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MOTIVATION

@ 7w scattering: important in understanding low energy QCD
chiral symmetry breaking.

@ Lattice calculation: phase shifts at unphysical pion mass,
my = 236MeV[Dudek, et al.,, PRD86,034031(2012)].
My = 391 MeV [Briceno,PRL118,022002(2017)].

@ Hadron system with a finite temperature: Hadron gases, QCD
phase information.

@ These two aspects provide more information of QCD: tuning
my; and T, to learn more information about chiral symmetry,
confinement ...

@ By studyng the properties of resonances with varying m, and
T, one would also gain more understanding of the QCD.



FUNDAMENTALS ON 7w SCATTERING MATRIX

Full two particle scattering matrix: S(s, t,u), s+ t+u= >, m3.
7 scattering: with isospin indices Sy cq

@ Unitarity: S-S =1 S= I+ iT. Optical theorem:
Imm(kh ko — ka1, k2) = 2Ecmpem0tot

@ Analyticity: S(s, t, u) can be analytically continued to be an
analytic function of s, ¢, u.

@ Crossing: By analytic continuation, the same .S matrix can
describe different scatterings by crossing
s> 4m2, t,u <0, s-channel, 4(p1) + 7p(p2) = 7e(p3) + 7a(pa).
t>4m2, s,u <0, t-channel, m,(p1) + Te(—p3) — Tp(—p2) + 7a(ps).
w>4m2, s,t < 0, u-channel, m,(p1) + Ta(—ps) — 7e(p3) + To(—p2).
@ Crossing and generalized Bose symmetry impose constraints
between A(s,t,u), B(s,t,u), C(s,t, u).

T(s, t,u) = A(s, t, w)0apcq + B(S, t, u)dacOpq + C(8, t, )0 qq0pc



FUNDAMENTALS ON 7w SCATTERING MATRIX

T(s, t, u) = A(s, t, u)dapdcqd + B(S, t, u)dac0pq + C(8, t, 1) gqlpe

Scattering of total angular momentum eigenstates and total
Isospin eigenstates:
@ Isospin projection:
T2(s,t,u) = 3A(s, t, u) + B(s, t,u) + C(s, t, )
TY(s,t,u) = B(s, t,u) — C(s, t,u)
T2 (s, t, u) = B(s, t, u) + C(s, t, u)

@ Partial wave projection: S; =1+ 2ip(s) T3(s),
p=/(s— dm2)/s,
Tl(s) :ﬁ /711 dcos 0 Py(cos 0) T! (s, (s, cos 0))

T(s, t,u) =167 Y (20 + 1) Py(cos 0) T}(s)
l



FUNDAMENTALS ON 7w SCATTERING MATRIX

@ Unitarity: Single channel, for physical processes, s > 4m2,
Si(8)S(s) =1, ImTy(s) = p(s)| Tu(s)|*.

@ Analyticity: S(s) — analytical continuation, real analytic
function of s, Schwartz reflection, S*(s) = S(s%).
Single channel: Double-sheeted Riemann surface, a cut above
the threshold s = 4m2 — unitarity cut, or physical cut.
e S/ =1/8": Zero point on the first sheet <+ poles on the
second sheet.
@ On the first sheet:
Bound state poles: on the real axis below the threshold 4m2.
No other poles.
@ On the second sheet:
Virtual state poles on the real axis below the threshold 4m?.
Resonances poles, a pair of complex poles on the second sheet,
symmetric w.r.t real axis.

@ Crossing: The physical process of the ¢, u channel generate
left-hand cut.
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CHIRAL SYMMETRY AND o STATE

2 flavor QCD: only u and d quarks,

@ Chiral symmetry at chiral limit, m, = 0:
SUL(2) x SUR(2) ~ O(4).

aL — €17 qr,  qr — € gp.

@ SSB: quark condensate (gq) # 0,
SUL(2) x SUR(2) — SUy(2) — Goldstone: pions.

