-zero vev.
(2) Higgs branch: scalars in the hypermultiplets have non-zero vev.

5d CB and M-theory on resolved CY3

- M-theory on a resolved CY3 \rightarrow CB physics, $U(1)^{r}+$ massive charged matter

Non-abelian and SCFT limit

- Non-abelian gauge theory description exists when the CY3 has a \mathbb{P}^{1}-fibration structure, e. g. the local $\mathbb{P}^{1} \times \mathbb{P}^{1}$ gives $5 \mathrm{~d} \operatorname{SU}(2)_{0}$ theory in the non-abelian limit.

- Similar picture in the IIB $(p, q) 5$-brane web constructions!

What about $3 \mathrm{~d} \mathcal{N}=2$?

- Naturally, M-theory on local CY4 singularity $\rightarrow 3 \mathrm{~d} \mathcal{N}=2$ SCFT, because of the absence of geometric scale
- Build up geometric dictionary, investigate 3d $\mathcal{N}=2$ physics from M-theory on CY4 (Najjar, Tian, YNW 23').

3d $\mathcal{N}=2$ basics

- Vector multiplet: $A_{\mu}, \lambda, \tilde{\lambda}$, real scalar σ
- Chiral multiplet: ϕ, ψ (same d.o.f. as $4 \mathrm{~d} \mathcal{N}=1$ chiral multiplet)
- Anti-chiral multiplet: $\tilde{\phi}, \tilde{\psi}$, in the conjugate rep. of chiral multiplet

3d $\mathcal{N}=2$ basics

- Vector multiplet: $A_{\mu}, \lambda, \tilde{\lambda}$, real scalar σ
- Chiral multiplet: ϕ, ψ (same d.o.f. as $4 \mathrm{~d} \mathcal{N}=1$ chiral multiplet)
- Anti-chiral multiplet: $\tilde{\phi}, \tilde{\psi}$, in the conjugate rep. of chiral multiplet
- Holomorphic superpotential $W(\phi)$
- Vector multiplet: $A_{\mu}, \lambda, \tilde{\lambda}$, real scalar σ
- Chiral multiplet: ϕ, ψ (same d.o.f. as $4 \mathrm{~d} \mathcal{N}=1$ chiral multiplet)
- Anti-chiral multiplet: $\tilde{\phi}, \tilde{\psi}$, in the conjugate rep. of chiral multiplet
- Holomorphic superpotential $W(\phi)$
- Coulomb branch: $\langle\sigma\rangle \neq 0$, can be lifted by superpotential/scalar potential

3d $\mathcal{N}=2$ basics

- Vector multiplet: $A_{\mu}, \lambda, \tilde{\lambda}$, real scalar σ
- Chiral multiplet: ϕ, ψ (same d.o.f. as $4 \mathrm{~d} \mathcal{N}=1$ chiral multiplet)
- Anti-chiral multiplet: $\tilde{\phi}, \tilde{\psi}$, in the conjugate rep. of chiral multiplet
- Holomorphic superpotential $W(\phi)$
- Coulomb branch: $\langle\sigma\rangle \neq 0$, can be lifted by superpotential/scalar potential

$$
\begin{equation*}
L=L_{Y M}+L_{C S}+L_{\text {matter }}+L_{\text {superpotential }} \tag{1}
\end{equation*}
$$

3d $\mathcal{N}=2$ basics

- Vector multiplet: $A_{\mu}, \lambda, \tilde{\lambda}$, real scalar σ
- Chiral multiplet: ϕ, ψ (same d.o.f. as $4 \mathrm{~d} \mathcal{N}=1$ chiral multiplet)
- Anti-chiral multiplet: $\tilde{\phi}, \tilde{\psi}$, in the conjugate rep. of chiral multiplet
- Holomorphic superpotential $W(\phi)$
- Coulomb branch: $\langle\sigma\rangle \neq 0$, can be lifted by superpotential/scalar potential

$$
\begin{equation*}
L=L_{Y M}+L_{C S}+L_{\text {matter }}+L_{\text {superpotential }} \tag{1}
\end{equation*}
$$

- $\left[1 / g_{Y M}^{2}\right] \sim M^{-1}$, asymptotic freedom in UV, strongly coupled SCFT/gapped TQFT in IR

3d $\mathcal{N}=2$ basics

- Vector multiplet: $A_{\mu}, \lambda, \tilde{\lambda}$, real scalar σ
- Chiral multiplet: ϕ, ψ (same d.o.f. as $4 \mathrm{~d} \mathcal{N}=1$ chiral multiplet)
- Anti-chiral multiplet: $\tilde{\phi}, \tilde{\psi}$, in the conjugate rep. of chiral multiplet
- Holomorphic superpotential $W(\phi)$
- Coulomb branch: $\langle\sigma\rangle \neq 0$, can be lifted by superpotential/scalar potential

$$
\begin{equation*}
L=L_{Y M}+L_{C S}+L_{\text {matter }}+L_{\text {superpotential }} \tag{1}
\end{equation*}
$$

