Calabi-Yau Varities: Enumerative Geometry, Arithmetic Geometry and Physics

Peng Huanwu Center for Fundamental Theory, USTC Hefei

Albrecht Klemm, BCTP and HCM Bonn University
April 22024

Aspects of Calabi-Yau manifolds (historically)

Differential geometry question
$\exists!$ g on Kähler manifolds with $R_{i \bar{\jmath}}(g)=0$?

Aspects of Calabi-Yau manifolds (historically)

1954 Differential geometry question

ヨ! g on Kähler manifolds with $R_{i \bar{\jmath}}(g)=0$?
$\exists!g$ in given
Kähler class, if
$c_{1}(T M)=0$?

Aspects of Calabi-Yau manifolds (historically)

Differential geometry question 1976
$\exists!g$ in given
Kähler class, if
$c_{1}(T M)=0$?

Aspects of Calabi-Yau manifolds (historically)

Aspects of Calabi-Yau manifolds (historically)

1954 Differential geometry question 1976

$\exists!g$ in given Kähler class, if $c_{1}(T M)=0$?

J! g on Kähler mani-

 folds with $R_{i \bar{\jmath}}(g)=0$?$$
\exists!g \leftrightarrow c_{1}(T M)=0!
$$

Aspects of Calabi-Yau manifolds (historically)

1954 Differential geometry question 1976

$\exists!g$ in given Kähler class, if $c_{1}(T M)=0$?

Arithmetic Geometry
\exists ! g on Kähler manifolds with $R_{i j}(g)=0$?

Aspects of Calabi-Yau manifolds (historically)

1954 Differential geometry question 1976

$\exists!g$ in given Kähler class, if $c_{1}(T M)=0$?

Special role of CY 3-folds in enumerative geometry

Enumerative geometry enumerates geometric objects. Euclid: How many tangents has a circle passing through further points? E.g. P:

Special role of CY 3-folds in enumerative geometry

Enumerative geometry enumerates geometric objects. Euclid: How many tangents has a circle passing through further points? E.g. P:

Special role of CY 3-folds in enumerative geometry

Enumerative geometry enumerates geometric objects. Euclid: How many tangents has a circle passing through further points? E.g. P:

$$
\left\{x, y, r \in \mathbb{R} \mid x^{2}+y^{2}=r^{2}\right\}
$$

\# Points	0 Points	1 Point	>1 Points
Tangents	∞	2	0
$\operatorname{dim}_{\mathbb{R}}(\mathcal{M})$	1	0	<0

\mathcal{M} : moduli space of solutions

Special role of CY 3-folds in enumerative geometry

Note that in the critical dimension we can always invert the question:

- Provided we we go to projective space.

Special role of CY 3-folds in enumerative geometry

Note that in the critical dimension we can always invert the question:

- Provided we we go to projective space.
- To put P where ever, it might be desirable to go to an algebraically closed field.

A beautiful critical enumerative question

Lines on a cubic surface:

A beautiful critical enumerative question

Lines on a cubic surface:
The generic cubic surface in \mathbb{P}^{3} contains
27 complex lines holmorphically embedded, Caley \& Salmon (1849)

A beautiful critical enumerative question

Lines on a cubic surface:
The generic cubic surface in \mathbb{P}^{3} contains
27 complex lines holmorphically embedded, Caley \& Salmon (1849)

For the special cubic $\sum_{i=0}^{3} x_{i}^{3}-\left(\sum_{i=0}^{3} x_{i}\right)^{2}=$
0 these can be visualised in real projection Clebsch (1871) \& Klein (1873)

A beautiful critical enumerative question

Lines on a cubic surface:
The generic cubic surface in \mathbb{P}^{3} contains
27 complex lines holmorphically embedded, Caley \& Salmon (1849)

For the special cubic $\sum_{i=0}^{3} x_{i}^{3}-\left(\sum_{i=0}^{3} x_{i}\right)^{2}=$
0 these can be visualised in real projection Clebsch (1871) \& Klein (1873)

Special role of CY 3-folds in enumerative geometry

The Riemann-Roch theorem yields the (virtual) dimension of the moduli space of bi-holomorphic embeddings \mathcal{C}_{β} of genus g curves Σ_{g} into a Kähler manifold M

$$
X: \Sigma_{g} \rightarrow \mathcal{C}_{\beta} \subset M\left(\times X_{(1,3)}\right)
$$

with \mathcal{C}_{β} a holomorphic curve $\left[\mathcal{C}_{\beta}\right] \in H_{2}(M \mathbb{Z})$, as

Special role of CY 3-folds in enumerative geometry

The Riemann-Roch theorem yields the (virtual) dimension of the moduli space of bi-holomorphic embeddings \mathcal{C}_{β} of genus g curves Σ_{g} into a Kähler manifold M

$$
X: \Sigma_{g} \rightarrow \mathcal{C}_{\beta} \subset M\left(\times X_{(1,3)}\right)
$$

with \mathcal{C}_{β} a holomorphic curve $\left[\mathcal{C}_{\beta}\right] \in H_{2}(M \mathbb{Z})$, as

$$
\operatorname{dim} \operatorname{vir} \overline{\mathcal{M}}_{g}(M, \beta)=\int_{\mathcal{C}_{\beta}} c_{1}(T M)+\left(\operatorname{dim}_{\mathbb{C}} M-3\right)(1-g)
$$

Special role of CY 3-folds in enumerative geometry

The Riemann-Roch theorem yields the (virtual) dimension of the moduli space of bi-holomorphic embeddings \mathcal{C}_{β} of genus g curves Σ_{g} into a Kähler manifold M

$$
X: \Sigma_{g} \rightarrow \mathcal{C}_{\beta} \subset M\left(\times X_{(1,3)}\right)
$$

with \mathcal{C}_{β} a holomorphic curve $\left[\mathcal{C}_{\beta}\right] \in H_{2}(M \mathbb{Z})$, as

$$
\operatorname{dim} \operatorname{vir} \overline{\mathcal{M}}_{g}(M, \beta)=\int_{\mathcal{C}_{\beta}} c_{1}(T M)+\left(\operatorname{dim}_{\mathbb{C}} M-3\right)(1-g)
$$

CY 3-folds M are the critical case for enumerative geometry, because

Special role of CY 3-folds in enumerative geometry

The Riemann-Roch theorem yields the (virtual) dimension of the moduli space of bi-holomorphic embeddings \mathcal{C}_{β} of genus g curves Σ_{g} into a Kähler manifold M

$$
X: \Sigma_{g} \rightarrow \mathcal{C}_{\beta} \subset M\left(\times X_{(1,3)}\right)
$$

with \mathcal{C}_{β} a holomorphic curve $\left[\mathcal{C}_{\beta}\right] \in H_{2}(M \mathbb{Z})$, as

$$
\operatorname{dim} \operatorname{vir} \overline{\mathcal{M}}_{g}(M, \beta)=\int_{\mathcal{C}_{\beta}} c_{1}(T M)+\left(\operatorname{dim}_{\mathbb{C}} M-3\right)(1-g)
$$

CY 3-folds M are the critical case for enumerative geometry, because

- The first term vanishes as $c_{1}(T M)=0$.

Special role of CY 3-folds in enumerative geometry

The Riemann-Roch theorem yields the (virtual) dimension of the moduli space of bi-holomorphic embeddings \mathcal{C}_{β} of genus g curves Σ_{g} into a Kähler manifold M

$$
X: \Sigma_{g} \rightarrow \mathcal{C}_{\beta} \subset M\left(\times X_{(1,3)}\right)
$$

with \mathcal{C}_{β} a holomorphic curve $\left[\mathcal{C}_{\beta}\right] \in H_{2}(M \mathbb{Z})$, as

$$
\operatorname{dim} \operatorname{vir} \overline{\mathcal{M}}_{g}(M, \beta)=\int_{\mathcal{C}_{\beta}} c_{1}(T M)+\left(\operatorname{dim}_{\mathbb{C}} M-3\right)(1-g)=0
$$

CY 3-folds M are the critical case for enumerative geometry, because

- The first term vanishes as $c_{1}(T M)=0$.
- The second term vanishes as $\operatorname{dim}_{\mathbb{C}} M=3$.

Special role of CY 3-folds in enumerative geometry

The Riemann-Roch theorem yields the (virtual) dimension of the moduli space of bi-holomorphic embeddings \mathcal{C}_{β} of genus g curves Σ_{g} into a Kähler manifold M

$$
X: \Sigma_{g} \rightarrow \mathcal{C}_{\beta} \subset M\left(\times X_{(1,3)}\right)
$$

with \mathcal{C}_{β} a holomorphic curve $\left[\mathcal{C}_{\beta}\right] \in H_{2}(M \mathbb{Z})$, as

$$
\operatorname{dim} \operatorname{vir} \overline{\mathcal{M}}_{g}(M, \beta)=\int_{\mathcal{C}_{\beta}} c_{1}(T M)+\left(\operatorname{dim}_{\mathbb{C}} M-3\right)(1-g)=0
$$

CY 3-folds M are the critical case for enumerative geometry, because

- The first term vanishes as $c_{1}(T M)=0$.
- The second term vanishes as $\operatorname{dim}_{\mathbb{C}} M=3$.
- Note the genus one contributions is critical for CY n-folds.

Formal definition of a Calabi-Yau manifold

Definition: A Calabi -Yau n-fold (M, ω, Ω) is a Kähler manifold, with (1,1)-Kähler form ω, of complex dimension n with the following additional (equivalent) properties

- a.) $\exists g$! so that the Ricci curvature vanishes $R_{i j}(g)=0$.

Formal definition of a Calabi-Yau manifold

Definition: A Calabi -Yau n-fold (M, ω, Ω) is a Kähler manifold, with (1,1)-Kähler form ω, of complex dimension n with the following additional (equivalent) properties

- a.) $\exists g$! so that the Ricci curvature vanishes $R_{i j}(g)=0$.
- b.) The canonical class is trivial $K_{M}=c_{1}\left(T_{M}\right)=0$.

Formal definition of a Calabi-Yau manifold

Definition: A Calabi -Yau n-fold (M, ω, Ω) is a Kähler manifold, with (1,1)-Kähler form ω, of complex dimension n with the following additional (equivalent) properties

- a.) $\exists g$! so that the Ricci curvature vanishes $R_{i j}(g)=0$.
- b.) The canonical class is trivial $K_{M}=c_{1}\left(T_{M}\right)=0$.
- c.) It has a no-where vanishing holomorphic ($n, 0$)-form Ω.

Formal definition of a Calabi-Yau manifold

Definition: A Calabi -Yau n-fold (M, ω, Ω) is a Kähler manifold, with (1,1)-Kähler form ω, of complex dimension n with the following additional (equivalent) properties

- a.) $\exists g$! so that the Ricci curvature vanishes $R_{i j}(g)=0$.
- b.) The canonical class is trivial $K_{M}=c_{1}\left(T_{M}\right)=0$.
- c.) It has a no-where vanishing holomorphic ($n, 0$)-form Ω.
- d.) It has $S U(n)$ holonomy.

Formal definition of a Calabi-Yau manifold

Definition: A Calabi -Yau n-fold (M, ω, Ω) is a Kähler manifold, with (1,1)-Kähler form ω, of complex dimension n with the following additional (equivalent) properties

- a.) $\exists g$! so that the Ricci curvature vanishes $R_{i j}(g)=0$.
- b.) The canonical class is trivial $K_{M}=c_{1}\left(T_{M}\right)=0$.
- c.) It has a no-where vanishing holomorphic ($n, 0$)-form Ω.
- d.) It has $S U(n)$ holonomy.
- e.) It has two covariant constants spinors ...

Formal definition of a Calabi-Yau manifold

Definition: A Calabi -Yau n-fold (M, ω, Ω) is a Kähler manifold, with (1,1)-Kähler form ω, of complex dimension n with the following additional (equivalent) properties

- a.) $\exists g$! so that the Ricci curvature vanishes $R_{i j}(g)=0$.
- b.) The canonical class is trivial $K_{M}=c_{1}\left(T_{M}\right)=0$.
- c.) It has a no-where vanishing holomorphic ($n, 0$)-form Ω.
- d.) It has $S U(n)$ holonomy.
- e.) It has two covariant constants spinors ...

Formal definition of a Calabi-Yau manifold

Definition: A Calabi -Yau n-fold (M, ω, Ω) is a Kähler manifold, with (1,1)-Kähler form ω, of complex dimension n with the following additional (equivalent) properties

- a.) $\exists g$! so that the Ricci curvature vanishes $R_{i j}(g)=0$.
- b.) The canonical class is trivial $K_{M}=c_{1}\left(T_{M}\right)=0$.
- c.) It has a no-where vanishing holomorphic ($n, 0$)-form Ω.
- d.) It has $S U(n)$ holonomy.
- e.) It has two covariant constants spinors ...

Theorem (C.T.C Wall): The topological type of a Calabi-Yau 3-fold is fixed by their Hodge numbers, their triple intersection $D_{i} \cap D_{j} \cap D_{k} \in \mathbb{N}$ and $\left[c_{2}\right] \wedge D_{k}, D_{k} \in H_{4}(M, \mathbb{Z})$.

Construction of Calabi-Yau n-folds

Let M be a degree $\mathcal{N}=d H$ embedding of M into $H \subset \mathbb{P}^{n+1}$.
Then the splitting of the exact sequence

$$
0 \rightarrow T M \rightarrow T \mathbb{P}^{n+1} \rightarrow \mathcal{N} \rightarrow 0
$$

Construction of Calabi-Yau n-folds

Let M be a degree $\mathcal{N}=d H$ embedding of M into $H \subset \mathbb{P}^{n+1}$. Then the splitting of the exact sequence

$$
0 \rightarrow T M \rightarrow T \mathbb{P}^{n+1} \rightarrow \mathcal{N} \rightarrow 0
$$

at $T \mathbb{P}^{n+1}$ implies with $c_{1}\left(T \mathbb{P}^{n+1}\right)=(1+H)^{n+2}$ and $c_{1}(\mathcal{N})=(1+d H)$ that $\operatorname{ch}(T M)$ equals

$$
\frac{(1+H)^{n+2}}{1+d H}=1+\underbrace{[(n+2)-d] H}_{c_{1}(T M)}+\underbrace{\left[(1-d)^{2}+\frac{1}{2} n(n+3-2 d)\right] H^{2}}_{c_{2}(T M)}+\ldots
$$

Construction of Calabi-Yau n-folds

Let M be a degree $\mathcal{N}=d H$ embedding of M into $H \subset \mathbb{P}^{n+1}$. Then the splitting of the exact sequence

$$
0 \rightarrow T M \rightarrow T \mathbb{P}^{n+1} \rightarrow \mathcal{N} \rightarrow 0
$$

at $T \mathbb{P}^{n+1}$ implies with $c_{1}\left(T P^{n+1}\right)=(1+H)^{n+2}$ and $c_{1}(\mathcal{N})=(1+d H)$ that $\operatorname{ch}(T M)$ equals

$$
\frac{(1+H)^{n+2}}{1+d H}=1+\underbrace{[(n+2)-d] H}_{c_{1}(T M)}+\underbrace{\left[(1-d)^{2}+\frac{1}{2} n(n+3-2 d)\right] H^{2}}_{c_{2}(T M)}+\ldots
$$

- A cubic in \mathbb{P}^{2} an elliptic curve $w y^{2}=4 x^{3}-g_{2}(z) x w^{2}-g_{3}(z) w^{3}$ is complex family with complex modulus z of CY 1-folds.