@ With explicit chiral symmetry breaking: m, # 0, m, # 0,
PCAC assumption, 9, A% = m2 f,m°

@ To realize this SSB in Low energy effective field theory:
Linear realization — linear o model, (o) # 0 — a 0" scalar
state. |[M. Gell-Mann and M. Lévy,Nuo.Cim.16,705(1960)]

Nonlinear realization — only pion d.o.f., no o, ChPT.
[Coleman,Wess,Zumino, PR,177,2239;Callan,et.al. PR177,2247;

Gasser,Leutwyler,Ann.Phys.158,142, NPB250,465.]



f(500) STATE: THE LOWEST 0"" STATE

@ For a long time, the existence of the o particle was in

o

controversy.

A broad resonance disappeared
and reappeared from PDG ta-
ble several times, from 1960 to ,}
2000s. :
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Chiral purtabation theory (CHPT): without sigma, can
reproduce the lower energy scattering length, effective range,
phase shift near threshold. Quickly blow up away from
threshold.

Unitarized CHPT: IAM, a broad resonance was found — o or
fo, but not quite reliable [pelacz,Mod.Phy.Lett. A19,2870;

A.G.Nicola,Pelaez, PRD65,054009(2002)].



0 STATE

@ PKU representation with left-hand cut estimated by CHPT
[ZX,Zheng,NPA695,273(2001);Z. Y. Zhou,et.al. JHEP 02, 043(2004);Zheng, ct.al.,
NPA733,235(2004)]. respects unitarity and analyticity, crossing can
be imposed by BNR relation

Left-hand-cut contribution is .
always negative in sin2d. @

02

A broad resonance pole is .

06

needed.

L0F

@ Roy equation [Colangelo,Gasser,Leutwyler NPB603, 125(2001) model
independent integral equation.
Automatic respect unitarity, analyticity, crossing symmetry —
established the existence of a broad 0%+ resonance

f0(500) [Caprini,Colangelo,Leutwyler PRL96,132001(2006)].
Vpole = 44116 — 2727, MeV

@ What role does it play in the chiral SSB? Is this the sigma in
1 CNAD



INTRODUCTION

Analyzing the lattice QCD phase shift: K matrix, no crossing
My = 236MeV Dudek, et al., PRD86,034031(2012)], O resonance
My = 391MeV Briceno,PRL118,022002(2017)], 0 bound state.
@ PKU + crossing using BNR relation: x. L. Gao,z.H.Guo,2X,22, PRD

105 (2022)9,094002]

at m; = 236MeV:m, = 610 £ 11MeV,I', = 327 &= 8MeV;
at m; = 391MeV: mypound = 774 = 6MeV, myirina = 716 £ 28MeV

@ ChPT+unitarization: [Hanhart, et al. PRL100,152001(2008)]
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[+ Roy equation:[X.H. Cao, et al.,PRD108(2023)3,034009]
at m; = 236MeV: /s, = 543—1i250 MeV
at my = 391MeV:  mypoung = T5IMeV, \/Seup = (269—13211) MeV
Propose the pole trajectory:

A (%) 1 st-RS Bound State
X 2 nd-RS Virtual State
(8} 2 nd-RS Resonance

Im [s/m?2]

Left-hand cutg¢

_rm/threshold |

@ More recent Lattice result + K matrix [rodas et al.,
PRD108,034513(2023)]:
at m,; = 330MeV: o is a bound state.
at m,; = 283MeV: large statistical error, could be a virtual state or resonance.



The proposed explanation of the subthreshold resonance at
m; = 391MeV:

5.0

2.5]
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s/m? s/m?

The reason for the appearence of the subthreshold resonance poles:

@ When the VS move through the threshold and becomes a bound
state, the branch point of the I.h.c. move right.

@ From the positivity of the residue of the bound state pole, it can be
proved that near the branch point S(s) tends to negative infinty.

@ For small m,, there are two zero point of S(s) below threshold. For
larger m,, S(s) become smaller, no zero points — resonance pole.