- $\left[1 / g_{Y M}^{2}\right] \sim M^{-1}$, asymptotic freedom in UV, strongly coupled SCFT/gapped TQFT in IR
- Real mass for a Dirac fermion ψ in $3 \mathrm{~d}: i m \bar{\psi} \psi, m \in \mathbb{R}$, odd under parity
- Integrate out "chiral" fermions \rightarrow IR effective Chern-Simons terms

3d $\mathcal{N}=2$ basics

- Vector multiplet: $A_{\mu}, \lambda, \tilde{\lambda}$, real scalar σ
- Chiral multiplet: ϕ, ψ (same d.o.f. as $4 \mathrm{~d} \mathcal{N}=1$ chiral multiplet)
- Anti-chiral multiplet: $\tilde{\phi}, \tilde{\psi}$, in the conjugate rep. of chiral multiplet
- Holomorphic superpotential $W(\phi)$
- Coulomb branch: $\langle\sigma\rangle \neq 0$, can be lifted by superpotential/scalar potential

$$
\begin{equation*}
L=L_{Y M}+L_{C S}+L_{\text {matter }}+L_{\text {superpotential }} \tag{1}
\end{equation*}
$$

- $\left[1 / g_{Y M}^{2}\right] \sim M^{-1}$, asymptotic freedom in UV, strongly coupled SCFT/gapped TQFT in IR
- Real mass for a Dirac fermion ψ in $3 \mathrm{~d}: i m \bar{\psi} \psi, m \in \mathbb{R}$, odd under parity
- Integrate out "chiral" fermions \rightarrow IR effective Chern-Simons terms
- Lots of IR dualities (Aharony, Hanany, Intriligator, Seiberg, Strassler 97')....

Resolved CY4 (CB)

- M-theory on resolved local CY4 X_{4}, e. g. local $D=\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow$ 3d $\mathcal{N}=2 \mathrm{U}(1)$ gauge theory + massive matter fields

Uncharged sector

$$
\begin{equation*}
C_{3}=\sum_{i=1}^{r} A_{i} \wedge \omega_{i}^{(1,1)}+\sum_{\alpha=1}^{f} B_{\alpha} \wedge \omega_{\alpha}^{(1,1), F} \tag{2}
\end{equation*}
$$

(1) Dynamical gauge fields A_{i}

- Gauge rank $r=b_{6}\left(X_{4}\right)$
- $\omega_{i}^{(1,1)}$ Poincaré dual to compact divisor (6-cycle) D_{i}
(2) Background gauge fields B_{α} for geometric flavor symmetries
- Flavor rank $f=b_{2}\left(X_{4}\right)-b_{6}\left(X_{4}\right)$
- $\omega_{\alpha}^{(1,1), F}$ Poincaré dual to non-compact divisor (6-cycle) S_{α}

Kähler form and CB parameters

- To compute volume of various cycles in X_{4}, we need the Kähler (1,1)-form

$$
\begin{equation*}
J\left(X_{4}\right)=\sum_{i=1}^{r} a_{i} \omega_{i}^{(1,1)}+\sum_{\alpha=1}^{f} b_{\alpha} \omega_{\alpha}^{(1,1), F} . \tag{3}
\end{equation*}
$$

- It is Poincaré dual to

$$
\begin{equation*}
J^{c}\left(X_{4}\right)=\sum_{i=1}^{r} a_{i} D_{i}+\sum_{\alpha=1}^{f} b_{\alpha} S_{\alpha} . \tag{4}
\end{equation*}
$$

Kähler form and CB parameters

- To compute volume of various cycles in X_{4}, we need the Kähler
(1,1)-form

$$
\begin{equation*}
J\left(X_{4}\right)=\sum_{i=1}^{r} a_{i} \omega_{i}^{(1,1)}+\sum_{\alpha=1}^{f} b_{\alpha} \omega_{\alpha}^{(1,1), F} . \tag{3}
\end{equation*}
$$

- It is Poincaré dual to

$$
\begin{equation*}
J^{c}\left(X_{4}\right)=\sum_{i=1}^{r} a_{i} D_{i}+\sum_{\alpha=1}^{f} b_{\alpha} S_{\alpha} . \tag{4}
\end{equation*}
$$

(1) $a_{i}=\left\langle\sigma_{i}\right\rangle$: Coulomb branch parameters
(2) $b_{\alpha}=\left\langle\xi_{\alpha}\right\rangle$: vev for the real scalar in the background gauge field vector multiplet; real mass for flavor symmetry

- Volume of 2-cycles C, 4-cycles \mathcal{S} and 6 -cycles D are computed as

$$
\begin{equation*}
V_{C}=\int_{C} J, V_{\mathcal{S}}=\frac{1}{2} \int_{\mathcal{S}} J \wedge J, V_{D}=\frac{1}{6} \int_{D} J \wedge J \wedge J \tag{5}
\end{equation*}
$$