Construction of Calabi-Yau n-folds

Let M be a degree $\mathcal{N}=d H$ embedding of M into $H \subset \mathbb{P}^{n+1}$. Then the splitting of the exact sequence

$$
0 \rightarrow T M \rightarrow T \mathbb{P}^{n+1} \rightarrow \mathcal{N} \rightarrow 0
$$

at $T \mathbb{P}^{n+1}$ implies with $c_{1}\left(T \mathbb{P}^{n+1}\right)=(1+H)^{n+2}$ and $c_{1}(\mathcal{N})=(1+d H)$ that $\operatorname{ch}(T M)$ equals

$$
\frac{(1+H)^{n+2}}{1+d H}=1+\underbrace{[(n+2)-d] H}_{c_{1}(T M)}+\underbrace{\left[(1-d)^{2}+\frac{1}{2} n(n+3-2 d)\right] H^{2}}_{c_{2}(T M)}+\ldots
$$

- A cubic in \mathbb{P}^{2} an elliptic curve $w y^{2}=4 x^{3}-g_{2}(z) x w^{2}-g_{3}(z) w^{3}$ is complex family with complex modulus z of CY 1-folds.
- A quartic in \mathbb{P}^{3} is a CY 2-fold. Those are called $K 3$-surfaces.

Construction of Calabi-Yau n-folds

Let M be a degree $\mathcal{N}=d H$ embedding of M into $H \subset \mathbb{P}^{n+1}$. Then the splitting of the exact sequence

$$
0 \rightarrow T M \rightarrow T \mathbb{P}^{n+1} \rightarrow \mathcal{N} \rightarrow 0
$$

at $T \mathbb{P}^{n+1}$ implies with $c_{1}\left(T \mathbb{P}^{n+1}\right)=(1+H)^{n+2}$ and $c_{1}(\mathcal{N})=(1+d H)$ that $\operatorname{ch}(T M)$ equals

$$
\frac{(1+H)^{n+2}}{1+d H}=1+\underbrace{[(n+2)-d] H}_{c_{1}(T M)}+\underbrace{\left[(1-d)^{2}+\frac{1}{2} n(n+3-2 d)\right] H^{2}}_{c_{2}(T M)}+\ldots
$$

- A cubic in \mathbb{P}^{2} an elliptic curve $w y^{2}=4 x^{3}-g_{2}(z) x w^{2}-g_{3}(z) w^{3}$ is complex family with complex modulus z of CY 1 -folds.
- A quartic in \mathbb{P}^{3} is a CY 2-fold. Those are called $K 3$-surfaces.
- A quintic $d=5$ in \mathbb{P}^{4} is the simplest CY 3-fold, $\chi=-200$.

Cohomology and deformations of 3-folds

The cohomology
groups of a CY-
3fold:
H^{33}

Cohomology and deformations of 3 -folds

Symmetries for Kähler manifolds:

$$
H^{33} \longleftarrow h^{33}=1 \text { reprs. by } \operatorname{Vol}_{6}(g)
$$

$H^{00} \longleftarrow h^{00}=1 M$ simply connected

Cohomology and deformations of 3 -folds

Symmetries for Kähler manifolds:

Cohomology and deformations of 3 -folds

Special Properties of CY-manifolds:

Cohomology and deformations of 3-folds

CY 3-folds as
$H^{2,1}(M) \underset{\Omega}{\sim} H^{1}(M, T M)$
Kodaira: $H^{1}(M, T M)$
describes first order
complex
structure
deformations

$0 \quad H^{11}$
Tian \& Todorov:
They are globally unobstructed, i.e.
$\operatorname{dim}_{\mathbb{C}}\left(\mathcal{M}_{c s}\right)=h^{21}$
H^{33}
H^{22}
complex deformation families

$$
R_{i j}\left(g+\delta g_{i j}^{c s}\right)=0:
$$

Cohomology and deformations of 3 -folds

CY 3-folds as
Kähler defor-
mation families
H^{33}
$R_{i \bar{\jmath}}\left(g+\delta g_{i \bar{\jmath}}^{K s}\right)=0:$

Cohomology and deformations of 3-folds

CY 3-folds as
Kähler defor-
mation families H^{33}

$$
R_{i \bar{\jmath}}\left(g+\delta g_{i \bar{\jmath}}^{K s}\right)=0:
$$

Cohomology and deformations of 3-folds

Mirror Symmetry exchanges the complex structure deformations and the Kähler deformations of two
CM (M, W)

Construction of mirror pairs

Quintic in $\mathbb{P}^{4}:\left[p_{5}=\sum_{i=0}^{4} x_{i}^{5}-z \prod_{i=0}^{4} x_{i}=0\right]=[5 H] \subset \mathbb{P}^{4}$
Generalisation Batyrev: $(\Delta, \hat{\Delta})$ a pair of reflexive pair of lattice polyhedra, \mathbb{P}_{Δ} the associated toric space and $\left[H_{i}\right]$ its divisors.

Construction of mirror pairs

Quintic in $\mathbb{P}^{4}:\left[p_{5}=\sum_{i=0}^{4} x_{i}^{5}-z \prod_{i=0}^{4} x_{i}=0\right]=[5 H] \subset \mathbb{P}^{4}$
Generalisation Batyrev: $(\Delta, \hat{\Delta})$ a pair of reflexive pair of lattice polyhedra, \mathbb{P}_{Δ} the associated tori space and $\left[H_{i}\right]$ its divisors.

```
M={[\mp@subsup{p}{\hat{\Delta}}{}=0]=
[\mp@subsup{\sum}{i}{}\mp@subsup{H}{i}{\prime}]\subset\mp@subsup{\mathbb{P}}{\Delta}{}}
~
W={[\mp@subsup{p}{\Delta}{}=0]=
[\mp@subsup{\sum}{i}{}\mp@subsup{\hat{H}}{i}{}]\subset\mp@subsup{\mathbb{P}}{\hat{\Delta}}{}}
```


Construction of mirror pairs

Quintic in $\mathbb{P}^{4}:\left[p_{5}=\sum_{i=0}^{4} x_{i}^{5}-z \prod_{i=0}^{4} x_{i}=0\right]=[5 H] \subset \mathbb{P}^{4}$
Generalisation Batyrev: $(\Delta, \hat{\Delta})$ a pair of reflexive pair of lattice polyhedra, \mathbb{P}_{Δ} the associated toric space and $\left[H_{i}\right]$ its divisors.

Construction of mirror pairs

Quintic in $\mathbb{P}^{4}:\left[p_{5}=\sum_{i=0}^{4} x_{i}^{5}-z \prod_{i=0}^{4} x_{i}=0\right]=[5 H] \subset \mathbb{P}^{4}$
Generalisation Batyrev: $(\Delta, \hat{\Delta})$ a pair of reflexive pair of lattice polyhedra, \mathbb{P}_{Δ} the associated toric space and $\left[H_{i}\right]$ its divisors.

The special role of CY 3-folds in String Theory

Super string theory is defined by the $X: \Sigma_{g} \rightarrow \mathcal{C}_{\beta} \subset$ space-time, weighted by an action S that is a super symmetric extension of the area of \mathcal{C}_{β}.

The first quantised theory is defined by a variational integral. E.g for the partition function

The special role of CY 3-folds in String Theory

Super string theory is defined by the $X: \Sigma_{g} \rightarrow \mathcal{C}_{\beta} \subset$ space-time, weighted by an action S that is a super symmetric extension of the area of \mathcal{C}_{β}.

The first quantised theory is defined by a variational integral. E.g for the partition function

$$
Z(g, b, \phi)=\int \mathcal{D} X \mathcal{D} h \mathcal{D} \psi_{\text {ferm }} e^{\frac{i}{\hbar} S\left(X, h, \psi_{\text {ferm }}, g, b, \phi\right)}
$$

The special role of CY 3-folds in String Theory

Super string theory is defined by the $X: \Sigma_{g} \rightarrow \mathcal{C}_{\beta} \subset$ space-time, weighted by an action S that is a super symmetric extension of the area of \mathcal{C}_{β}.

The first quantised theory is defined by a variational integral. E.g for the partition function

$$
\underset{\substack{\kappa \uparrow \lambda \\ \text { Background fields } \\ Z(g, b, \phi)}}{\int} \mathcal{D} X \mathcal{D} h \mathcal{D} \psi_{\text {ferm }} e^{\substack{\frac{i}{\hbar} S\left(X, h, \psi_{\text {ferm }}, g, b, \phi\right)}} \overbrace{\text { Neveu-Schwarz b-field }}
$$

The special role of CY 3-folds in String Theory

Super string theory is defined by the $X: \Sigma_{g} \rightarrow \mathcal{C}_{\beta} \subset$ space-time, weighted by an action S that is a super symmetric extension of the area of \mathcal{C}_{β}.

The first quantised theory is defined by a variational integral. E.g for the partition function

Map into space-time World sheet-metric $Z(g, b, \phi)=\int \mathcal{D} X \mathcal{D} h \mathscr{\mathcal { D } \psi _ { \text { ferm } } e ^ { \frac { i } { \hbar } S (X , h , \psi _ { \text { ferm } } , g , b , \phi) } .}$ fermionic integration simplifies things

The special role of CY 3-folds in String Theory

Super string theory is defined by the $X: \Sigma_{g} \rightarrow \mathcal{C}_{\beta} \subset$ space-time, weighted by an action S that is a super symmetric extension of the area of \mathcal{C}_{β}.

The first quantised theory is defined by a variational integral. E.g for the partition function

Map into space-time World sheet-metric fermionic integration simplifies things

Superstring string theory is Weyl invariant in ten dimensions:

$$
\int \mathcal{D} h \rightarrow \sum_{g=0}^{\infty} \int_{\mathcal{M}_{\Sigma_{g}}} \mu_{3 g-3},
$$

Functional integral \rightarrow discrete sum over finite dim. int. in 10d.

The special role of CY 3-folds in String Theory

- Compact part of space time M has to be $\operatorname{dim}_{\mathbb{C}}(M)=3$.

The special role of CY 3-folds in String Theory

- Compact part of space time M has to be $\operatorname{dim}_{\mathbb{C}}(M)=3$.
- M a CY-fold leads to an extended $(2,2)$ world-sheet SCFT.
$(2,2)$ world-sheet super symmetry has four nilpotent ops:

$$
\left(Q_{ \pm}\right)^{2},\left(\bar{Q}_{ \pm}\right)^{2}=0
$$

The special role of CY 3-folds in String Theory

- Compact part of space time M has to be $\operatorname{dim}_{\mathbb{C}}(M)=3$.
- M a CY-fold leads to an extended $(2,2)$ world-sheet SCFT.
$(2,2)$ world-sheet super symmetry has four nilpotent ops:

$$
\left(Q_{ \pm}\right)^{2},\left(\bar{Q}_{ \pm}\right)^{2}=0
$$

A-Twist $Q_{A}=Q_{-}+\bar{Q}_{+}$

Topological A model:
$\left(Q_{A}\right)^{2}=0$ yields coho-
mological Top.Th. depending only on Kähler structure

The special role of CY 3-folds in String Theory

- Compact part of space time M has to be $\operatorname{dim}_{\mathbb{C}}(M)=3$.
- M a CY-fold leads to an extended $(2,2)$ world-sheet SCFT.
$(2,2)$ world-sheet super symmetry has four nilpotent ops:

$$
\left(Q_{ \pm}\right)^{2},\left(\bar{Q}_{ \pm}\right)^{2}=0
$$

A-Twist $Q_{A}=Q_{-}+\bar{Q}_{+}$
Topological A model:
$\left(Q_{A}\right)^{2}=0$ yields cohomological Top.Th. depending only on Kähler structure
B-Twist $Q_{B}=\bar{Q}_{-}+\bar{Q}_{+}$

Topological B model: $\left(Q_{B}\right)^{2}=0$ yields cohomological Top. Th. depending only on complex structure

The special role of CY 3-folds in String Theory

- Compact part of space time M has to be $\operatorname{dim}_{\mathbb{C}}(M)=3$.
- M a CY-fold leads to an extended $(2,2)$ world-sheet SCFT.
$(2,2)$ world-sheet super symmetry has four nilpotent ops:

The topological A-model

In the A model terms depending on the complex structure are Q_{A} exact and the variational integral localizes to the bi-holmorphic maps depending only on the Kähler structure

$$
Z=\int \mathcal{D} h \mathcal{D} \times \mathcal{D} \psi e^{\frac{i}{\hbar} S} \rightarrow \sum_{g=0}^{\infty} \sum_{\beta \in H_{2}(M, \mathbb{Z})} g_{s}^{2 g-2} Q^{\beta} \int_{\overline{\mathcal{M}}_{g(M, \beta)}} \mathbb{1},
$$

$Q=e^{2 \pi i \int_{\mathcal{C}_{\beta}} i \omega+b}=e^{t \cdot \beta}$ and also in full string theory these maps are stationary "points" of the action! World-Sheet instantons

The topological A-model

In the A model terms depending on the complex structure are Q_{A} exact and the variational integral localizes to the bi-holmorphic maps depending only on the Kähler structure

$$
Z=\int \mathcal{D} h \mathcal{D} \times \mathcal{D} \psi e^{\frac{i}{\hbar} S} \rightarrow \sum_{g=0}^{\infty} \sum_{\beta \in H_{2}(M, \mathbb{Z})} g_{s}^{2 g-2} Q^{\beta} \int_{\overline{\mathcal{M}}_{g(M, \beta)}} \mathbb{1},
$$

$Q=e^{2 \pi i \int_{\mathcal{C}_{\beta}} i \omega+b}=e^{t \cdot \beta}$ and also in full string theory these maps are stationary "points" of the action! World-Sheet instantons

$$
\mathcal{F}\left(g_{s}, Q\right)=\log (Z)=\sum_{g=0}^{\infty} \sum_{\beta \in H_{2}(M, \mathbb{Z})} g_{s}^{2 g-2} Q^{\beta} r_{g}^{\beta}=: \sum_{g=0}^{\infty} g_{s}^{2 g-2} \mathcal{F}_{g}(Q)
$$

The topological A-model

In the A model terms depending on the complex structure are Q_{A} exact and the variational integral localizes to the bi-holmorphic maps depending only on the Kähler structure

$$
Z=\int \mathcal{D} h \mathcal{D} \times \mathcal{D} \psi e^{\frac{i}{\hbar} S} \rightarrow \sum_{g=0}^{\infty} \sum_{\beta \in H_{2}(M, \mathbb{Z})} g_{s}^{2 g-2} Q^{\beta} \int_{\overline{\mathcal{M}}_{g(M, \beta)}} \mathbb{1},
$$