INTRODUCTION: O(N) SIGMA MODEL

@ lLagrangian: a=1,..., N

1 1 A
_ w2 _ 20 2
L = 50400060~ 130uba — 5 (Gab0)® + a0,

@ Classical level: when oo = 0, No explicit breaking
u? >0, no SSB;
u? <0, SSB. ¢ = —2u2N/\ = (¢)%,(¢) > 0

@ Classical level: when a # 0, vacuum solution

A
(~1F = S2l6P)6a=0= 6a =0, fora=1,...,N-1
A
_y2_ 201402 _
(=5 4N|¢’ Yo +a =0

(pn) # 0~ O(N'/?), a ~ O(N'/?),



@ To count the N order: Introduce an auxiliary field x,

[Coleman,et.al.,PRD10,2491]

L =L+ % <X - m¢a¢a_uo>
1 Ny
§X¢a¢a - ﬂXv

1 N
=5 u¢aau¢a +apy +
2 Ao

[ 2 —
220"
Integrating out ¥, it come back to the previous path integral.

@ After renormalization, effective potential:

Nu? (M) N M1
X)X Gan2 X <1°gx+>’

V(6,X) = —adn+ 5 X + ;



ox
ov 2N 2Np? N X
=0 aPa = VX — - log =,
105% = $ad AN A 1672 8 12
oV
9 =0= Xx¢a=0(a<N), xon—a=0.

2 _
@ 7 mass my; = X.

@ For N =4, compared with PCAC: 9" A
explicit SSB, 6“142 = an® From y = ﬁ = mgr we find

= m2f,7% and with

(BN) = fr ~ O(NY?),
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E: O(N) model leading order 7w amplitude [Coleman,et.al.,PRD10,2491]

7 amplitude to the leading 1/N order: (o, 7 have mixing)

‘7:1Ta7rb—>7rcﬂd :Z'DTT(S)(S(LbéCd + Z'D7"r(t)5(1,c($bd + Z’DTT(u)(SCLd(SbC , (1)
2 2
—1/,2\ _ (P — Mg _f7r
b= = ’( —fr N/A0+NBo(p2,mn)> ’ @)
—1 d*e 1
=y ( Bo(p%, my :J/ .
T Bhme) = | i@ g v - T )



After projection to IJ = 00 channel, leading O(N) amplitude J5¢
( define M such that 1/\(M) = 0), only s channel contributes

T =g = A,
m2 — s
A(s) :(S_ m2)B(s, mx, M) — 2 /N’

p(s) — 1 my
B(s, My, M) = 39,2 (1+p( )logp(s)+1—logM2) ,

@ Adler zero: s4 = m?2.

@ o pole : solve

(s— m?r)BU(s,mﬂ,M) —£/N=0.

@ No crossing symmetry.



m; DEPENDENCE OF o AT LEADING 1/N
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Fix fr, M, changing m, or «,
@ Adjust the M ~ 550MeV, at my, = 139MeV, /s = 356 — 1148 MeV.
@ As my increases, /s moves — real axis — two virtual state poles — one

virtual move left, the other move right — (m. ~ 337 MeV) one virtual, one
bound

@ No crossing symmetry: o — bound state, no I.h.c brach point —
s=4m2 — m2.

@ Direct adding ¢ and u channel contribution: violate unitarity.

@ Unitarization method: IAM or K matrix, No control of the spurious poles, we
resort to N/D.



N/D: UNITARITY WITH PARTIAL RECOVERY OF

CROSSING

N/D Method: Basic ideas

@ T matrix: T(s) = ggz; N(s) only has left-hand cut, D only

has right-hand cut.