Gauge coupling

- $U(1)$ Gauge coupling $1 / g^{2}$ given by what?
- Reduce the kinetic term in 11D SUGRA action on X_{4} (leading term)

$$
\begin{align*}
\frac{1}{2} \int_{\mathbb{R}^{1,2} \times X_{4}} G_{4} \wedge \star G_{4} & =\frac{1}{2} \int_{\mathbb{R}^{1,2}} F \wedge \star F \int_{X_{4}} \omega^{(1,1)} \wedge \star \omega^{(1,1)}+(\ldots) \tag{6}\\
& =\frac{1}{2 g^{2}} \int_{\mathbb{R}^{1,2}} F \wedge \star F+(\ldots)
\end{align*}
$$

where

$$
\begin{align*}
\frac{1}{g^{2}} & =\int_{X_{4}} \omega^{(1,1)} \wedge \star \omega^{(1,1)} \\
& =-\frac{1}{2} \int_{X_{4}} \omega^{(1,1)} \wedge \omega^{(1,1)} \wedge J \wedge J \tag{7}\\
& =-\frac{1}{2} \int_{D \cdot D} J \wedge J \\
& =\operatorname{Vol}\left(-K_{D}\right) .
\end{align*}
$$

- Volume of the anti-canonical divisor of D !

Gauge coupling

- In the local $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ case, the compact divisor $D=\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ is toric, $\frac{1}{g^{2}}$ given by the sum of the volumes of all 4 -cycles (walls)!

M2-brane wrapping modes

- BPS states from M2-brane wrapping \mathbb{P}^{1} curves C. Hint from 4d/3d F/M-duality (Beasley, Heckman, Vafa 08')(Intriligator, Jockers, Katz, Morrison, Plesser 12')(Jockers, Katz, Morrison, Plesser 16'). We first assume no G_{4} flux

M2-brane wrapping modes

- BPS states from M2-brane wrapping \mathbb{P}^{1} curves C. Hint from 4d/3d F/M-duality (Beasley, Heckman, Vafa 08')(Intriligator, Jockers, Katz, Morrison, Plesser 12')(Jockers, Katz, Morrison, Plesser 16'). We first assume no G_{4} flux (1) $N_{C \mid X_{4}}=\mathcal{O} \oplus \mathcal{O} \oplus \mathcal{O}(-2), C$ is locally a \mathbb{P}^{1} fiber, moduli space is a 4-cycle \mathcal{S}.

- Adiabatically, the zero modes on C is the twisted reduction of 7 d $\mathcal{N}=1$ vector multiplet on \mathcal{S}
- 1 vector multiplet $+\left(h^{0,1}+h^{0,2}\right)$ vector-like pairs of chiral multiplets

M2-brane wrapping modes

(2) $N_{C \mid X_{4}}=\mathcal{O} \oplus \mathcal{O}(-1) \oplus \mathcal{O}(-1), C$ is locally a \mathbb{P}^{1} fiber, moduli space is a Riemann surface Σ.

- The zero modes on C is the twisted reduction of $5 \mathrm{~d} \mathcal{N}=1$ vector multiplet on Σ
- BPS states come from zero modes of Dirac operators on $\Sigma \rightarrow$ vector-like pairs chiral multiplets.
- In particular, when $\Sigma=\mathbb{P}^{1}$, there is no zero mode and thus no BPS particles.

M2-brane wrapping modes

(2) $N_{C \mid X_{4}}=\mathcal{O} \oplus \mathcal{O}(-1) \oplus \mathcal{O}(-1), C$ is locally a \mathbb{P}^{1} fiber, moduli space is a Riemann surface Σ.

- The zero modes on C is the twisted reduction of $5 \mathrm{~d} \mathcal{N}=1$ vector multiplet on Σ
- BPS states come from zero modes of Dirac operators on $\Sigma \rightarrow$ vector-like pairs chiral multiplets.
- In particular, when $\Sigma=\mathbb{P}^{1}$, there is no zero mode and thus no BPS particles.
- In general: mass of the BPS particle $m \propto \operatorname{Area}(C)$
- Charge under Cartan: $q=C \cdot D$
- Charge under flavor Cartan $q_{i}^{F}=C \cdot F_{i}$

Local $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$

- Denote the non-compact divisors to be S_{1}, S_{2}, S_{3}, compact divisor is D

$$
\begin{equation*}
C_{a}=D \cdot S_{2} \cdot S_{3}, C_{b}=D \cdot S_{1} \cdot S_{3}, \quad C_{c}=D \cdot S_{1} \cdot S_{2} \tag{8}
\end{equation*}
$$

- C_{a}, C_{b}, C_{c} all have normal bundle $\mathcal{O} \oplus \mathcal{O} \oplus \mathcal{O}(-2)$, moduli space $\mathcal{S}=\mathbb{P}^{1} \times \mathbb{P}^{1}$
- M2-brane wrapping mode: 1 vector multiplet
- $U(1)$ gauge charge $C_{a} \cdot D=C_{b} \cdot D=C_{c} \cdot D=-2$, hence one can choose C_{a}, C_{b} or C_{c} as gauge W -boson.