$Q=e^{2 \pi i \int_{\mathcal{C}_{\beta}} i \omega+b}=e^{t \cdot \beta}$ and also in full string theory these maps are stationary "points" of the action! World-Sheet instantons

$$
\mathcal{F}\left(g_{s}, Q\right)=\log (Z)=\sum_{g=0}^{\infty} \sum_{\beta \in H_{2}(M, \mathbb{Z})} g_{s}^{2 g-2} Q^{\beta+\beta} r_{g}^{\beta}=: \sum_{g=0}^{\infty} g_{s}^{2 g-2} \mathcal{F}_{g}(Q)
$$

The topological A-model

In the A model terms depending on the complex structure are Q_{A} exact and the variational integral localizes to the bi-holmorphic maps depending only on the Kähler structure

$$
Z=\int \mathcal{D} h \mathcal{D} \times \mathcal{D} \psi e^{\frac{i}{\hbar} S} \rightarrow \sum_{g=0}^{\infty} \sum_{\beta \in H_{2}(M, \mathbb{Z})} g_{s}^{2 g-2} Q^{\beta} \int_{\overline{\mathcal{M}}_{g(M, \beta)}} \mathbb{1},
$$

$Q=e^{2 \pi i \int_{\mathcal{C}_{\beta}} i \omega+b}=e^{t \cdot \beta}$ and also in full string theory these maps are stationary "points" of the action! World-Sheet instantons

$$
\left.\begin{array}{l}
\mathcal{F}\left(g_{s}, Q\right)=\log (Z)=\sum_{g=0}^{\infty} \sum_{\beta \in H_{2}(M, \mathbb{Z})} g_{s}^{2 g-2} Q^{\beta \not \psi_{g}} \in \mathbb{Q} \text { the Gromov-Witten invariants } \\
\mathcal{F}\left(g_{s}, Q\right) g_{s}^{2 g-2} \mathcal{F}_{g}(Q) \\
\lambda^{2}
\end{array}\right)=l(t)+\sum_{g=0}^{\infty} \sum_{\beta \in H_{2}(M, \mathbb{Z})} \sum_{m=1}^{\infty} \frac{n_{g}^{\beta}}{m}\left(2 \sin \frac{m g_{s}}{2}\right)^{2 g-2} Q^{\beta m} .
$$

The topological A-model

In the A model terms depending on the complex structure are Q_{A} exact and the variational integral localizes to the bi-holmorphic maps depending only on the Kähler structure

$$
Z=\int \mathcal{D} h \mathcal{D} \times \mathcal{D} \psi e^{\frac{i}{\hbar} S} \rightarrow \sum_{g=0}^{\infty} \sum_{\beta \in H_{2}(M, \mathbb{Z})} g_{s}^{2 g-2} Q^{\beta} \int_{\overline{\mathcal{M}}_{g(M, \beta)}} \mathbb{1},
$$

$Q=e^{2 \pi i \int_{\mathcal{C}_{\beta}} i \omega+b}=e^{t \cdot \beta}$ and also in full string theory these maps are stationary "points" of the action! World-Sheet instantons

$$
\mathcal{F}\left(g_{s}, Q\right)=\log (Z)=\sum_{g=0}^{\infty} \sum_{\beta \in H_{2}(M, \mathbb{Z})} g_{s}^{r_{g}^{\beta} \in \mathbb{Q} \text { the Gromov-Witten invariants }} Q^{\beta \psi_{g} \beta}=: \sum_{g=0}^{\infty} g_{s}^{2 g-2} \mathcal{F}_{g}(Q)
$$

$n_{g}^{\beta} \in \mathbb{Z}$ the BPS indices or Pandharipande Thomas invariants

$$
\mathcal{F}\left(g_{s}, Q\right)=\frac{c(t)}{\lambda^{2}}+I(t)+\sum_{g=0}^{\infty} \sum_{\beta \in H_{2}(M, \mathbb{Z})} \sum_{m=1}^{\infty>n_{g}^{\beta}} \frac{m}{m}\left(2 \sin \frac{m g_{s}}{2}\right)^{2 g-2} Q^{\beta m}
$$

B-model approach via periods

- In the B model terms depending on the Kähler structure are Q_{B} exact and the variational integral localizes to constant maps albeit with a nontrivial measure depending on the complex structure.

B-model approach via periods

- In the B model terms depending on the Kähler structure are Q_{B} exact and the variational integral localizes to constant maps albeit with a nontrivial measure depending on the complex structure.
- Physics suggest that the full string theory on M and W are exactly dual, i.e. the correlations functions are the same after a suitable identification of the operators.

B-model approach via periods

- In the B model terms depending on the Kähler structure are Q_{B} exact and the variational integral localizes to constant maps albeit with a nontrivial measure depending on the complex structure.
- Physics suggest that the full string theory on M and W are exactly dual, i.e. the correlations functions are the same after a suitable identification of the operators.

$$
\left\langle\mathcal{O}_{i}^{(0)} \mathcal{O}_{j}^{(0)} \mathcal{O}_{k}^{(0)}\right\rangle_{g=0}=\int_{W} \Omega(z) \partial_{z_{i}} \partial_{z_{j}} \partial_{z_{k}} \Omega(z)=\partial_{t_{i}} \partial_{t_{j}} \partial_{t_{k}} \mathcal{F}_{0}(t)
$$

B-model approach via periods

- In the B model terms depending on the Kähler structure are Q_{B} exact and the variational integral localizes to constant maps albeit with a nontrivial measure depending on the complex structure.
- Physics suggest that the full string theory on M and W are exactly dual, i.e. the correlations functions are the same after a suitable identification of the operators.

$$
\begin{array}{cll}
\left\langle\mathcal{O}_{i}^{(0)} \mathcal{O}_{j}^{(0)} \mathcal{O}_{k}^{(0)}\right\rangle_{g=0}= & \int_{W} \Omega(z) \partial_{z_{i}} \partial_{z_{j}} \partial_{z_{k}} \Omega(z)=\partial_{t_{i}} \partial_{t_{j}} \partial_{t_{k}} \mathcal{F}_{0}(t) \\
\text { By descend rel. } & \uparrow & \text { 2. } t(z) \text { Mirror map } \\
\text { to marginal ops. } & \text { 1. Can be calcu- } \begin{array}{l}
\text { can be specified only }
\end{array} \\
\begin{array}{ll}
\text { parametrising } & \text { lated by periods } \\
\text { compl. structure } & \\
\text { for }-\operatorname{Re}\left(t_{k}\right) \sim V_{k} \rightarrow \\
\text { def. } & \infty
\end{array}
\end{array}
$$

Periods on Calabi-Yau n-folds

Add 1 : Periods are integrals

$$
\Pi_{i j}(\underline{z})=\int_{\lambda_{i}} \wedge^{j}(\underline{z})
$$

that define a pairing between between homology and cohomology (n odd) well defined by the theorem of Stokes:

$$
\Pi: H_{n}\left(M_{n}, \mathbb{Z}\right) \times H^{n}\left(M_{n}, \mathbb{C}\right) \rightarrow \mathbb{C}
$$

Periods on Calabi-Yau n-folds

Add 1 : Periods are integrals

$$
\Pi_{i j}(\underline{z})=\int_{\lambda_{i}} \wedge^{j}(\underline{z})
$$

that define a pairing between between homology and cohomology (n odd) well defined by the theorem of Stokes:

$$
\Pi: H_{n}\left(M_{n}, \mathbb{Z}\right) \times H^{n}\left(M_{n}, \mathbb{C}\right) \rightarrow \mathbb{C}
$$

Chose a symplectic basis

$$
\left\{A^{\prime}, B_{J}\right\}=\underline{\lambda}, A^{\prime} \cap B_{I}=\delta_{J}^{\prime}
$$

rest zero

Periods on Calabi-Yau n-folds

Add 1 : Periods are integrals

$$
\Pi_{i j}(\underline{z})=\int_{\lambda_{i}} \Lambda^{j}(\underline{z})
$$

that define a pairing between between homology and cohomology (n odd) well defined by the theorem of Stokes:

$$
\Pi: H_{n}\left(M_{n}, \mathbb{Z}\right) \times H^{n}\left(M_{n}, \mathbb{C}\right) \rightarrow \mathbb{C} .
$$

Chose a symplectic basis $\left\{A^{\prime}, B_{J}\right\}=\underline{\lambda}, A^{\prime} \cap B_{I}=\delta_{J}^{\prime}$ rest zero

Chose a symplectic basis
$\left\{\alpha_{I}, \beta^{J}\right\}=\underline{\Lambda}, \int_{M} \alpha_{I} \wedge \beta^{J}=\delta_{I}^{J}$
rest zero

Periods on Calabi-Yau n-folds

Add 1 : Periods are integrals

$$
\Pi_{i j}(\underline{z})=\int_{\lambda_{i}} \wedge^{j}(\underline{z})
$$

that define a pairing between between homology and cohomology (n odd) well defined by the theorem of Stokes:

$$
\Pi: H_{n}\left(M_{n}, \mathbb{Z}\right) \times H^{n}\left(M_{n}, \mathbb{C}\right) \rightarrow \mathbb{C}
$$

$\underline{\lambda}$ is topol. and so is Λ via $\int_{A^{\prime}} \alpha_{J}=\int_{B_{J}} \beta^{\prime}=\delta_{J}^{\prime}$. A basis moving with the comp. str. in $\underline{\Lambda}$ are the meromorphic forms $\Omega(z), \partial_{z} \Omega(z), \ldots$.

Periods on Calabi-Yau n-folds

Add 1 : Periods are integrals

$$
\Pi_{i j}(\underline{z})=\int_{\lambda_{i}} \wedge^{j}(\underline{z})
$$

that define a pairing between between homology and cohomology (n odd) well defined by the theorem of Stokes:

$$
\Pi: H_{n}\left(M_{n}, \mathbb{Z}\right) \times H^{n}\left(M_{n}, \mathbb{C}\right) \rightarrow \mathbb{C}
$$

Calabi-Yau 1-fold

$$
p_{3}=w y^{2}-4 x^{3}-g_{2}(z) x w^{2}-g_{3}(z) w^{3}=0 \subset \mathbb{P}^{2}
$$

Periods on Calabi-Yau n-folds

Add 1 : Periods are integrals

$$
\Pi_{i j}(\underline{z})=\int_{\lambda_{i}} \wedge^{j}(\underline{z})
$$

that define a pairing between between homology and cohomology (n odd) well defined by the theorem of Stokes:

$$
\Pi: H_{n}\left(M_{n}, \mathbb{Z}\right) \times H^{n}\left(M_{n}, \mathbb{C}\right) \rightarrow \mathbb{C}
$$

Calabi-Yau 1-fold

$$
p_{3}=w y^{2}-4 x^{3}-g_{2}(z) x w^{2}-g_{3}(z) w^{3}=0 \subset \mathbb{P}^{2}
$$

$$
\Omega(z)=\oint \frac{2 d x \wedge d y}{p_{3}}=\frac{d x}{y}, \partial_{z} \Omega(z) \sim \frac{x d x}{y}
$$

Periods on Calabi-Yau n-folds

Add 1 : Periods are integrals

$$
\Pi_{i j}(\underline{z})=\int_{\lambda_{i}} \wedge^{j}(\underline{z})
$$

that define a pairing between between homology and cohomology (n odd) well defined by the theorem of Stokes:

$$
\Pi: H_{n}\left(M_{n}, \mathbb{Z}\right) \times H^{n}\left(M_{n}, \mathbb{C}\right) \rightarrow \mathbb{C} .
$$

Calabi-Yau 1-fold

$$
\begin{gathered}
p_{3}=w y^{2}-4 x^{3}-g_{2}(z) x w^{2}-g_{3}(z) w^{3}=0 \subset \mathbb{P}^{2} \\
\Omega(z)=\oint \frac{2 d x \wedge d y}{p_{3}}=\frac{d x}{y}, \partial_{z} \Omega(z) \sim \frac{x d x}{y} \\
E_{1}(z)=\oint_{A} \Omega, E_{2}(z)=\oint_{B} \Omega \quad \text { Elliptic integrals. }
\end{gathered}
$$

A

Periods on Calabi-Yau n-folds

Add 1 : Periods are integrals

$$
\Pi_{i j}(\underline{z})=\int_{\lambda_{i}} \wedge^{j}(\underline{z})
$$

that define a pairing between between homology and cohomology (n odd) well defined by the theorem of Stokes:

$$
\Pi: H_{n}\left(M_{n}, \mathbb{Z}\right) \times H^{n}\left(M_{n}, \mathbb{C}\right) \rightarrow \mathbb{C}
$$

Calabi-Yau 1-fold

$$
\begin{gathered}
p_{3}=w y^{2}-4 x^{3}-g_{2}(z) x w^{2}-g_{3}(z) w^{3}=0 \subset \mathbb{P}^{2} \\
\Omega(z)=\oint \frac{2 d x \wedge d y}{p_{3}}=\frac{d x}{y}, \partial_{z} \Omega(z) \sim \frac{x d x}{y} \\
E_{1}(z)=\oint_{A} \Omega, E_{2}(z)=\oint_{B} \Omega \quad \text { Elliptic integrals. }
\end{gathered}
$$

Well studied in part because they solve Keplers problem

Periods on Calabi-Yau n-folds

Add 1 : Periods are integrals

$$
\Pi_{i j}(\underline{z})=\int_{\lambda_{i}} \wedge^{j}(\underline{z})
$$

that define a pairing between between homology and cohomology (n odd) well defined by the theorem of Stokes:

$$
\Pi: H_{n}\left(M_{n}, \mathbb{Z}\right) \times H^{n}\left(M_{n}, \mathbb{C}\right) \rightarrow \mathbb{C}
$$

Calabi-Yau 1-fold

$$
\begin{gathered}
p_{3}=w y^{2}-4 x^{3}-g_{2}(z) x w^{2}-g_{3}(z) w^{3}=0 \subset \mathbb{P}^{2} \\
\Omega(z)=\oint \frac{2 d x \wedge d y}{p_{3}}=\frac{d x}{y}, \partial_{z} \Omega(z) \sim \frac{x d x}{y} \\
E_{1}(z)=\oint_{A} \Omega, E_{2}(z)=\oint_{B} \Omega \quad \text { Elliptic integrals. }
\end{gathered}
$$

A

Well studied in part because they solve Keplers problem
Fullfill linear diff eq. of 2cd order. Picard(1891)-Fuchs(1881) eq.