@ Since Imp 7~ = —p, we have
tmp D(s) = —p(s)N(s) 3)
Imy, N(s) = D(s) Imz T (s). (4)
@ Write down the dispersion relation of N(s) and D(s) ( twice
subtracted)
_ s—sa s—so _ (s—s0)(s—sa) p(s)N(S) y
Dis) = S0 — 54 +gDSA—80 ™ /B’. (5’—3)(8’—50)(5’—5A)d '

(5)
A, S=s0 (5—50)(5—5A)/ D()ImpT(s) a5’
L

(8 = 9)(s' = 50)(s' — 54)
(6)

’

s—
N(s) = bo 9N
S0 — 84 54— 80 s



@ Using the O(N) result Imz7 (s): from next to leading 1/N
order.
@ Subtraction, sy = 4m2, s4 = m2, D(sp) = 1: require T to
recover O(N) result at the leading 1/N order
N—-1
bo = Too(s0) = —=—A"(s0) + Tru(s0) , (7)
327
32’/’(’f7zrb0 gN

= R IN R (sa). 8
9= N -5 b tu(54) (8)

@ When m, > m,, we require D(m2) = 0, for the sigma pole to
be consistent with the branch point of the left hand cut.

@ Solve the integral equation numerically.
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@ As m; increases:
o approaches the real axis— two virtual states, —

one moving right — first sheet bound state
one moving left .
) hit — resonant poles
l.h.c. — another virtual state

@ The VSIIl is generated when the Adler zero hit the left-hand
cut



0 POLE TRAJECTORY WITH VARYING

Physical-sheet S-matrix below threshold
@ The left graph (m; = 207 MeV) : two virtual states in the
near threshold region and one additional virtual state pole
generated close to the left-hand cut.
@ The middle graph (m, = 283 MeV) : one bound state with
two virtual states.

@ The right graph (m; = 391 MeV): two virtual state poles
have become a pair of resonance poles.



TEMPERATURE DEPENDENCE AT LEADING 1/N

@ It is well known: under high temperature, chiral symmetry
F€COVErS.[R. D. Pisarski and F. Wilczek, PRD 29,338(1984);A. Bazavov et al.,
PRDS5,054503(2012)] lim 700 ¥(T) — 0

@ It is expected that m, — m;, at high temperature.

@ ChPT: intrincically in broken phase, break down at high
temperature, T ~ f;.

@ In O(N) model: v.e.v. v(T) evolves with T)5.0.Anderson, et. al.

PRD70,116007]

m(T)/MeV

] 50 W00 150 2000 250 300 0 50 00 50 200 250 300
T/MeV T/MeV/

o No explicit breaking « = 0:at T < T, ~ 160MeV, m,(T) =0,

o(T)#£0SSB; at T> T., o(T) =0, m.(T) #0.
e With a #0, (T) — 0.



0 POLE TRAJECTORY WITH T

At the leading 1/N order, N = 4:

- 300

"\ 100)

100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
T/MeV T/MeV T/MeV

From left to right, m,(0) = 200, 139 and 80 MeV respectively.
@ Scattering amplitude at 7 in the center of mass frame.

1 s—m?r(T)
321 (s = m2(T)) BT (s, mz(T), M) — v2(T)/N ’

Too(s) = —

BT (s, mx (T), M) = B (s, mn (T), M) + BT7° (s, mr (T)) ,
2
7240 _ /oo dkk T
B ,mu(T)) = 3 s
(5, me (1)) 0 87r2u.)f np(wr) E+ 2wy E — 2wy

@ o resonance on the second sheet, — virtual state, — bound
state — tends to m,.




N/D WITH TEMPERATURE

@ Unitarity with two particle intermediate states for IJ = 00
channel,

m77(s) = p7(s) 77", 9)

@ Lorentz symmetry is broken by the temperature: Center of
mass system in s channel is different from ¢ channel —
crossing is also broken.

@ [J =00 thermal amplitude:

1 s —mZ(T)
327 (s — m2(T)) BT (s, mx(T), M) — v2(T)/N’

BT(SvmW(T)v‘Z\/f) = B(57 mﬂ'(T)vm'i_BT#O (57 mﬂ'(T)) ’
B s,me(1) = [~ it (5~ 5 )

82wy E+2w, E— 2w

Too(s) =

@ N/D can be done: substitute the corresponding temperature
dependent amplitudes.