SU(2) limit

- In the limit of e. g. $\operatorname{Area}\left(C_{a}\right) \rightarrow 0, \mathrm{M} 2$-brane wrapping C_{a} becomes massless W-boson.

- $1 / g^{2} \sim \operatorname{Vol}(S)$
- $S U(2)$ gauge theory+massive charged particle from M2-brane wrapping C_{b} and C_{c}
- Interpreted as disorder operators! (Dyonic instanton in 5d SU(2) ${ }_{0}$ theory on S^{2})

SCFT limit

- Singular limit: all compact cycles shrink to zero volume, $1 / g^{2} \rightarrow 0$
- Absence of scale parameter \rightarrow SCFT! $W=0$

Shrinkability condition

- Geometric shrinkability condition for the existence of a $3 \mathrm{~d} \mathcal{N}=2$ SCFT at singular point?

Shrinkability condition

- Geometric shrinkability condition for the existence of a $3 \mathrm{~d} \mathcal{N}=2$ SCFT at singular point?
(1) At the singular limit when all compact cycles of X_{4} shrinks to a point, still have $1 / g_{\alpha}^{2} \rightarrow \infty$ for all non-compact divisors $S_{\alpha}\left(U(1)^{f}\right.$ flavor symmetry still persists).
(Counter example: local D where D is not weak-Fano)

Shrinkability condition

- Geometric shrinkability condition for the existence of a $3 \mathrm{~d} \mathcal{N}=2$ SCFT at singular point?
(1) At the singular limit when all compact cycles of X_{4} shrinks to a point, still have $1 / g_{\alpha}^{2} \rightarrow \infty$ for all non-compact divisors $S_{\alpha}\left(U(1)^{f}\right.$ flavor symmetry still persists).
(Counter example: local D where D is not weak-Fano)
(2) Exists strongly coupled limit $1 / g_{i}^{2} \rightarrow 0$ for all $U(1)_{i}$ gauge groups only when the 4 -cycles on all compact divisors D_{i} in X_{4} shrink to zero volume. (Counter example: 3d $\mathcal{N}=4$ models such as local T^{2})

Flavor symmetry enhancement

- In the singular limit of $X_{4}, 3 \mathrm{~d} \mathcal{N}=2$ SCFT with non-abelian flavor symmetry enhancement G_{F}
- Read off from the CB picture from M-theory on resolved CY4

Flavor symmetry enhancement

- In the singular limit of $X_{4}, 3 \mathrm{~d} \mathcal{N}=2$ SCFT with non-abelian flavor symmetry enhancement G_{F}
- Read off from the CB picture from M-theory on resolved CY4
- Identify non-compact 6-cycles F_{i} generating flavor Cartan $U(1)^{f}$

Flavor symmetry enhancement

- In the singular limit of $X_{4}, 3 \mathrm{~d} \mathcal{N}=2$ SCFT with non-abelian flavor symmetry enhancement G_{F}
- Read off from the CB picture from M-theory on resolved CY4
- Identify non-compact 6-cycles F_{i} generating flavor Cartan $U(1)^{f}$
- Identify flavor W -bosons as M 2 wrapping C_{i}.
(1) Vector multiplet: $N_{C_{i} \mid X_{4}}=\mathcal{O} \oplus \mathcal{O} \oplus \mathcal{O}(-2)$
(2) Charge under $U(1)^{f}$ forming the Cartan matrix of G_{F}
(3) Neutral under $U(1)^{r}$ gauge symmetry

Flavor symmetry enhancement

- In the example of local $\left(\mathbb{P}^{1}\right)^{3}$, flavor Cartans

$$
\begin{equation*}
F_{1}=S_{1}-S_{2}, \quad F_{2}=S_{2}-S_{3} . \tag{9}
\end{equation*}
$$

- Flavor W-bosons

$$
\begin{equation*}
C_{1}=D \cdot\left(S_{1}-S_{2}\right) \cdot S_{3}, \quad C_{2}=D \cdot\left(S_{2}-S_{3}\right) \cdot S_{1} . \tag{10}
\end{equation*}
$$

Flavor symmetry enhancement

- In the example of local $\left(\mathbb{P}^{1}\right)^{3}$, flavor Cartans

$$
\begin{equation*}
F_{1}=S_{1}-S_{2}, \quad F_{2}=S_{2}-S_{3} . \tag{9}
\end{equation*}
$$

- Flavor W-bosons

$$
\begin{equation*}
C_{1}=D \cdot\left(S_{1}-S_{2}\right) \cdot S_{3}, \quad C_{2}=D \cdot\left(S_{2}-S_{3}\right) \cdot S_{1} . \tag{10}
\end{equation*}
$$