Period geometry on CY n-fold

The main constraints which govern the period geometry of CY-folds are the Riemann bilinear relations

$$
\begin{equation*}
e^{-K}=i^{n^{2}} \int_{M_{n}} \Omega \wedge \bar{\Omega}>0 \tag{1}
\end{equation*}
$$

defining the real positive exponential of the Kähler potential $K(z)$ for the Weil-Peterssen metric $G_{i \bar{\jmath}}=\partial_{z_{i}} \bar{\partial}_{\overline{z_{\bar{\jmath}}}} K(z)$ on $\mathcal{M}_{c s}\left(M_{n}\right)$.

Period geometry on CY n-fold

The main constraints which govern the period geometry of CY-folds are the Riemann bilinear relations

$$
\begin{equation*}
e^{-K}=i^{n^{2}} \int_{M_{n}} \Omega \wedge \bar{\Omega}>0 \tag{1}
\end{equation*}
$$

defining the real positive exponential of the Kähler potential $K(z)$ for the Weil-Peterssen metric $G_{i \bar{j}}=\partial_{z_{i}} \bar{\partial}_{\bar{z}_{\bar{j}}} K(z)$ on $\mathcal{M}_{c s}\left(M_{n}\right)$. As well as from relations on holomorphic bilinears and their derivatives that follow from Griffiths transversality

$$
\int_{M_{n}} \Omega \wedge \underline{\partial}_{l_{k}}^{k} \Omega=\left\{\begin{array}{cl}
0 & \text { if } k<n \tag{2}\\
C_{l_{n}}(z) & \text { if } k=n
\end{array}\right.
$$

Here $\underline{\partial}_{l_{k}}^{k} \Omega=\partial_{z_{l_{1}}} \ldots \partial_{z_{l_{k}}} \Omega \in F^{n-k}:=\bigoplus_{p=0}^{k} H^{n-p, p}(W)$ are arbitrary combinations of derivatives w.r.t. to the $z_{i}, i=1, \ldots, r$.

Period geometry on CY n-fold

The $C_{I_{n}}(z)$ are rational functions labelled by I_{n} up to permutations. The differential ideals $\mathcal{L} \vec{\Pi}=0$ also determine the $C_{I_{n}}(z)$ up to a multiplicative normalisation

Period geometry on CY n-fold

The $C_{I_{n}}(z)$ are rational functions labelled by I_{n} up to permutations. The differential ideals $\mathcal{L} \vec{\Pi}=0$ also determine the $C_{I_{n}}(z)$ up to a multiplicative normalisation
Remark 1:W.r.t the Hodge decomposition the pairings (1) and (2) have the property that if $\alpha_{m, n} \in H^{m, n}\left(M_{n}\right)$ and $\beta_{p, q} \in H^{r, s}\left(M_{n}\right)$ then $\int_{W} \alpha_{m, n} \wedge \beta_{p, q}=0$ unless $m+p=n+q=3$.

Period geometry on CY n-fold

The $C_{I_{n}}(z)$ are rational functions labelled by I_{n} up to permutations. The differential ideals $\mathcal{L} \vec{\Pi}=0$ also determine the $C_{I_{n}}(z)$ up to a multiplicative normalisation
Remark 1:W.r.t the Hodge decomposition the pairings (1) and (2) have the property that if $\alpha_{m, n} \in H^{m, n}\left(M_{n}\right)$ and $\beta_{p, q} \in H^{r, s}\left(M_{n}\right)$ then $\int_{W} \alpha_{m, n} \wedge \beta_{p, q}=0$ unless $m+p=n+q=3$.
Remark 2: In terms of a basis of periods compatible with Σ they can be written as

$$
\int_{M_{n}} \Omega \wedge \bar{\Omega}=\vec{\Pi}^{\dagger} \Sigma \vec{\Pi}, \quad \int_{M_{n}} \Omega \wedge \underline{\partial}_{l_{k}}^{k} \Omega=-\vec{\Pi}^{T} \Sigma \underline{\partial}_{l_{k}}^{k} \vec{\Pi}
$$

Periods on 3-folds

Consider the mirror quintic W

$$
\hat{p}_{5}=\sum_{i=0}^{4} x_{k}^{5}-5 z^{-\frac{1}{5}} \prod_{k=0}^{4} z_{i}=0 \subset \hat{\mathbb{P}}^{4}
$$

Periods on 3-folds

Consider the mirror quintic W

$$
\hat{p}_{5}=\sum_{i=0}^{4} x_{k}^{5}-5 z^{-\frac{1}{5}} \prod_{k=0}^{4} z_{i}=0 \subset \hat{\mathbb{P}}^{4}
$$

Hodge diamond of
elliptic curve

1	1				0		101		0	
1	1	\longrightarrow	1		1		1		1	

Periods on 3-folds

Consider the mirror quintic W

$$
\hat{p}_{5}=\sum_{i=0}^{4} x_{k}^{5}-5 z^{-\frac{1}{5}} \prod_{k=0}^{4} z_{i}=0 \subset \hat{\mathbb{P}}^{4}
$$

Hodge diamond of
elliptic curve
$\left.\begin{array}{ccccccc} & & & & & & \text { Hodge } \\ & & 0 & 0 & 1 & 0 & \\ \longrightarrow & 1 & 0 & 1 & 101 & & 0\end{array}\right)$

The period vector $\Pi(z)=\left(\int_{A^{0}} \Omega, \int_{A^{1}} \Omega(z), \int_{B^{0}} \Omega(z), \int_{B^{1}} \Omega(z)\right)^{T}$ fullfils a 4th order Picard-Fuchs diff. eq. $(\theta=z d / d z)$

Periods on 3-folds

Consider the mirror quintic W

$$
\hat{p}_{5}=\sum_{i=0}^{4} x_{k}^{5}-5 z^{-\frac{1}{5}} \prod_{k=0}^{4} z_{i}=0 \subset \hat{\mathbb{P}}^{4}
$$

Hodge diamond of
elliptic curve
$\left.\begin{array}{ccccccc} & & & & & \text { Hodge } \\ & & 0 & 0 & 1 & 0 & \\ \longrightarrow & 1 & & 1 & 101 & & 0\end{array}\right)$

The period vector $\Pi(z)=\left(\int_{A^{0}} \Omega, \int_{A^{1}} \Omega(z), \int_{B^{0}} \Omega(z), \int_{B^{1}} \Omega(z)\right)^{T}$ fullfils a 4th order Picard-Fuchs diff. eq. $(\theta=z d / d z)$

$$
\left[\theta^{4}-5 z(5 \theta+1)(5 \theta+2)(5 \theta+3)(5 \theta+4)\right] \Pi(z)=0
$$

Periods on 3-folds

Local \rightarrow global: How to find the periods over cycles in $H_{3}(W, \mathbb{Z})$?
Find the basis in which mondromies $\Pi \mapsto M_{*} \Pi$ around the singular points $*$ are in $\operatorname{Sp}(4, \mathbb{Z})$

Periods on 3-folds

Local \rightarrow global: How to find the periods over cycles in $H_{3}(W, \mathbb{Z})$?
Find the basis in which mondromies $\Pi \mapsto M_{*} \Pi$ around the singular points $*$ are in $\operatorname{Sp}(4, \mathbb{Z})$

$$
\mathcal{P}\left\{\begin{array}{cccc}
0 & 5^{-5} & \infty & * \\
0 & 0 & \frac{1}{5} & \\
0 & 1 & \frac{2}{5} & z \\
0 & 2 & \frac{3}{5} & \\
0 & 1 & \frac{4}{5} &
\end{array}\right\}
$$

Periods on 3-folds

Local \rightarrow global: How to find the periods over cycles in $H_{3}(W, \mathbb{Z})$? Find the basis in which mondromies $\Pi \mapsto M_{*} \Pi$ around the singular points $*$ are in $\operatorname{Sp}(4, \mathbb{Z})$

$$
\mathcal{P}\left\{\begin{array}{cccc}
0 & 5^{-5} & \infty & * \\
0 & 0 & \frac{1}{5} & \\
0 & 1 & \frac{2}{5} & z \\
0 & 2 & \frac{3}{5} & \\
0 & 1 & \frac{4}{5} &
\end{array}\right\}
$$

Periods on 3-folds

Local \rightarrow global: How to find the periods over cycles in $H_{3}(W, \mathbb{Z})$? Find the basis in which mondromies $\Pi \mapsto M_{*} \Pi$ around the singular points * are in $\operatorname{Sp}(4, \mathbb{Z})$

$$
\mathcal{P}\left\{\begin{array}{cccc}
0 & 5^{-5} & \infty & * \\
0 & 0 & \frac{1}{5} & \\
0 & 1 & \frac{2}{5} & z \\
0 & 2 & \frac{3}{5} & \\
0 & 1 & \frac{4}{5} &
\end{array}\right\}
$$

Periods on 3-folds

Special geometry Bryant and Griffiths '83 implies that the periods can be expressed by a prepotential \mathcal{F}

Periods on 3-folds

Special geometry Bryant and Griffiths '83 implies that the periods can be expressed by a prepotential \mathcal{F}
$\left(\begin{array}{c}\int_{B_{0}} \Omega \\ \int_{B_{1}} \Omega \\ \int_{A_{0}} \Omega \\ \int_{A_{1}} \Omega\end{array}\right)=\left(\begin{array}{c}F_{0} \\ F_{1} \\ X^{0} \\ X^{1}\end{array}\right)=X^{0}\left(\begin{array}{c}2 \mathcal{F}_{0}-t \partial_{t} \mathcal{F}_{0} \\ \partial_{t} \mathcal{F}_{0} \\ 1 \\ t\end{array}\right)=$ double logarithmic solution

Periods on 3-folds

Special geometry Bryant and Griffiths '83 implies that the periods can be expressed by a prepotential \mathcal{F}

$$
\left(\begin{array}{c}
\int_{B_{0}} \Omega \\
\int_{B_{1}} \Omega \\
\int_{A_{0}} \Omega \\
\int_{A_{1}} \Omega
\end{array}\right)=\left(\begin{array}{c}
F_{0} \\
F_{1} \\
X^{0} \\
X^{1}
\end{array}\right)=X^{0}\left(\begin{array}{c}
2 \mathcal{F}_{0}-t \partial_{t} \mathcal{F}_{0} \\
\partial_{t} \mathcal{F}_{0} \\
1 \\
t
\end{array}\right): \text { driple logaraithmic solution }
$$

and Candelas et al '91 identified near the MUM point $z=0$

$$
\mathcal{F}(z) \equiv \mathcal{F}_{0}(t(z)), \quad t=\frac{X^{1}}{X^{0}}=\log (z)+\mathcal{O}(z)
$$

Periods on 3-folds

Special geometry Bryant and Griffiths '83 implies that the periods can be expressed by a prepotential \mathcal{F}

$$
\left(\begin{array}{c}
\int_{B_{0}} \Omega \\
\int_{B_{1}} \Omega \\
\int_{A_{0}} \Omega \\
\int_{A_{1}} \Omega
\end{array}\right)=\left(\begin{array}{c}
F_{0} \\
F_{1} \\
X^{0} \\
X^{1}
\end{array}\right)=X^{0}\left(\begin{array}{c}
2 \mathcal{F}_{0}-t \partial_{t} \mathcal{F}_{0} \\
\partial_{t} \mathcal{F}_{0} \\
1 \\
t
\end{array}\right) \longleftarrow \text { double logarithmic solution }
$$

and Candelas et al '91 identified near the MUM point $z=0$

$$
\mathcal{F}(z) \equiv \mathcal{F}_{0}(t(z)), \quad t=\frac{X^{1}}{X^{0}}=\log (z)+\mathcal{O}(z)
$$

Hosono et. al '93 generalised to multiparameter CY and related the classical terms to the CTC Wall data $\kappa=D^{3}, \sigma=(\kappa \bmod 2) / 2$ in

$$
\mathcal{F}=-\frac{\kappa}{6} t^{3}+\frac{\sigma}{2} t^{2}+\frac{c_{2} \cdot D}{24} t+\frac{\chi(M)}{2} \frac{\zeta(3)}{(2 \pi i)^{3}}-\frac{1}{(2 \pi i)^{3}} \sum_{\substack{\beta \in H_{2}(M, \text { Z }) \\ \beta \neq \neq 0}} n_{0}^{\beta} \operatorname{Li}_{3}\left(Q^{\beta}\right) .
$$

Mirror symmetry predictions for the quintic

g	$\mathrm{d}=1$	$\mathrm{~d}=2$	$\mathrm{~d}=3$	$\mathrm{~d}=4$	$\mathrm{~d}=5$	\ldots
0	2875	609250	317206375	242467530000	229305888887625	
1	0	0	609250	3721431625	12129909700200	
2	0	0	0	534750	75478987900	
3	0	0	0	8625	-15663750	
4	0	0	0	0	49250	
5	0	0	0	0	1100	
6	0	0	0	0	10	
\vdots						
80						

Mirror symmetry predictions for the quintic

H. Schubert 1874

g	$d=1$	$d=2$	$d=3$	$d=4$	$d=5$
0	2875	609250	317206375	242467530000	229305888887625
1	0	0	609250	3721431625	12129909700200
2	0	0	0	534750	75478987900
3	0	0	0	8625	-15663750
4	0	0	0	0	49250
5	0	0	0	0	1100
6	0	0	0	0	10
\vdots					
80					

Mirror symmetry predictions for the quintic

H. Schubert 1874 S. Katz 1986 finite ≤ 7

g	$\mathrm{d}=1$	$\mathrm{~d}=2$		$\mathrm{~d}=3$	$\mathrm{~d}=4$	$\mathrm{~d}=5$
0	2875	609250	317206375	242467530000	229305888887625	
1	0	0	609250	3721431625	12129909700200	
2	0	0	0	534750	75478987900	
3	0	0	0	8625	-15663750	
4	0	0	0	0	49250	
5	0	0	0	0	1100	
6	0	0	0	0	10	
\vdots						
80						

Mirror symmetry predictions for the quintic

Mirror symmetry predictions for the quintic

H. Schubert 1874					
			Ellingsrud	trømme 1995	
g	$\mathrm{d}=1$	$\mathrm{d}=2$	$d=3$	$\mathrm{d}=4$	$\mathrm{d}=5$
0	2875	609250	317206375	242467530000	229305888887625
1	0	0	609250	3721431625	12129909700200
2	0	0	0	534750	75478987900
3	0	0	0	8625	-15663750
4	0	0	0	0	49250
5	0	0	0	0	1100
6	0	0	0	0	10
:					

Candelas \& al. $1991 g=0$ all d, Berschadsky \& al $1993 g=1$ all $d ; 1994$ $g \leq 3$ all d, Huang \& al 2006, $g \leq 51$ all d, Mathematical proofs, Kontsevich $1995 \mathrm{~g}=0$ few degrees, Lian \& Liu \& Yau 1997 Givental $1998 \mathrm{~g}=0$ all d; $g=1$ and all d Aleksey Zinger 2009,

Mirror symmetry predictions for the quintic

H. Schubert 1874					
			Ellingsrud	trømme 1995	
g	$\mathrm{d}=1$	$\mathrm{d}=2$	$d=3$	$\mathrm{d}=4$	$\mathrm{d}=5$
0	2875	609250	317206375	242467530000	229305888887625
1	0	0	609250	3721431625	12129909700200
2	0	0	0	534750	75478987900
3	0	0	0	8625	-15663750
4	0	0	0	0	49250
5	0	0	0	0	1100
6	0	0	0	0	10
:					

Candelas \& al. $1991 g=0$ all d, Berschadsky \& al $1993 g=1$ all $d ; 1994$ $g \leq 3$ all d, Huang \& al 2006, $g \leq 51$ all d, Mathematical proofs, Kontsevich $1995 \mathrm{~g}=0$ few degrees, Lian \& Liu \& Yau 1997 Givental $1998 \mathrm{~g}=0$ all d; $g=1$ and all d Aleksey Zinger 2009, 2023 Liu \& Ruan proved Castenuovo bound for the Quintic,...