N/D WITH TEMPERATURE: ¢ TRAJECTORY

st . ji
IE !_ Njali !T:OMeV
of 12 15 P12 oID 00°® 1
i ; R
|g‘ |T 5' 1 |
: : =t 2
A |b g I /; |
[ [ 0 ° 7l
ol = 250 MeV | o Tl=137Mev ]
ka I 1 ° I
= o ,LWW xxxxxymvé’%&::aa to IstRS ]
= TN " AR
— o
= -2 Tj= OMeVI T= 140\IeV gir=1n % g
' L R
(6] o
) I I ’\ E
| | 3l % | §
Or | * BS o vsI | 1°°0og ]
H O Resonance 4 VSII H
—8} I I 4 Sub. pole v VS I I
0 1 3 3 i
Rels]/m2(T)
@ T=0, my =139MeV.
4 @ VS1— BS (T=137MeV),
@ T =60MeV, VSIII generated from
e lhe & @ T = 140MeV, VSII meets VSIIl—

subthreshold resonance.
@ o resonance — virtual states (I, II),

2 2
(T=124MeV) @ mg = mz.



SUMMARY I:

@ The o (fy(500)) pole trajectory with varying m, can be
qualitatively reproduced by the N/D improved O(N) linear
sigma model.

@ A pair of subthreshold pole is generated with crossing
symmetry taken into account for large m,.

@ The f5(500) could be the o in the linear o model.

@ The pole trajectory with varying temperature is similar to the
one with varying m;.



CUUM STRUCTURE: m; DEPENDENCE
Solve x(¢), insert into V(¢, x), to obtain the effective potential

Vef (d))
1 Nu?(M) N M2 1
V($,x) = —apn + —x¢* + ——————x — log— + =),
(é,%) ON+ 5x¢ N TR G +3
oV 2 N 5 m2 X
—=0= =£+ m2 log 2% _ ylog 2 ) |
Ox =1 1672 ( w08 p T X% e
ov
06n X¢a=0(a<N), x¢ny—a=0.
a
; “== g = 0MeV
Fix fr, M, changing m, or «, 0.012 — :)n;/;1,:,3?51\‘;']\“‘
@ Two solutions branches: 0.010 . ,’:/‘:33,”:“\;011\1‘\
separated at
@ Left one: With Chiral SSB in % 0.008
the Chiral limit, determine fr 9o
(fixed), my. 720006
@ Right one : No chiral SSB in the A 0.004
Chiral limit.
@ V become complex for 0.002
|p)? > (;5%: the system not
table. 2 2 . 0.000
stable. ¢ < @7, 0.0 01 0.2 0.3 0.1 05




TWO BRANCHES OF THE VACUUM

0.0015 0.020

V0, g)mn = 20 MeV N —— VI(0,6y),me = 680MeV  wveee VIO, ), my = 800 MeV
== VI(0,65),my = 210 MeV N == V{0, 6),my = 680 MV —— VI(0,6), m; = 1000 MV
0.0010 o e Vo ey 0.015 \ V060 e = SOMEY === VII(0, 6. my = 1000MeV
=== VI(0,6x), my = 139 MeV VIO, 6). my = 301 MeV
0.0005F 0.010:
< 0.005
= 0.0000 > N
5 g
S 2 0.000
= —0.0003 =

> = —0.005

~
—0.0010

—0.010
—0.0015
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—0.0020
i —0.020
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@ m2 < x;p ~ 333MeV, solution I: the local minimum on the first
branch, false vacuum. There is a tachyon.

@ Global minimum: Solution Il on the second branch.
@ As m, increases, solution | moves towards the second branch.

- m?r > Xp, no local minimum on the first branch. Solution | moves
on the second branch — saddle point.