	F_{1}	F_{2}
C_{1}	-2	1
C_{2}	1	-2

Flavor symmetry enhancement

- In the example of local $\left(\mathbb{P}^{1}\right)^{3}$, flavor Cartans

$$
\begin{equation*}
F_{1}=S_{1}-S_{2}, F_{2}=S_{2}-S_{3} . \tag{9}
\end{equation*}
$$

- Flavor W-bosons

$$
\begin{equation*}
C_{1}=D \cdot\left(S_{1}-S_{2}\right) \cdot S_{3}, \quad C_{2}=D \cdot\left(S_{2}-S_{3}\right) \cdot S_{1} . \tag{10}
\end{equation*}
$$

	F_{1}	F_{2}
C_{1}	-2	1
C_{2}	1	-2

- C_{a}, C_{b} and C_{c} form the $\mathbf{3}$ rep. of $\operatorname{SU}(3)$!

Flavor symmetry enhancement

- Flavor W-boson being non-effective?
- Similar to the 5d case, local $\mathbb{F}_{0} \approx$ local \mathbb{F}_{2} (Seiberg rank-1 E_{1} theory with $\left.G_{F}=S U(2)\right)$
- Deformation $\mathbb{F}_{0} \rightarrow \mathbb{F}_{2}$ gives the same SCFT!
- Flavor W-boson is only an effective curve on \mathbb{F}_{2}

Flavor symmetry enhancement

- CY4 case, toric diagram from local $\left(\mathbb{P}^{1}\right)^{3}$:

- After the deformation, see the $S U(3)$ flavor symmetry explicitly

Flavor symmetry duality

- Sometimes, one can assign different sets of flavor W-bosons \rightarrow Different non-abelian flavor symmetry enhancements
- Consider a 2d facet of a $3 d$ toric diagram, with two \mathbb{P}^{1}-fibration structures

- $S U(3) \leftrightarrow S U(2)^{2}$ flavor symmetry duality! Phenomenon is not present in 5d

1-form symmetry

- 1-form global symmetry symmetry acting on Wilson loops of gauge theory (Gaiotto, Kapustin, Seiberg, Willett 14')
- Pure d-dim. $U(1)$ Maxwell theory has a $U(1) 1$-form symmetry

1-form symmetry

- 1-form global symmetry symmetry acting on Wilson loops of gauge theory (Gaiotto, Kapustin, Seiberg, Willett 14')
- Pure d-dim. $U(1)$ Maxwell theory has a $U(1) 1$-form symmetry
- $U(1)^{r}$ gauge theory $w /$ charged matter ϕ_{i} with charge $q_{i j}$ under $U(1)_{j}$, matter breaks the $U(1)^{r} 1$-form symmetry to a subgroup Γ
- Compute Smith Normal Form D

$$
\begin{gather*}
D=\left(\begin{array}{cccc}
I_{1} & 0 & \ldots & 0 \\
0 & I_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \ldots & I_{r} \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right)=A\left\{q_{i j}\right\} B \tag{12}\\
\Gamma=\bigoplus_{i=1}^{r}\left(\mathbb{Z} / l_{i} \mathbb{Z}\right) \tag{13}
\end{gather*}
$$

1-form symmetry

- On the resolved $X_{4} \mathrm{CB}$,
(1) $U(1)^{r}$ gauge fields from compact divisors D_{j}
(2) Charged particles from M2-brane wrapping 2-cycles C_{i}
- $q_{i j}=C_{i} \cdot D_{j}$, compute SNF, get 1-form symmetry

1-form symmetry

- On the resolved $X_{4} \mathrm{CB}$,
(1) $U(1)^{r}$ gauge fields from compact divisors D_{j}
(2) Charged particles from M2-brane wrapping 2-cycles C_{i}
- $q_{i j}=C_{i} \cdot D_{j}$, compute SNF, get 1-form symmetry
- Local $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ example: all particles have even $U(1)$ charges \rightarrow $\Gamma=\mathbb{Z}_{2}$ 1-form symmetry!

1-form symmetry

- On the resolved $X_{4} \mathrm{CB}$,
(1) $U(1)^{r}$ gauge fields from compact divisors D_{j}
(2) Charged particles from M2-brane wrapping 2-cycles C_{i}
- $q_{i j}=C_{i} \cdot D_{j}$, compute SNF, get 1-form symmetry
- Local $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ example: all particles have even $U(1)$ charges \rightarrow $\Gamma=\mathbb{Z}_{2}$ 1-form symmetry!
- In the toric CY4 case, equivalent computation using SNF of list of toric rays (Morrison, Schafer-Nameki, Willett 19')

G_{4} flux

- For M-theory/F-theory on CY4, (free) G_{4} flux is usually a crucial ingredient

$$
\begin{equation*}
G_{4}+\frac{1}{2} c_{2}\left(X_{4}\right) \in H^{4}\left(X_{4}, \mathbb{Z}\right) \tag{14}
\end{equation*}
$$

- In the non-compact CY4 case, G_{4} should have compact support (dual to a compact 4-cycle)(Gukov, Vafa, Witten, 99')