Mirror symmetry predictions for the quintic

bert 1874 S. Katz 1986 finite ≤ 7					
			Ellingsrud	Strømme 1995	
g	d=1	$\mathrm{d}=2$	d=3	$\mathrm{d}=4$	$\mathrm{d}=5$
0	2875	609250	317206375	242467530000	229305888887625
1	0	0	609250	3721431625	12129909700200
2	0	0	0	534750	75478987900
3	0	0	0	8625	-15663750
4	0	0	0	0	49250
5	0	0	0	0	1100
6	0	0	0	0	10
80					

Candelas \& al. $1991 \mathrm{~g}=0$ all d, Berschadsky \& al $1993 \mathrm{~g}=1$ all d; 1994 $g \leq 3$ all d, Huang \& al 2006, $g \leq 51$ all d, Mathematical proofs, Kontsevich $1995 \mathrm{~g}=0$ few degrees, Lian \& Liu \& Yau 1997 Givental $1998 \mathrm{~g}=0 \mathrm{all} \mathrm{d}$; $g=1$ and all d Aleksey Zinger 2009, 2023 Liu \& Ruan proved Castenuovo bound for the Quintic,...
Alexandrov, Feyzbakash, Pioline, Schimannek \& A.K. 2d elliptic genus $r=1$, DT: $g \leq 69, r=2$, DT: $g \leq 80$ involving mock modularity.
http://www.th.physik.uni-bonn.de/Groups/Klemm/data.php

An elliptic fibration over the Hirzebruch surface F_{1}

Rational curves in elliptically fibered CY 3-fold Klemm,Mayr, Vafa '96

d_{f}	$d_{e}=0$	1	2	3	4	5
0		480	480	480	480	480
1	1	252	5130	54760	419895	2587788
2			-9252	-673760	-20534040	-389320128

In geometric engineering E_{8} corresponds to a real flavour goup.

An elliptic fibration over the Hirzebruch surface F_{1}

Rational curves in elliptically fibered CY 3-fold Klemm,Mayr, Vafa '96

d_{f}	$d_{e}=0$	1	2	3	4	5
0		480	480	480	480	480
1	1	252	5130	54760	419895	2587788
2			-9252	-673760	-20534040	-389320128

$$
Q^{-\frac{1}{2}} \sum_{n=0}^{\infty} n_{0}^{1, n} Q^{n}=\frac{E_{4}(Q)}{\eta(Q)^{12}}=\frac{\theta_{E_{8}}(Q)}{\eta(Q)^{12}}
$$

In geometric engineering E_{8} corresponds to a real flavour goup.

An elliptic fibration over the Hirzebruch surface F_{1}

Rational curves in elliptically fibered CY 3-fold Klemm,Mayr, Vafa '96

d_{f}	$d_{e}=0$	1	2	3	4	5
0		480	480	480	480	480
1	1	252	5130	54760	419895	2587788
2			-9252	-673760	-20534040	-389320128

E_{1}	$E_{2}=0$	1	2	3	4	5	6	$\Sigma=252$
0	1							1
1	1	27	27	1				56
2			27	84	27			138
3				1	27	27	1	56
4							1	1

$$
Q^{-\frac{1}{2}} \sum_{n=0}^{\infty} n_{0}^{1, n} Q^{n}=\frac{E_{4}(Q)}{\eta(Q)^{12}}=\frac{\theta_{E_{8}}(Q)}{\eta(Q)^{12}}
$$

In geometric engineering E_{8} corresponds to a real flavour goup. By blowing up the geometry we can break it to $U(1) \times E_{7}, U(1)^{2} \times E_{6}$.

Refined BPS states

Conceptional inputs from physics to enumerative geometry: The reorganisation of $\mathcal{F}\left(Q, g_{s}\right)$ in BPS indices comes from calculating a BPS saturated Schwinger-loop amplitudes that contribute to the $R_{+}^{2} F_{+}^{2 g-2}$ term in the effective supergravity action Gopakumar \& Vafa '02

Refined BPS states

Conceptional inputs from physics to enumerative geometry: The reorganisation of $\mathcal{F}\left(Q, g_{s}\right)$ in BPS indices comes from calculating a BPS saturated Schwinger-loop amplitudes that contribute to the $R_{+}^{2} F_{+}^{2 g-2}$ term in the effective supergravity action Gopakumar \& Vafa '02

Refined BPS states

Conceptional inputs from physics to enumerative geometry: The reorganisation of $\mathcal{F}\left(Q, g_{s}\right)$ in BPS indices comes from calculating a BPS saturated Schwinger-loop amplitudes that contribute to the $R_{+}^{2} F_{+}^{2 g-2}$ term in the effective supergravity action Gopakumar \& Vafa '02

Refined BPS states

Conceptional inputs from physics to enumerative geometry: The reorganisation of $\mathcal{F}\left(Q, g_{s}\right)$ in BPS indices comes from calculating a BPS saturated Schwinger-loop amplitudes that contribute to the $R_{+}^{2} F_{+}^{2 g-2}$ term in the effective supergravity action Gopakumar \& Vafa '02

Refined BPS states

Conceptional inputs from physics to enumerative geometry: The reorganisation of $\mathcal{F}\left(Q, g_{s}\right)$ in BPS indices comes from calculating a BPS saturated Schwinger-loop amplitudes that contribute to the $R_{+}^{2} F_{+}^{2 g-2}$ term in the effective supergravity action Gopakumar \& Vafa '02

Refined BPS states

Conceptional inputs from physics to enumerative geometry: The reorganisation of $\mathcal{F}\left(Q, g_{s}\right)$ in BPS indices comes from calculating a BPS saturated Schwinger-loop amplitudes that contribute to the $R_{+}^{2} F_{+}^{2 g-2}$ term in the effective supergravity action Gopakumar \& Vafa '02

$$
\sum_{j_{R} \in \frac{1}{2} \mathbb{Z}_{\geq 0}}(-1)^{2 j_{r}}\left(2 j_{R}+1\right) N_{j_{R} j_{L}}^{\beta}\left[j_{L}\right]=\sum_{g \in \mathbb{Z}_{g \geq 0}} I_{g}^{L} n_{g}^{\beta}
$$

Refined BPS states

Conceptional inputs from physics to enumerative geometry: The reorganisation of $\mathcal{F}\left(Q, g_{s}\right)$ in BPS indices comes from calculating a BPS saturated Schwinger-loop amplitudes that contribute to the $R_{+}^{2} F_{+}^{2 g-2}$ term in the effective supergravity action Gopakumar \& Vafa '02

Refined BPS states

Conceptional inputs from physics to enumerative geometry: The reorganisation of $\mathcal{F}\left(Q, g_{s}\right)$ in BPS indices comes from calculating a BPS saturated Schwinger-loop amplitudes that contribute to the $R_{+}^{2} F_{+}^{2 g-2}$ term in the effective supergravity action Gopakumar \& Vafa '02

One should and can Huang\& Klemm '13 in the local CY-3-folds calculate the refined BPS states $N_{j_{R} j^{\prime}}^{\beta}$. These detect dimensions of representations of group actions, e.g. M24 on K3.

BPS asymptotics

The classical entropy of 5d spinning black holes with angular moment is one quarter of the horizon area

$$
S_{0}=2 \pi \sqrt{\mathcal{Q}^{3}-m^{2}}, \quad \mathcal{Q}^{3 / 2}=\frac{1}{6} \kappa t^{3} \quad Q=\frac{1}{2} \kappa t^{2} .
$$

BPS asymptotics

The classical entropy of 5d spinning black holes with angular moment is one quarter of the horizon area

$$
S_{0}=2 \pi \sqrt{\mathcal{Q}^{3}-m^{2}}, \quad \mathcal{Q}^{3 / 2}=\frac{1}{6} \kappa t^{3} \quad Q=\frac{1}{2} \kappa t^{2} .
$$

If the microscopic entropy is from the BPS states n_{r}^{Q}, then the number of states is

$$
\Omega(Q, m)=\sum_{r}\binom{2 r+2}{m+r+1} n_{Q}^{r},
$$

and the asymptotic of $A(Q=d)=\log (\Omega(Q, 0)) \sim \frac{4 \pi}{3 \sqrt{2 \kappa}}$.

BPS asymptotics

The classical entropy of 5d spinning black holes with angular moment is one quarter of the horizon area

$$
S_{0}=2 \pi \sqrt{\mathcal{Q}^{3}-m^{2}}, \quad \mathcal{Q}^{3 / 2}=\frac{1}{6} \kappa t^{3} \quad Q=\frac{1}{2} \kappa t^{2} .
$$

If the microscopic entropy is from the BPS states n_{r}^{Q}, then the number of states is

$$
\Omega(Q, m)=\sum_{r}\binom{2 r+2}{m+r+1} n_{Q}^{r},
$$

and the asymptotic of $A(Q=d)=\log (\Omega(Q, 0)) \sim \frac{4 \pi}{3 \sqrt{2 \kappa}}$. The Richardson transforms $A(d, N)$ are Huang \& al [0704.2440]

Calabi-Yau modularity

Generalisations of the modularity theorem recently proved for elliptic curves to CY n-folds?

Calabi-Yau modularity

Generalisations of the modularity theorem recently proved for elliptic curves to CY n-folds?

For smooth projective variety of dimension d defined over \mathbb{Q} one can define a variety $X_{p}:=X / \mathbb{F}_{p}$ defined over \mathbb{F}_{p}.

Calabi-Yau modularity

Generalisations of the modularity theorem recently proved for elliptic curves to CY n-folds?

For smooth projective variety of dimension d defined over \mathbb{Q} one can define a variety $X_{p}:=X / \mathbb{F}_{p}$ defined over \mathbb{F}_{p}. For $n \geq 1$ let $\# X_{p}\left(\mathbb{F}_{p^{n}}\right)$ be the solutions of the defining equations in the field $\mathbb{F}_{p^{n}}$ and

$$
Z\left(X_{p}, T\right)=\exp \left(\sum_{n=1}^{\infty} \# X_{p}\left(\mathbb{F}_{p^{n}}\right) \frac{T^{n}}{n}\right)
$$

Calabi-Yau modularity

Generalisations of the modularity theorem recently proved for elliptic curves to CY n-folds?

For smooth projective variety of dimension d defined over \mathbb{Q} one can define a variety $X_{p}:=X / \mathbb{F}_{p}$ defined over \mathbb{F}_{p}. For $n \geq 1$ let $\# X_{p}\left(\mathbb{F}_{p^{n}}\right)$ be the solutions of the defining equations in the field $\mathbb{F}_{p^{n}}$ and

$$
Z\left(X_{p}, T\right)=\exp \left(\sum_{n=1}^{\infty} \# X_{p}\left(\mathbb{F}_{p^{n}}\right) \frac{T^{n}}{n}\right)
$$

the local zeta function of $X_{p} . Z\left(X_{p}, T\right)$ turns out to be rational

$$
Z\left(X_{p}, T\right)=\prod_{r=0}^{2 d} P_{r}\left(X_{p}, T\right)^{(-1)^{r+1}}
$$

where $P_{r}\left(X_{p}, T\right)$ is a polynomial of degree $b_{r}(X)$ with integral coefficients and with all roots of absolute value $p^{-r / 2}$.

Calabi-Yau modularity

For elliptic curves $b_{1}=2$ and

$$
P_{1}\left(\mathcal{E} / \mathbb{F}_{p}, T\right)=\left(1-a_{p} T+p T^{2}\right)
$$

The modularity theorem implies that

$$
f_{2}=\sum_{n} a_{n} q^{n}
$$

is a weight 2 Hecke eigenform in the space of cusp forms
$S_{2}\left(\Gamma_{0}(N)\right)$ for some conductor N.
For one parameter CY 3-fold families one has

$$
\begin{equation*}
P_{3}\left(M_{z} / \mathbb{F}_{p}, T\right)=1+\alpha_{p} T+\beta_{p} p T^{2}+\alpha_{p} p^{3} T^{2}+p^{6} T^{4} \tag{3}
\end{equation*}
$$

for integers α_{p} and β_{p}. There is a conjecture that the α_{p} and β_{p} are Hecke eigenvalues of Siegel para modular Hecke form.
Checking this conjecture is rather difficult but examples have been found Golyshev, Van Straten 2021.

Calabi-Yau modularity

With Böhnisch, Scheidegger and Zagier CMP '24 we are studying special fibers where the Galois action on the middle cohomology is reducible, which signals a factorization of P_{3}

$$
P_{3}\left(M_{z_{*}} / \mathbb{F}_{p}, T\right)=\left(1-a_{p} T+p^{3} T^{2}\right)\left(1-b_{p}(p T)+p(p T)^{2}\right)
$$

where a_{p} and b_{p} are the Hecke eigenvalues of f_{4} and g_{2} cusp forms. This a rank two attractor point, i.e. $H^{3}\left(W_{z_{*}}, \mathbb{Q}\right)=\Lambda \oplus \Lambda_{\perp}$ where $\Lambda \subseteq H^{3,0}\left(M_{z_{*}}\right) \oplus H^{0,3}\left(M_{z_{*}}\right) \quad$ and $\quad \Lambda_{\perp} \subseteq H^{2,1}\left(M_{z_{*}}\right) \oplus H^{1,2}\left(M_{z_{*}}\right)$.

At z^{*} one can construct a stable $N=2$ flux vacua/super symmetric black holes.

New Physics Applications of Calabi Period motives

The Period Motive of Calabi-Yau manifolds that we know in string theory especially the B-model approach to mirror symmetry and the B-type topological string has new applications to

New Physics Applications of Calabi Period motives

The Period Motive of Calabi-Yau manifolds that we know in string theory especially the B-model approach to mirror symmetry and the B-type topological string has new applications to

- I. Evaluation of higher loop corrections to Quantum Field Theory, for the new precision tests of the Standard Model at future collider experiments CERN

New Physics Applications of Calabi Period motives

The Period Motive of Calabi-Yau manifolds that we know in string theory especially the B-model approach to mirror symmetry and the B-type topological string has new applications to

- I. Evaluation of higher loop corrections to Quantum Field Theory, for the new precision tests of the Standard Model at future collider experiments CERN
- II. Amplitude evaluations in systems with Yangian integrable symmetries, like 4d $N=4$ Super-Yang-Mills theory and Fishnet Theories.