@ my > (32m2f /(Nyo))*/? ~ 680MeV: solution | <+ Solution II.



VACUUM STRUCTURE: FINITE TEMPERATURE

e VTI0,0).T = 150 MeV — VTH(0,6y). T = 250MeV == VTI(0,6).T = 250 MoV
310Mev

= 310MeV

\\—o,,,,,.,-r — V00T = 0MeY

P

0.0000]

~0.0015
< —0.0005 T < —0.0020
= Z
2 <
= 0.0010, 0.0025
= >
_ —0.0030
—0.0015]
" —0.0035 B
—0.00201
—0.10 —0.05 0.00 0.05 0.10 0.06 0.04 0.02  0.00 0.02 0.04 0.06
on/GeV 6 /GeV

@ Tincreases: |¢p| and |Ppmin| — smaller.

@ T¥ there is no solution for the gap equations. T ~ 314MeV
@ Ty ¢p =0.

@ The two branches: Effective potential V get closer.

@ T.< Ty< Ty. T> Ty no vacuum, the system is already unstable.
Difference T}, — T¢ ~ keV.
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At high temperature: the Solution | will move to the second
branch, becoming a saddle point.



CHYON: m,; AND T DEPENDENCE

There could be a tachyon for solution I.

1200
Lo 1000
800 800
% 26
= 600 S o
< <
£ g
400 i 400
\ \
\ \
| ' |
200 ! 200f — T =0MeV \ i
| —m-= T =150 MeV i :
ob == me=T0MeV H of = T=250MeV i |
0 50 00 150 200 250 300 200 300 100 500 600 700
T/MeV mx/MeV

@ Plays a role of another cutoff of the theory:—m% L sK s+ m? (me ~ 1.1GeV
for physical mass, T'=0) [R. S. Chivukula and M. Golden, PLB 267, 233]

@ s= fm? < 0: my decreases with temperature and my.
@ Tachyon has positive residue in the o — o propogator, similar to bound state.

@ Tachyon — bound state transition <> the point of exchanging the two solution.



SUMMARY

@ o pole trojectory in leading O(N) and N/D modified O(N):
with varying m, and temperature.

@ Subthreshold resonance pole generation: After crossing
symmtry partially recovered.

@ Vacuum structure: with varying m, and temperture.
Phenominological favored one is the first branch.



PPENDI

ma~ (MeV) 139 239 283 330 391
o) @0) 956 1148 - 558(VS 1) 660(VS I) 780(BS)
pA -1 —
Sl © 438(VS 1) 451(VS 11) 489(VS 11)
169(BS) 527(BS) 585(BS) 658(BS)
N/D modified O(N) 348 — i180 426(VS 1) 422(VS 1II) 396 — 28 466 — 077
168(V'S I1I) 264(VS III) (Sub. pole) (Sub. pole)

(487 ~ 809 (476 ~ 579

lattice + K-matrix —i136 ~ 304)[49, 51]  —i0 ~ 129)[51]

6573(BS)[51] 758 + 4(BS)[49]

759+7,(BS)[57]
269732 — 211425
(Sub. pole)[57]

(416 ~ 644 522 ~ 562

lattice + Roy Eq. L4176 ~ 307)[57, 58] (VS 1&IT)[58] *

2 Additionally, there is a third though “noisy” pole close to the left-hand cut on the second sheet, which could correspond to the virtual
state pole VS III appearing in the N/D modified O(N) model analysis. However, a definitive conclusion about whether the o is a
virtual state or a subthreshold resonance at this mx value cannot be made, owing to large statistical uncertainties in the results, see
Ref. [58] for details.

TABLE I. Comparison of the pole positions (,/Spole) for O(N) model, lattice + K-matrix [49, 51] and lattice + Roy equation [57,
58]. When m~ = 391 MeV, the subthreshold (Sub.) pole close to the left-hand cut in Ref. [57] can also be found (qualitatively)
within the N/D modified O(N) model discussed in this work.
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