G_{4} flux

- For M-theory/F-theory on CY4, (free) G_{4} flux is usually a crucial ingredient

$$
\begin{equation*}
G_{4}+\frac{1}{2} c_{2}\left(X_{4}\right) \in H^{4}\left(X_{4}, \mathbb{Z}\right) \tag{14}
\end{equation*}
$$

- In the non-compact CY4 case, G_{4} should have compact support (dual to a compact 4-cycle)(Gukov, Vafa, Witten, 99')
(1) Induce non-zero chirality of matter fields
- Integrating out chiral matter \rightarrow deep IR Chern-Simons term

$$
\begin{align*}
& S_{C S}=\frac{1}{4 \pi} \int \sum_{i, j=1}^{r} k_{i j} A_{i} \wedge F_{j} . \tag{15}\\
& \begin{aligned}
k_{i j} & =\int_{X_{4}} G_{4} \wedge \omega_{i}^{(1,1)} \wedge \omega_{j}^{(1,1)} \\
& =G_{4}^{c} \cdot D_{i} \cdot D_{j} .
\end{aligned} \tag{16}
\end{align*}
$$

G_{4} flux

- For M-theory/F-theory on CY4, (free) G_{4} flux is usually a crucial ingredient

$$
\begin{equation*}
G_{4}+\frac{1}{2} c_{2}\left(X_{4}\right) \in H^{4}\left(X_{4}, \mathbb{Z}\right) \tag{14}
\end{equation*}
$$

- In the non-compact CY4 case, G_{4} should have compact support (dual to a compact 4-cycle)(Gukov, Vafa, Witten, 99')
(1) Induce non-zero chirality of matter fields
- Integrating out chiral matter \rightarrow deep IR Chern-Simons term

$$
\begin{align*}
& S_{C S}=\frac{1}{4 \pi} \int \sum_{i, j=1}^{r} k_{i j} A_{i} \wedge F_{j} . \tag{15}\\
& k_{i j}=\int_{X_{4}} G_{4} \wedge \omega_{i}^{(1,1)} \wedge \omega_{j}^{(1,1)} \tag{16}\\
& \quad=G_{4}^{c} \cdot D_{i} \cdot D_{j} .
\end{align*}
$$

(2) GVW superpotential, D-term superpotential

$$
\begin{equation*}
W_{G V W}=\int_{X_{4}} G_{4} \wedge \Omega_{4}, W_{D}=\int_{X_{4}} G_{4} \wedge J \wedge J . \tag{17}
\end{equation*}
$$

G_{4} flux

- On the resolved X_{4} (CB)
(1) $G_{4}=0 \rightarrow$ no CS term in the deep IR
(2) $G_{4} \neq 0 \rightarrow \mathrm{CS}$ term in the deep IR

G_{4} flux

- On the resolved X_{4} (CB)
(1) $G_{4}=0 \rightarrow$ no CS term in the deep IR
(2) $G_{4} \neq 0 \rightarrow \mathrm{CS}$ term in the deep IR

- Adding G_{4} obstructs the singular limit of X_{4} ! Because G_{4} cannot pass through shrinking 4-cycles
- To have the SCFT description at singular limit, $G_{4}=0$

Superpotential

- A detailed computation of superpotential W is still unknown, several sources
(1) Euclidean M5 brane wrapping compact 6 -cycle D with $h^{0,1}(D)=h^{0,2}(D)=h^{0,3}(D)=0\left(\right.$ Witten, $\left.96^{\prime}\right)$

$$
\begin{equation*}
W_{E M 5}=T\left(m_{\alpha}\right) e^{-V_{D}} . \tag{18}
\end{equation*}
$$

Superpotential

- A detailed computation of superpotential W is still unknown, several sources
(1) Euclidean M5 brane wrapping compact 6 -cycle D with

$$
h^{0,1}(D)=h^{0,2}(D)=h^{0,3}(D)=0\left(\text { Witten, } 96^{\prime}\right)
$$

$$
\begin{equation*}
W_{E M 5}=T\left(m_{\alpha}\right) e^{-V_{D}} . \tag{18}
\end{equation*}
$$

- Exists for any toric divisor!
- Coefficient $T\left(m_{\alpha}\right)$ depends on other moduli, e. g. complex structure moduli. The Kähler moduli and c. s. moduli are mixed in CY4

Superpotential

- A detailed computation of superpotential W is still unknown, several sources
(1) Euclidean M5 brane wrapping compact 6 -cycle D with

$$
h^{0,1}(D)=h^{0,2}(D)=h^{0,3}(D)=0\left(\text { Witten, } 96^{\prime}\right)
$$

$$
\begin{equation*}
W_{E M 5}=T\left(m_{\alpha}\right) e^{-V_{D}} . \tag{18}
\end{equation*}
$$

- Exists for any toric divisor!
- Coefficient $T\left(m_{\alpha}\right)$ depends on other moduli, e. g. complex structure moduli. The Kähler moduli and c. s. moduli are mixed in CY4
- Volume of divisor $V_{D} \neq 1 / g^{2}$! V_{D} has no known physical correspondence in 3d $\mathcal{N}=2$ field theory