New Physics Applications of Calabi Period motives

The Period Motive of Calabi-Yau manifolds that we know in string theory especially the B-model approach to mirror symmetry and the B-type topological string has new applications to

- I. Evaluation of higher loop corrections to Quantum Field Theory, for the new precision tests of the Standard Model at future collider experiments CERN
- II. Amplitude evaluations in systems with Yangian integrable symmetries, like 4d $N=4$ Super-Yang-Mills theory and Fishnet Theories.
- III. Post Minkowskian (PM) Worldline Quantum Field Theory approximation to General Relativity predict the gravitational wave forms in black hole scattering/mergers detected by LIGO,....

Based on work with

Kilian Bönisch, Claude Duhr, Fabian Fischbach, Florian Loebbert, Christoph Nega, Jan Plefka, Franzika Porkert, Reza Safari, Benjamin Sauer, Lorenzo Tancredi
[1]=arXiv:1912.06201v2, [2]=arXiv:2008.10574v1,
[3]=arXiv:2108.05310, in JHEP
[4]=arXiv:2209.05291 in PRL and [5]=arXiv: 2212.09550 in JHEP, [6]= arXiv:2310.08625 acc. JHEP, [7]= arXiv:2402.19034, [8]= arXiv:2401.07899 sub. PRL

Introduction perturbative QFT

$$
Z[J]=\int \mathcal{D} \phi \exp \left[\frac{i}{\hbar} \int \mathrm{~d}^{D} \times(\mathcal{L}+J \phi)\right] .
$$

E.g. with $\mathcal{L}=\int \mathrm{d}^{D} x\left[\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} m^{2} \phi^{2}-\frac{1}{4!} \lambda \phi^{4}\right]$.

All physical correlators are of the form

$$
\left\langle\phi\left(x_{1}\right) . . \phi\left(x_{n}\right)\right\rangle=Z[J]^{-1}\left(\frac{\delta}{\delta J\left(x_{1}\right)}\right) . .\left.\left(\frac{\delta}{\delta J\left(x_{n}\right)}\right) Z[J]\right|_{J=0}
$$

In interacting theories $\lambda \neq 0$ this is expanded asymptotically in
Feynman graphs

$$
\begin{aligned}
\left\langle\phi\left(x_{1}\right) \ldots \phi\left(x_{4}\right)\right\rangle & =\underset{\lambda}{X}+\gamma_{\lambda}+\underset{\lambda^{2}}{\gamma}+\underset{\lambda^{2}}{\langle }+ \\
& +\sum_{\lambda^{3}} \chi_{0}+\ldots+\sum_{\lambda^{4}}+\ldots
\end{aligned}
$$

Introduction perturbative QFT

Realistic theories: Probability for $\mathrm{e}^{-} e^{+}$to annihilate to two photons $P\left(e^{-} e^{+} \rightarrow \gamma \gamma\right) \sim\left|\mathcal{A}\left(e^{-} e^{+} \rightarrow \gamma \gamma\right)\right|^{2}, \alpha \sim \frac{1}{137}$

$$
\begin{aligned}
A\left(e^{e} e^{t} \rightarrow \gamma \gamma\right)= & \vec{y}+\ldots+k(\vec{y}+\ldots) \\
& \left.+\kappa^{2}(+r)+\cdots\right)+\ldots
\end{aligned}
$$

Scalar part e.g. for e.g. the box integral /: Propagators $\frac{1}{q^{2}-m^{2}+i \cdot 0}$

$D=D_{0}-2 \epsilon, I=\sum_{k=-n}^{\infty} I_{k} \epsilon^{n}$ with I_{k} functions of masses and Lorentz invariant products of the external momenta that we need to know!

Feyman graphs and relative Calabi-Yau periods

In the Feynman representation the contribution of an l-loop graph yields an integral with a rational integrand defined by the graph polynomials $\mathcal{U}(\underline{x})$ and $\mathcal{F}(\underline{x}, \underline{p}, \underline{m})$, \underline{p} independent momenta, \underline{m} masses

$$
I_{\sigma_{n-1}}(\underline{k}, \underline{m})=\int_{\sigma_{n-1}} \prod_{i} x_{i}^{\nu_{i}-1} \frac{\mathcal{U}^{\omega-\frac{D}{2}}}{\mathcal{F}^{\omega}} \mu_{n-1}
$$

Feyman graphs and relative Calabi-Yau periods

In the Feynman representation the contribution of an l-loop graph yields an integral with a rational integrand defined by the graph polynomials $\mathcal{U}(\underline{x})$ and $\mathcal{F}(\underline{x}, \underline{p}, \underline{m}), \underline{p}$ independent momenta, \underline{m} masses

$$
\omega=\sum_{i=1}^{n} \nu_{i}-I D / 2, I \# \text { of loops }
$$

$$
\begin{gathered}
n \# \text { of edges, } \nu_{i} \text { their multiplicity } \\
I_{\sigma_{n-1}}(\underline{k}, \underline{m})=\int_{\sigma_{n-1}} \prod_{i} x_{i}^{\nu_{i}-1} \frac{\mathcal{U}^{\omega-\frac{D}{2}}}{\mathcal{F} \omega} \mu_{n-1} \\
\left.\sigma_{n-1}=\left\{x_{1}: \ldots: x_{n}\right] \in \mathbb{P}^{n-1} \mid x_{i} \in \mathbb{R}_{\geq 0} \forall 1 \leq i \leq n\right\} \text { an open domain. }{ }^{\mu_{n-1} \text { measure on }} 1
\end{gathered}
$$

Feyman graphs and relative Calabi-Yau periods

In the Feynman representation the contribution of an l-loop graph yields an integral with a rational integrand defined by the graph polynomials $\mathcal{U}(\underline{x})$ and $\mathcal{F}(\underline{x}, \underline{p}, \underline{m}), \underline{p}$ independent momenta, \underline{m} masses

$$
\omega=\sum_{i=1}^{n} \nu_{i}-I D / 2, I \# \text { of loops }
$$

$$
n \text { \# of edges, } \quad \nu_{i} \text { their multiplicity } \quad D \text { space time dim }
$$

$$
I_{\sigma_{n-1}}(\underline{k}, \underline{m})=\int_{\sigma_{n-1}} \prod_{i} x_{i}^{\nu_{i}-1} \frac{\mathcal{U}^{\omega-\frac{D}{2}}}{\mathcal{F}^{\omega}} \mu_{n-1}
$$

$$
\left.\sigma_{n-1}=\left\{x_{1}: \ldots: x_{n}\right] \in \mathbb{P}^{n-1} \mid x_{i} \in \mathbb{R}_{\geq 0} \forall 1 \leq i \leq n\right\} \text { an open domain. }
$$

Generally one needs dimensional regularisation and evaluates in $D=4-2 \epsilon$ dimensions and gets a Laurent expansion $I=\frac{I_{-1}}{\epsilon}+I_{0}+\ldots$. The Laurent coefficients are also to expected to be (twisted) periods Bogner, Weinzierl.

Feyman graphs and relative Calabi-Yau periods

A very simple series of such Feynman integrals with loop order I are the banana diagrams in critical dimension $D_{0}=2$:

Feyman graphs and relative Calabi-Yau periods

A very simple series of such Feynman integrals with loop order I are the banana diagrams in critical dimension $D_{0}=2$:

This graph leads in $t=\frac{p^{2}}{\mu^{2}}, \xi_{i}=\frac{m_{i}}{\mu}$ to the period integral

$$
I_{\sigma_{l}}=\int_{\sigma_{l}} \frac{\mu_{l}}{P_{l}\left(t, \xi_{i} ; x\right)}=\int_{\sigma_{l}} \frac{\mu_{I}}{\left(t-\left(\sum_{i=1}^{l+1} \xi_{i}^{2} x_{i}\right)\left(\sum_{i=1}^{l+1} x_{i}^{-1}\right)\right) \prod_{i=1}^{l+1} x_{i}}
$$

Feyman graphs and relative Calabi-Yau periods

A very simple series of such Feynman integrals with loop order I are the banana diagrams in critical dimension $D_{0}=2$:

This graph leads in $t=\frac{p^{2}}{\mu^{2}}, \xi_{i}=\frac{m_{i}}{\mu}$ to the period integral

$$
I_{\sigma_{l}}=\int_{\sigma_{l}} \frac{\mu_{l}}{P_{l}\left(t, \xi_{i} ; x\right)}=\int_{\sigma_{l}} \frac{\mu_{l}}{\left(t-\left(\sum_{i=1}^{l+1} \xi_{i}^{2} x_{i}\right)\left(\sum_{i=1}^{l+1} x_{i}^{-1}\right)\right) \prod_{i=1}^{I+1} x_{i}}
$$

The Newton polytope of the numerator is reflexive. For example for $I=2,3$ they look like

Feyman graphs and relative Calabi-Yau periods

Feynman integrals \Leftrightarrow Periods of algebraic varities

Planar Feynman graph	Max. Cut Integrals	Period - Geometry
1-loop	rational functions	Pts in Fano 1-fold
2-loop	elliptic functions	families of elliptic curve
3-loop	fullfil 3 ord. hom diff eqs.	families of K3
4-loop	fullfil 4 ord. hom diff eqs.	families of CY-3-fold
\vdots	\vdots	\vdots

For the full Feynman integral the rational functions are replaced by rational polylogarithms \checkmark and the elliptic functions by elliptic polylogarithms (\checkmark) . I. Gelfand, S. Bloch, P. Vanhove, M.Kerr, C. Duran, S. Weinzierl, F. Brown,
O. Schnetz, J. Bourjaily, A. Mc Leod, M. Hippel, M. Wilhelm, J. Broedel, L Trancredi, S. Müller-Stach, Klemm,

Nega, Safari, '19, +Böhnisch, Fischbach ' 20 , + Duhr ' $21 \ldots+248$ cits. in the latter

Kodaira map of algebraic varieties

Kodaira map of algebraic varieties

$$
\begin{array}{lllll}
I=0 & I=1 & I=2 & I=3 & \cdots \\
g=0 & g=1 & g=2 & g=3 & \cdots
\end{array}
$$

Kodaira map of algebraic varieties

Dictionary Feynman graphs/amplitudes and geometry

Perturbative QFT	Geometry X	Differential eq.	Arithmetic Geometry
maximal cut Feynman integral	Period integral $\underline{\square}$ (ϵ-deformed)	Homogeneous Gauss Manin $(d-A(z)) \underline{\Pi}=0$	Motive defined by I-adic coh $H_{e t}^{k}\left(\bar{X}, \mathbb{Q}_{1}\right)$
	\circlearrowleft Monodromy group $\in \Gamma(\mathbb{Z})$; irreducible?		\checkmark Galois group $\operatorname{Gal}(\bar{K} / K)$ irreducible?
actual Feynman integral	Chain integral (ϵ-deformed)	Inhomogeneous Gauss Manin connection $(d-A(z)) \Pi=B(z)$	Extended motive

Gauss Manin connection and sub sectors

One way to get the Gauss-Manin connection and the inhomogeneous term is to use the integration by barts relations IBP relation between so called master integrals. Consider I-loop Feynman integrals in general dimensions $D \in \mathbb{R}_{+}$of the form

$$
\begin{equation*}
I_{\underline{\nu}}(\underline{x}, D):=\int \prod_{r=1}^{l} \frac{\mathrm{~d}^{D} k_{r}}{i \pi^{\frac{D}{2}}} \prod_{j=1}^{p} \frac{1}{D_{j}^{\nu_{j}}} \tag{4}
\end{equation*}
$$

$D_{j}=q_{j}^{2}-m_{j}^{2}+i \cdot 0$ for $j=1, \ldots, p$ are the propagators, q_{j} is the $j^{\text {th }}$ momenta through $D_{j}, m_{j}^{2} \in \mathbb{R}_{+}$are masses, $i \cdot 0$ indicates the choice of contour/branchcut in \mathbb{C}. Subject to momentum conservation the q_{j} are linear in the external momenta p_{1}, \ldots, p_{E}, $\sum_{i=j}^{E} p_{j}=0$ and the loop momenta k_{r}. We defined $\epsilon:=\frac{D_{0}-D}{2}$.

Master Integrals and integration by parts relations

The Feynman integral depends besides D on dot products of p_{i} and the masses m_{j}^{2}, written compactly in a vector $\underline{w}=\left(w_{1}, \ldots, N\right)=\left(p_{i_{1}} \cdot p_{i_{2}}, m_{j}^{2}\right)$ and dimensional analysis of $I_{\underline{\nu}}$ shows that it depends only on the ratios of two parameters x_{i}, we chose

$$
x_{k}:=\frac{w_{k}}{w_{N}} \quad \text { for } 1 \leq k<N
$$

and label now the parameters of the integrals $I_{\underline{\nu}}$ by the dimensionless parameters \underline{x}.

Master Integrals and integration by parts relations

The propagator exponents and $D \in \mathbb{Z}$ span a lattice $(\underline{\nu}, D) \in \mathbb{Z}^{p+1}$. The $I_{\underline{\nu}}(\underline{x}, D)$ are called master integrals.

Master Integrals and integration by parts relations

The propagator exponents and $D \in \mathbb{Z}$ span a lattice $(\underline{\nu}, D) \in \mathbb{Z}^{p+1}$. The $I_{\underline{\nu}}(\underline{x}, D)$ are called master integrals.

The integration by parts (IBP) identities

$$
\int \prod_{r=1}^{l} \frac{\mathrm{~d}^{D} k_{r}}{i \pi^{\frac{D}{2}}} \frac{\partial}{\partial k_{k}^{\mu}}\left(q_{l}^{\mu} \prod_{j=1}^{p} \frac{1}{D_{j}^{\nu_{j}}}\right)=0 .
$$

relate the master integrals with different exponents $\underline{\nu}$.

Master Integrals and integration by parts relations

The propagator exponents and $D \in \mathbb{Z}$ span a lattice $(\underline{\nu}, D) \in \mathbb{Z}^{p+1}$. The $I_{\underline{\nu}}(\underline{x}, D)$ are called master integrals.

The integration by parts (IBP) identities

$$
\int \prod_{r=1}^{l} \frac{\mathrm{~d}^{D} k_{r}}{i \pi^{\frac{D}{2}}} \frac{\partial}{\partial k_{k}^{\mu}}\left(q_{l}^{\mu} \prod_{j=1}^{p} \frac{1}{D_{j}^{\nu_{j}}}\right)=0 .
$$

relate the master integrals with different exponents $\underline{\nu}$.
There is a finite region in the lattice that contains all non-vanishing master integrals. In a basis of master integrals one can express derivatives w.r.t. the z_{k} as a linear combination rational coefficients by the IBP relations.