Superpotential

- A detailed computation of superpotential W is still unknown, several sources
(1) Euclidean M5 brane wrapping compact 6 -cycle D with

$$
h^{0,1}(D)=h^{0,2}(D)=h^{0,3}(D)=0\left(\text { Witten, } 96^{\prime}\right)
$$

$$
\begin{equation*}
W_{E M 5}=T\left(m_{\alpha}\right) e^{-V_{D}} . \tag{18}
\end{equation*}
$$

- Exists for any toric divisor!
- Coefficient $T\left(m_{\alpha}\right)$ depends on other moduli, e. g. complex structure moduli. The Kähler moduli and c. s. moduli are mixed in CY4
- Volume of divisor $V_{D} \neq 1 / g^{2}$! V_{D} has no known physical correspondence in $3 \mathrm{~d} \mathcal{N}=2$ field theory
(2) Eucliean M2 brane wrapping rigid 3-cycles, absent in toric CY4.
(3) GVW superpotential w/ G4 flux
- A detailed calculation of W in the future?

Brane web picture in IIB

- In the case of toric CY4, a dual brane web description in IIB! (Leung, Vafa 97')

- First consider M-theory on $T^{3}(8,9,10)$ directions
- The toric CY4 is equivalent to the system of $(6+1)$-dim. KK7M monopoles

	0	1	2	3	4	5	6	7	S_{8}^{1}	S_{9}^{1}	S_{10}^{1}
KK7M $^{(10)}$	\checkmark	\checkmark	\checkmark	\bullet	\bullet	\bullet	\checkmark	\checkmark	\checkmark	\checkmark	TN
KK7M $^{(9)}$	\checkmark	\checkmark	\checkmark	\bullet	\bullet	\checkmark	\bullet	\checkmark	\checkmark	TN	\checkmark
KK7M $^{(8)}$	\checkmark	\checkmark	\checkmark	\bullet	\bullet	\checkmark	\checkmark	\bullet	TN	\checkmark	\checkmark

Brane web picture in IIB

- M-theory on $S_{10}^{1} \rightarrow$ IIA

	0	1	2	3	4	5	6	7	S_{8}^{1}	S_{9}^{1}
$\mathrm{D}_{6}^{(1,0,0)}$	\checkmark	\checkmark	\checkmark	\bullet	\bullet	\bullet	\checkmark	\checkmark	\checkmark	\checkmark
$\mathrm{KK6A}^{(0,1,0)}$	\checkmark	\checkmark	\checkmark	\bullet	\bullet	\checkmark	\bullet	\checkmark	\checkmark	TN
$\mathrm{KK6A}^{(0,0,1)}$	\checkmark	\checkmark	\checkmark	\bullet	\bullet	\checkmark	\checkmark	\bullet	TN	\checkmark

Brane web picture in IIB

- M-theory on $S_{10}^{1} \rightarrow$ IIA

	0	1	2	3	4	5	6	7	S_{8}^{1}	S_{9}^{1}
$\mathrm{D}_{6}^{(1,0,0)}$	\checkmark	\checkmark	\checkmark	\bullet	\bullet	\bullet	\checkmark	\checkmark	\checkmark	\checkmark
$\mathrm{KK6A}^{(0,1,0)}$	\checkmark	\checkmark	\checkmark	\bullet	\bullet	\checkmark	\bullet	\checkmark	\checkmark	TN
$\mathrm{KK6A}^{(0,0,1)}$	\checkmark	\checkmark	\checkmark	\bullet	\bullet	\checkmark	\checkmark	\bullet	TN	\checkmark

- T-duality along $S_{9}^{1} \rightarrow$ IIB on \widetilde{S}_{9}^{1}

	0	1	2	3	4	5	6	7	S_{8}^{1}	\widetilde{S}_{9}^{1}
$\mathrm{D}_{5}^{(1,0,0)}$	\checkmark	\checkmark	\checkmark	\bullet	\bullet	\bullet	\checkmark	\checkmark	\checkmark	\bullet
$\mathrm{NS}_{5}^{(0,1,0)}$	\checkmark	\checkmark	\checkmark	\bullet	\bullet	\checkmark	\bullet	\checkmark	\checkmark	\bullet
$\mathrm{KK6B}^{(0,0,1)}$	\checkmark	\checkmark	\checkmark	\bullet	\bullet	\checkmark	\checkmark	\bullet	TN	\checkmark

Brane web picture in IIB

- M2-brane wrapping $\mathbb{P}^{1}: C_{a}, C_{b}, C_{c}$:

	0	1	2	3	4	5	6	7	S_{8}^{1}	S_{9}^{1}	S_{10}^{1}
$\mathrm{M2}^{(1,0,0)}$	\checkmark	\bullet	\bullet	\bullet	\bullet	\checkmark	\bullet	\bullet	\bullet	\bullet	\checkmark
$\mathrm{M2}^{(0,1,0)}$	\checkmark	\bullet	\bullet	\bullet	\bullet	\bullet	\checkmark	\bullet	\bullet	\checkmark	\bullet
$\mathrm{M2}^{(0,0,1)}$	\checkmark	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\checkmark	\checkmark	\bullet	\bullet

- In IIB description

	0	1	2	3	4	5	6	7	S_{8}^{1}	\widetilde{S}_{9}^{1}
$\mathrm{~F}_{1}^{(1,0,0)}$	\checkmark	\bullet	\bullet	\bullet	\bullet	\checkmark	\bullet	\bullet	\bullet	\bullet
$\mathrm{D}_{1}^{(0,1,0)}$	\checkmark	\bullet	\bullet	\bullet	\bullet	\bullet	\checkmark	\bullet	\bullet	\bullet
$\mathrm{D}_{3}^{(0,0,1)}$	\checkmark	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\checkmark	\checkmark	\checkmark

Brane web picture in IIB

- Can be viewed as a web of (p, q, r) 4-branes in 8d SUGRA (remove 8, 9 directions)! (Leung, Vafa 97')(Lu, Roy 98')
- (p, q, r) transforms under $S L(3, \mathbb{Z})$ (part of 8d U-duality)

	0	1	2	3	4	5	6	7
$(1,0,0)$ 4-brane	\checkmark	\checkmark	\checkmark	\bullet	\bullet	\bullet	\checkmark	\checkmark
(0,1,0) 4-brane	\checkmark	\checkmark	\checkmark	\bullet	\bullet	\checkmark	\bullet	\checkmark
$(0,0,1)$ 4-brane	\checkmark	\checkmark	\checkmark	\bullet	\bullet	\checkmark	\checkmark	\bullet
$(1,0,0)$-string	\checkmark	\bullet	\bullet	\bullet	\bullet	\checkmark	\bullet	\bullet
$(0,1,0)$-string	\checkmark	\bullet	\bullet	\bullet	\bullet	\bullet	\checkmark	\bullet
$(0,0,1)$-string	\checkmark	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	\checkmark

- M2-brane wrapping $\mathbb{P}^{1}: C_{a}, C_{b}, C_{c}:(1,0,0),(0,1,0),(0,0,1)$ strings!
- M2-brane wrapping 2-cycle in M-theory \leftrightarrow open string modes on 4-string junction!

Brane web picture in IIB

- Generally for (p, q, r)-string, mass of BPS open strings states

$$
\begin{equation*}
m \sim \text { length } \times T_{(p, q, r)} \tag{19}
\end{equation*}
$$

Brane web picture in IIB

- Generally for (p, q, r)-string, mass of BPS open strings states

$$
\begin{equation*}
m \sim \text { length } \times T_{(p, q, r)} \tag{19}
\end{equation*}
$$

- $U(1)$ gauge field given by a linear combination of $U(1)$ s of all finite 4-branes
- Electric charge of a string state $Q_{e}=-N_{b}$, total \# of end points of the string

Flavor branes giving flavor symmetry

- Flavor branes in IIB: classified by exotic branes
- Flavor branes in 8D SUGRA: 5-brane objects

	0	1	2	3	4	5	6	7
$\widetilde{S}_{9}^{1} \times S_{8}^{1}$-wrapped (D7,NS7)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\bullet	\bullet	\checkmark
(NS5,522)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\bullet	\bullet
(D5,53)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\bullet	\checkmark	\bullet

What's next?

- Superpotential from geometry? Hard even for 3d $\mathcal{N}=2 S U(2)+N_{f} \mathbf{F}$!
- Higher derivative/quantum correction to the 11D SUGRA action, more precise formula for $1 / g^{2}$
- Realize known 3d $\mathcal{N}=2$ dualities, e. g. SQED-XYZ duality
- Relations to other $3 \mathrm{~d} \mathcal{N}=2$ constructions, e. g. 6d $(2,0)$ on 3-manifolds?
- $4 \mathrm{~d} \mathcal{N}=1$ uplift in the elliptic cases
- Higgs branch?
- Detailed study of \mathbb{C}^{4} / Γ orbifolds, $4 d$ McKay correspondence

What's next?

- Superpotential from geometry? Hard even for 3d $\mathcal{N}=2 S U(2)+N_{f} \mathbf{F}$!
- Higher derivative/quantum correction to the 11D SUGRA action, more precise formula for $1 / g^{2}$
- Realize known 3d $\mathcal{N}=2$ dualities, e. g. SQED-XYZ duality
- Relations to other $3 \mathrm{~d} \mathcal{N}=2$ constructions, e. g. 6d $(2,0)$ on 3-manifolds?
- $4 \mathrm{~d} \mathcal{N}=1$ uplift in the elliptic cases
- Higgs branch?
- Detailed study of \mathbb{C}^{4} / Γ orbifolds, 4d McKay correspondence

Thank you for your attention!