Master Integrals and integration by parts relations

- The basis of master integrals (graph cohomology) corresponds to the basis of the cohomology $H^{I-1}\left(M_{l}, \mathbb{Z}\right)$.

Master Integrals and integration by parts relations

- The basis of master integrals (graph cohomology) corresponds to the basis of the cohomology $H^{I-1}\left(M_{l}, \mathbb{Z}\right)$.
- The integration by parts relations correspond to the Griffith reduction formula.

Master Integrals and integration by parts relations

- The basis of master integrals (graph cohomology) corresponds to the basis of the cohomology $H^{I-1}\left(M_{l}, \mathbb{Z}\right)$.
- The integration by parts relations correspond to the Griffith reduction formula.
- A complete set of IBP relations corresponds to the complete Picard Fuchs ideal of Gauss-Manin connection for the period integrals.

Master Integrals and integration by parts relations

- The basis of master integrals (graph cohomology) corresponds to the basis of the cohomology $H^{I-1}\left(M_{l}, \mathbb{Z}\right)$.
- The integration by parts relations correspond to the Griffith reduction formula.
- A complete set of IBP relations corresponds to the complete Picard Fuchs ideal of Gauss-Manin connection for the period integrals.

Among the elements in the lattice \mathbb{Z}^{p} and, in particular, for the master integrals one can define sectors and a semi-ordering on the latter by defining a map

$$
\underline{\nu} \mapsto \underline{\vartheta}(\underline{\nu})=:\left(\theta\left(\nu_{j}\right)\right)_{1 \leq j \leq p} .
$$

where θ is the Heaviside step function. The semi-ordering is then defined by $\underline{\vartheta}(\underline{\nu}) \leq \underline{\vartheta}(\underline{\tilde{\nu}})$, iff $\theta\left(\nu_{j}\right) \leq \theta\left(\tilde{\nu}_{j}\right), \forall j$. This defines an inclusive order on subgraphs with less propagators and therefore simpler topology.

IBP relation summary:

The IBP relations characterise a suitable finite set of master integrals

$$
I_{\underline{\prime}}(\underline{x}, D):=\int \prod_{r=1}^{l} \frac{\mathrm{~d}^{D} k_{r}}{i \pi^{\frac{D}{2}}} \prod_{j=1}^{p} \frac{1}{D_{j}^{\nu_{j}}}
$$

with $D_{j}=q_{j}^{2}-m_{j}^{2}+i \cdot 0$ for $j=1, \ldots, p$ propagators and $(\underline{\nu}, D)$ in a finite region in \mathbb{Z}^{p+1}, by a first order Gauss Manin connection

$$
d \underline{l}(\underline{x}, \epsilon)=\mathbf{A}(\underline{x}, \epsilon) \underline{l}(\underline{x}, \epsilon)
$$

$\epsilon=\left(D_{c r}-D\right) / 2$.

Master Integral Basis Change possibly to canonical form

$$
\begin{aligned}
& \underline{I}(\underline{x}, \epsilon) \rightarrow \underline{I}^{\text {better }}(\underline{z}(x) ; \epsilon)=R_{0}(\underline{z}(x) ; \epsilon) \underline{I}(\underline{z}(x) ; \epsilon) \\
& \mathbf{A}(\underline{z} ; \epsilon)^{\text {better }}=\left[R_{0}(\underline{z} ; \epsilon) \mathbf{A}+d R_{0}(\underline{z} ; \epsilon)\right] R_{0}(\underline{z} ; \epsilon)^{-1}
\end{aligned}
$$

Master Integral Basis Change possibly to canonical form

$$
\begin{gathered}
\underline{I}(\underline{x}, \epsilon) \rightarrow \underline{I}^{\text {better }}(\underline{z}(x) ; \epsilon)=R_{0}(\underline{z}(x) ; \epsilon) \underline{l}(\underline{z}(x) ; \epsilon) \\
\mathbf{A}(\underline{z} ; \epsilon)^{\text {better }}=\left[R_{0}(\underline{z} ; \epsilon) \mathbf{A}+d R_{0}(\underline{z} ; \epsilon)\right] R_{0}(\underline{z} ; \epsilon)^{-1} \\
\mathbf{A}(\underline{z} ; \epsilon)^{\text {best }}=\left[R_{n}(\underline{z} ; \epsilon) \mathbf{A}^{n-1}+d R_{n}(\underline{z} ; \epsilon)\right] R_{n}(\underline{z} ; \epsilon)^{-1}=\epsilon A(\underline{z})
\end{gathered}
$$

Master Integral Basis Change possibly to canonical form

$$
\begin{aligned}
& \underline{I}(\underline{x}, \epsilon) \rightarrow \underline{I}^{\text {better }}(\underline{z}(x) ; \epsilon)=R_{0}(\underline{z}(x) ; \epsilon) \underline{I}(\underline{z}(x) ; \epsilon) \\
& \mathbf{A}(\underline{z} ; \epsilon)^{\text {better }}=\left[R_{0}(\underline{z} ; \epsilon) \mathbf{A}+d R_{0}(\underline{z} ; \epsilon)\right] R_{0}(\underline{z} ; \epsilon)^{-1} \\
& \mathbf{A}(\underline{z} ; \epsilon)^{\text {best }}=\left[R_{n}(\underline{z} ; \epsilon) \mathbf{A}^{n-1}+d R_{n}(\underline{z} ; \epsilon)\right] R_{n}(\underline{z} ; \epsilon)^{-1}=\epsilon A(\underline{z})
\end{aligned}
$$

The blocks

Here $A_{i j}^{k}(z)$ are $d \log (\operatorname{alg}(z))$ and the $*$ are rational functions in z and we typically have a situation, where the l-loop block in this improved IBP first order flat connection above is described by period integrals in the sense of Kontsevich and Zagier fullfilling the Gauss-Manin flat connection of a geometry X, which is typically a (non-smooth) Calabi-Yau manifold.

The blocks

Here $A_{i j}^{k}(z)$ are $d \log (\operatorname{alg}(z))$ and the $*$ are rational functions in z and we typically have a situation, where the l-loop block in this improved IBP first order flat connection above is described by period integrals in the sense of Kontsevich and Zagier fullfilling the Gauss-Manin flat connection of a geometry X, which is typically a (non-smooth) Calabi-Yau manifold.

Example: From the ($1+1$)-loop ice-cone graph

it is clear that it contains I-loop banana graph as block(s).

Dictionary for the blocks

	$I=(n+1)$-loop in block integrals in $D_{c r}$ dimensions	Calabi-Yau (CY) geometry
1	Maximal cut integrals in $D_{c r}$ dimensions	(n,0)-form periods of CY manifolds or CY motives
2	Dimensionless ratios $z_{i}=m_{i}^{2} / p^{2}$	Unobstructed compl. moduli of M_{n}, or equi'ly Kähler moduli of the mirror W_{n}
3	Integration-by-parts (IBP) reduction	Griffiths reduction method
4	Integrand-basis for maximal cuts of of master integrals in $D_{c r}$	Middle (hyper) cohomology $H^{n}\left(M_{n}\right)$
M_{n}		

Consequences of the Geometric representation

Advantages of the geometric representation of the Feynman graphs as periods of (complete intersection) Calabi-Yau manifolds
1.) The GKZ system in the yields immediately all period integrals П and near the point of maximal unipotent monodromy $z_{i}=0$ a canonical integral basis w.r.t. to the global monodromy $\mathcal{O}(\Sigma, \mathbb{Z})$. In particular one identifies the physical period and its analytic properties.
2.) Once the analytic continuation of $\underline{\Pi}$ to the other critical divisors in the discriminate locus is known they can be calculated to very high precision everywhere in the physical parameter space in extremely short time.

Consequences of the Geometric representation

3.) Griffith-transversality (2) implies
a.) The Inverse of the Wronskian is up rational factors linear in the periods $W^{-1}=\Sigma W^{\top} Z^{-1}$

$$
z^{-1}=\frac{(2 \pi i)^{3}}{c}\left(\begin{array}{cccc}
0 & \frac{c^{\prime \prime}}{c}-2 \frac{c^{\prime}}{C}+\frac{c_{2}}{c_{4}} & -\frac{c^{\prime}}{c} & 1 \\
2 \frac{c^{\prime}}{c}-\frac{c^{\prime \prime}}{C}-\frac{c_{2}}{c_{4}} & 0 & -1 & 0 \\
\frac{c^{\prime}}{c} & 1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right)
$$

b.) The Gauss-Manin connection can be brought into a canonical form

$$
\partial_{t_{*}^{i}}\left(\begin{array}{c}
\mathcal{V}_{0} \\
\mathcal{V}_{j} \\
\mathcal{\nu}^{j} \\
\mathcal{V}^{0}
\end{array}\right)=\left(\begin{array}{cccc}
0 & \delta_{i k} & 0 & 0 \\
0 & 0 & c_{i j k} & 0 \\
0 & 0 & 0 & \delta_{i}^{j} \\
0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\mathcal{V}_{0} \\
\mathcal{V}_{k} \\
\mathcal{V}^{k} \\
\mathcal{V}^{0}
\end{array}\right)
$$

4.) a.) Implies that that in the "variation of constant" procedure the inhomogeneous solution is an iterated integral of the periods $\partial_{n}^{k} \Pi$ modulo rational functions. b.) implies that the higher terms in ϵ can be similar written as iterated integrals.

Worldline Quantum Field Theory approach to General Relativ-

 ityScattering of two black holes (BH) as starter to the description of BH mergers as the main sources for gravitational waves detected at LIGO, ...

Worldline Quantum Field Theory approach to General Relativ-

ity

The action for the scattering process

$$
S=-\sum_{i=1}^{2} m_{i} \int \mathrm{~d} \tau\left[\frac{1}{2} g_{\mu \nu} \dot{x}_{i}^{\mu} \dot{x}_{i}^{\nu}\right]+S_{\mathrm{EH}}
$$

is expanded in Post Minkowskian (PM) approximation in the Worldline Quantum Field Theory (WQFT) approach around the non-interacting background configurations

$$
x_{i}^{\mu}=b_{i}^{\mu}+v_{i}^{\mu} \tau+z_{i}^{\mu}(\tau), \quad g_{\mu \nu}=\eta_{\mu \nu}+\sqrt{32 \pi G} h_{\mu \nu}(x)
$$

Worldline Quantum Field Theory approach to General Relativ-

 ityThe goal is to calculate from the initial data: the impact parameter $b^{\mu}=b_{1}^{\mu}-b_{2}^{\mu}$ and the incoming velocities v_{1}, v_{2} the physical quantity of interest, which is the radiation induces change in the momentum say $\Delta p_{1}^{\mu}=m_{1} \int \mathrm{~d} \tau \ddot{x}(\tau)$ of the first particle.

In the PM approximation the latter can be expanded in the gravitational coupling G

$$
\Delta p_{1}^{\mu}=\sum_{n=1}^{\infty} G^{n} \Delta p^{(n) \mu}(x)
$$

At each order the contributions $\Delta p^{(n) \mu}(x)$ are calculated in the WQFT approach in the Swinger-Keldysh in-in formalism in terms of a Feynman graph expansion with retarded propagators. Here $x=\gamma-\sqrt{\gamma^{2}-1}$ with γ the Lorentz factor of the relative velocities is the only parameter.

Worldline Quantum Field Theory approach to General Relativ-

ity

In the 4PM approximation the Feynman integral in the 1SF sector

involve bilinear of elliptic function which are periods of the $K 3$

$$
Y^{2}=X(X-1)(X-x) Z(Z-1)(Z-1 / x)
$$

In the 5PM approximation we find in [8] that in the 5PM approximation the following graphs in the 1SF sector

Worldline Quantum Field Theory approach to General Relativ-

 ityThe corresponding smooth CY three-fold one-parameter complex family $x=(2 \psi)^{-8}$, can be defined as resolution of four symmetric quadrics

$$
x_{j}^{2}+y_{j}^{2}-2 \psi x_{j+1} y_{j+1}=0, j \in \mathbb{Z} / 4 \mathbb{Z}
$$

in the homogeneous coordinates $x_{i}, y_{j}, j=0, \ldots, 3$ of \mathbb{P}^{7}. The periods of the above $K 3$ and $C Y$ threefold determine all special functions that are necessary to solve for $\Delta p^{(5) \mu}(x)$ in the 1SF sector.

In the 5PM 2SF further different CY and K 3 appear.

$\mathrm{N}=4$ Super-Yang-Mills and integrablity

Driving question: Which symmetries allow to solve n.t. QFT's.

$\mathrm{N}=4$ Super-Yang-Mills and integrablity

Driving question: Which symmetries allow to solve n.t. QFT's.
Original Stage: $\mathcal{N}=4 \mathrm{SYM}$ in the $\mathrm{AdS}_{5} /$ SCFT $_{4}$ correspondence.

$\mathrm{N}=4$ Super-Yang-Mills and integrablity

Driving question: Which symmetries allow to solve n.t. QFT's. Original Stage: $\mathcal{N}=4 \mathrm{SYM}$ in the $\mathrm{AdS}_{5} /$ SCFT $_{4}$ correspondence. Symmetry: Drinfeld Yangian symmetry, as first identified as symmetry of the dilatation op. Dolan, Nappi \& Witten: (03,04) and later found to allow to find solution of certain scattering amplitudes, Wilson loops observables and S-matrix elements. Dummond, Henn, Plefka, Zarembo (09,13)

Beisert, Garus, Rosso (17),

$\mathrm{N}=4$ Super-Yang-Mills and integrablity

Driving question: Which symmetries allow to solve n.t. QFT's. Original Stage: $\mathcal{N}=4 \mathrm{SYM}$ in the $\mathrm{AdS}_{5} / \mathrm{SCFT}_{4}$ correspondence. Symmetry: Drinfeld Yangian symmetry, as first identified as
symmetry of the dilatation op. Dolan, Nappi \& Witten: (03,04) and later found to allow to find solution of certain scattering amplitudes, Wilson loops observables and S-matrix elements. Dummond, Henn, Plefka, Zarembo (09,13)

Beisert, Garus, Rosso (17),
Integrable Deformations: Marginal β deformations Leigh, Strassler (95)
Maldacena Luni (05). Here most relevant the supersymmetry breaking γ_{i},
$i=1,2,3$ deformations in the double scaling limit $g \rightarrow 0$, $\gamma_{3} \rightarrow i \infty$ with $\xi^{2}=g^{2} N_{c} e^{-i \gamma_{3}}$ fixed Gürdoğan, Kazakov (16), with Caetano (18) and the bi-scalar model χ FT Kazakov, olivucci (18) leading to holographic dual pairs of integrable fishnet and fishchain theories in D dimensions.

Orginal Fishnet Lagrangians

These bi- "scalar" fishnet theories in D dimensions have a Lagrangian with quartic interaction $V=4$

$$
\mathcal{L}_{\text {quad }}^{\omega D}=N_{\mathrm{c}} \operatorname{tr}\left[-X\left(-\partial_{\mu} \partial^{\mu}\right)^{\omega} \bar{X}-Z\left(-\partial_{\mu} \partial^{\mu}\right)^{\frac{D}{2}-\omega} \bar{Z}+\xi^{2} X Z \bar{X} \bar{Z}\right]
$$

ω determines the propagator power in the Feynman graphs. E.g. $D=4, \omega=1$ and $D=2, \omega=1 / 2$ are conformal choices.

Orginal Fishnet Lagrangians

These bi- "scalar" fishnet theories in D dimensions have a Lagrangian with quartic interaction $V=4$

$$
\mathcal{L}_{\text {quad }}^{\omega D}=N_{\mathrm{c}} \operatorname{tr}\left[-X\left(-\partial_{\mu} \partial^{\mu}\right)^{\omega} \bar{X}-Z\left(-\partial_{\mu} \partial^{\mu}\right)^{\frac{D}{2}-\omega} \bar{Z}+\xi^{2} X Z \bar{X} \bar{Z}\right]
$$

ω determines the propagator power in the Feynman graphs. E.g. $D=4, \omega=1$ and $D=2, \omega=1 / 2$ are conformal choices. Most importantly this theory exhibit as symmetry the Yangian extension of the bosonic conformal symmetry.

Hexagonal Fishnets Lagrangian

A generalization with analogous symmetry properties are Fishnet theories with cubic interaction $V=3$ kazakov, olivucci (23) and Lagrangian

$$
\begin{aligned}
\mathcal{L}_{\text {cub }}^{D}= & N_{\mathrm{c}} \operatorname{tr}\left[-X\left(-\partial_{\mu} \partial^{\mu}\right)^{\omega_{1}} \bar{X}-Y\left(-\partial_{\mu} \partial^{\mu}\right)^{\omega_{2}} \bar{Y}-Z\left(-\partial_{\mu} \partial^{\mu}\right)^{\omega_{3}} \bar{Z}\right. \\
& \left.+\xi_{1}^{2} \bar{X} Y Z+\xi_{2}^{2} X \bar{Y} \bar{Z}\right]
\end{aligned}
$$

with $\sum_{i=1}^{V} \omega_{i}=D$ at vertex, e.g. $D=2$ and $\omega_{1}=\omega_{2}=\omega_{3}=2 / 3$.

Hexagonal Fishnets Lagrangian

A generalization with analogous symmetry properties are Fishnet theories with cubic interaction $V=3$ kazakov, olivucei (23) and Lagrangian

$$
\begin{aligned}
\mathcal{L}_{\text {cub }}^{D}= & N_{\mathrm{c}} \operatorname{tr}\left[-X\left(-\partial_{\mu} \partial^{\mu}\right)^{\omega_{1}} \bar{X}-Y\left(-\partial_{\mu} \partial^{\mu}\right)^{\omega_{2}} \bar{Y}-Z\left(-\partial_{\mu} \partial^{\mu}\right)^{\omega_{3}} \bar{Z}\right. \\
& \left.+\xi_{1}^{2} \bar{X} Y Z+\xi_{2}^{2} X \bar{Y} \bar{Z}\right]
\end{aligned}
$$

with $\sum_{i=1}^{V} \omega_{i}=D$ at vertex, e.g. $D=2$ and $\omega_{1}=\omega_{2}=\omega_{3}=2 / 3$.
Scalar field have conformal dimension $\Delta_{\phi}=(D-2) / 2$ and conformal interactions have to have valency $V=2 D /(D-2)$, i.e. $D=6,4,3$ enforce $V=3,4,6$ respectively.

Hexagonal Fishnets Lagrangian

A generalization with analogous symmetry properties are Fishnet theories with cubic interaction $V=3$ kazakov, olivucei (23) and Lagrangian

$$
\begin{aligned}
\mathcal{L}_{\text {cub }}^{D}= & N_{\mathrm{c}} \operatorname{tr}\left[-X\left(-\partial_{\mu} \partial^{\mu}\right)^{\omega_{1}} \bar{X}-Y\left(-\partial_{\mu} \partial^{\mu}\right)^{\omega_{2}} \bar{Y}-Z\left(-\partial_{\mu} \partial^{\mu}\right)^{\omega_{3}} \bar{Z}\right. \\
& \left.+\xi_{1}^{2} \bar{X} Y Z+\xi_{2}^{2} X \bar{Y} \bar{Z}\right]
\end{aligned}
$$

with $\sum_{i=1}^{V} \omega_{i}=D$ at vertex, e.g. $D=2$ and $\omega_{1}=\omega_{2}=\omega_{3}=2 / 3$.
Scalar field have conformal dimension $\Delta_{\phi}=(D-2) / 2$ and conformal interactions have to have valency $V=2 D /(D-2)$, i.e. $D=6,4,3$ enforce $V=3,4,6$ respectively.
Then the (planar) fishnet graphs can be cut by a closed oriented curve from the three regular tilings of the plane:

Regular tilings and Calabi-Yau motives

Figure 1: The three regular tilings of the plan with vertices of valence $\nu=3,4,6$ respectively.

Figure 2: Ten-point five-loop fishnet integral cut out of a square tiling of the plane.

Regular tilings and Calabi-Yau motives

To obtain a graph G consider a convex closed oriented curve \mathcal{C} that cuts edges of the tiling and does not pass to vertices. To each vertex inside the curve \mathcal{C} we associate a \mathbb{P}^{1} with homogeneous coordinates $\left[x_{i}: u_{i}\right], i=1, \ldots$, l over which we want to integrate with the measure

$$
\begin{equation*}
\mathrm{d} \mu_{i}=u_{i} \mathrm{~d} x_{i}-x_{i} \mathrm{~d} u_{i} . \tag{5}
\end{equation*}
$$

To the end point of each cut edge outside \mathcal{C} we associate a parameter $a_{j} \in \mathbb{C}, j=1, \ldots, r$. The graph is constructed by the $/$ vertices with propagators

$$
\begin{equation*}
P_{i j}^{\prime}=\frac{1}{\left(x_{i}-x_{j}\right)^{w_{i j}}}, \quad P_{i j}^{E}=\frac{1}{\left(x_{i}-a_{j}\right)^{w_{i j}}} . \tag{6}
\end{equation*}
$$

To be conformal in D dimension the weights of propagators incident to each vertex V_{i} has to fullfill

$$
\begin{equation*}
\sum w_{i j}=D \tag{7}
\end{equation*}
$$

Regular tilings and Calabi-Yau motives

We deal mainly with $D=2$ and choose the propagator weights all equal $w_{i j}=w=2 / \nu(V)$, where $\nu(V)$ is the valence of the vertices, i.e. for the hexagonal tiling we have $w=\frac{2}{3}$, for the quartic tiling $w=\frac{1}{4}$ amd for the trigonal tiling $w=\frac{1}{3}$.

To the hexagonal and the quartic lattice we can associate an in general singular I-dimensional Calabi-Yau variety M_{l} as the $d=3$ or $d=2$ fold cover

$$
\begin{equation*}
W=\frac{y^{d}}{d}-P([\underline{x}: \underline{u}] ; \underline{a})=0 \tag{8}
\end{equation*}
$$

over the base $B=\left(\mathbb{P}^{1}\right)^{\prime}$ branched at

$$
\begin{equation*}
P([\underline{x}: \underline{w}] ; \underline{a})=\prod_{i j}\left(u_{j} x_{i}-x_{j} u_{i}\right) \prod_{i j}\left(x_{i}-a_{j} u_{i}\right)=0, \tag{9}
\end{equation*}
$$

respectively. The orders of the covering automorpishm exchanging the sheets will play a crucial role in the following geometric analvcic

Regular tilings and Calabi-Yau motives

Note that (8) defines a Calabi-Yau manifold, because the canonical class of the base is with H_{i} the hyperplane class of the i^{\prime} th \mathbb{P}^{1} given by

$$
\begin{equation*}
K_{B}=2 \bigoplus_{i=1} H_{i} \tag{10}
\end{equation*}
$$

and the Calabi-Yau condition ensuring $K_{M_{l}}=0$

$$
\begin{equation*}
\frac{d}{d-1} K_{B}=[P([\underline{x}: \underline{u}] ; \underline{a})]=\nu \bigoplus_{i=1} H_{i} \tag{11}
\end{equation*}
$$

is true with $d=3,2$ as $\nu=3,4$ for graphs from the hexagonal and the quartic tiling, respectively.

Regular tilings and Calabi-Yau motives

Another way of stating this is that the periods over the unique holomorphic ($\ell, 0$)-form, given by the Griffiths residuum form Ω

$$
\begin{equation*}
\Pi_{G}=\int_{C} \Omega=\int_{C} \frac{1}{2 \pi i} \oint_{\gamma} \frac{d y \prod_{i=1}^{\prime} d \mu_{i}}{W}=\int_{C} \frac{\prod_{i=1}^{\prime} d \mu_{i}}{\partial_{y} W}=\int_{C} \frac{\prod_{i=1}^{\prime} d \mu_{i}}{P^{\frac{d-1}{d}}}=\int_{C} \prod_{i j} P_{i j}^{\prime} \prod_{i j} P_{i j}^{E} \prod_{i=1}^{\prime} d \mu_{i}, \tag{12}
\end{equation*}
$$

are well defined. The significance for the application is that these period integrals over cycles $C \in H_{l}\left(M_{l}, \mathbb{Z}\right)$ are building blocks for the amplitudes.

$$
\begin{equation*}
I_{G}=\int_{C} \Omega=\int \sqrt{\left|\prod_{i j} P_{i j}^{l} \prod_{i j} P_{i j}^{E}\right|^{2}} \prod_{i=1}^{\prime} d \mu_{i} \wedge d \bar{\mu}_{i} \tag{13}
\end{equation*}
$$

Regular tilings and Calabi-Yau motives

Figure 3: Singularities of the $K 3$ denoted for the valence 4 graph $M_{G_{1,2}}$ and the valence 3 graph $M_{G_{A}^{2}}$. Note that 3 of the a_{i} can be set to $0,1, \infty$ by a diagonal $\operatorname{PSL}(2, \mathbb{C})$ acting on the projective plane in which the a_{i} lie

Regular tilings and Calabi-Yau motives

Claim 1: To each graph G we can associate a Calabi-Yau variety X whose periods determine I.

Regular tilings and Calabi-Yau motives

Claim 1: To each graph G we can associate a Calabi-Yau variety X whose periods determine I.

Claim 2: Each I gives rise to a Calabi-Yau motive with integer symmetry (/ even) or antisymmetric (/ odd) intersection form Σ, a point of maximal unipotent monodromy and a period vector $\Pi(\underline{z})=\int_{\Gamma_{i}} \Omega$ with $\Gamma_{i} \in H_{l}\left(W^{(m, n)}, \mathbb{Z}\right)$. The Feynman amplitude is given near the Mum points by the quantum volume of the mirror

$$
I=i^{I^{2}} \Pi^{\dagger} \Sigma \Pi=e^{-K(\underline{z}, \underline{\bar{z}})}=\operatorname{Vol}_{q}\left(M^{(m, n)}\right)
$$

and globally by analytic continuation of the periods. Here $M^{(m, n)}$ is the mirror of $W^{(m, n)}$.

Regular tilings and Calabi-Yau motives

Claim 3: There exist an integrable conformal fishnet theories (CFNT) developed first (Gürdogan, Kazakov 2015) as deformation of $N=4 S U\left(N_{c}\right)$ SYM theory. Let X, Z be $S U\left(N_{c}\right)$ matrix fields then the Lagrangian is

$$
\mathcal{L}_{F N}=N_{c} \operatorname{tr}\left(-\partial_{\mu} X \partial^{m} u \bar{X}-\partial_{\mu} Z \partial^{m} u \bar{Z}+\xi^{2} X Z \bar{X} \bar{Z}\right)
$$

Each $I_{m, n}$ integral is an amplitude in the CFNT, i.e. $I_{m, n}(\underline{z})$ has to be single valued i.e. a Bloch Wigner dilogarithm or in the $D=2$ case e^{-K}.

Regular tilings and Calabi-Yau motives

Claim 3: There exist an integrable conformal fishnet theories (CFNT) developed first (Gürdogan, Kazakov 2015) as deformation of $N=4 S U\left(N_{c}\right)$ SYM theory. Let X, Z be $S U\left(N_{c}\right)$ matrix fields then the Lagrangian is

$$
\mathcal{L}_{F N}=N_{c} \operatorname{tr}\left(-\partial_{\mu} X \partial^{m} u \bar{X}-\partial_{\mu} Z \partial^{m} u \bar{Z}+\xi^{2} X Z \bar{X} \bar{Z}\right)
$$

Each $I_{m, n}$ integral is an amplitude in the CFNT, i.e. $I_{m, n}(\underline{z})$ has to be single valued i.e. a Bloch Wigner dilogarithm or in the $D=2$ case e^{-K}.

The factorisation of the amplitudes of the integrable system subject to the Yang-Baxter relations imply many non-trivial relations for he periods of the $W^{(m, n)}$. E.g. we the one parameter specialisation the periods of $W^{(n, m)}$ are $(m \times m)$ minors of the periods $W_{l}^{(1, m+m)}$ etc.

Regular tilings and Calabi-Yau motives

Claim 4: $(Y(S O(3,1))=Y(S /(2, \mathbb{R})) \oplus \overline{Y(S I(2, \mathbb{R}))}$.$) The$ holomorphic Yangian generated by the algebra

$$
\begin{aligned}
P_{j}^{\mu} & =-i \partial_{a_{j}}^{\mu}, & K_{j}^{\mu} & =-2 i a_{j}^{\mu}\left(a_{j}^{\nu} \partial_{a_{j}, \nu}+\Delta_{j}\right)+i a_{j}^{2} \partial_{a_{j}}^{\mu} \\
L_{j}^{\mu \nu} & =i\left(a_{j}^{\mu} \partial_{a_{j}}^{\nu}-a_{j}^{\nu} \partial_{a_{j}}^{\mu}\right), & D_{j} & =-i\left(a_{j}^{\mu} \partial_{a_{j}, \mu}\right),
\end{aligned}
$$

Regular tilings and Calabi-Yau motives

Claim 4: $(Y(S O(3,1))=Y(S /(2, \mathbb{R})) \oplus \overline{Y(S I(2, \mathbb{R}))}$.$) The$ holomorphic Yangian generated by the algebra

$$
\begin{aligned}
P_{j}^{\mu} & =-i \partial_{a_{j},}^{\mu}, & K_{j}^{\mu} & =-2 i a_{j}^{\mu}\left(a_{j}^{\nu} \partial_{a_{j}, \nu}+\Delta_{j}\right)+i a_{j}^{2} \partial_{a_{j}}^{\mu} \\
L_{j}^{\mu \nu} & =i\left(a_{j}^{\mu} \partial_{a_{j}}^{\nu}-a_{j}^{\nu} \partial_{a_{j}}^{\mu}\right), & D_{j} & =-i\left(a_{j}^{\mu} \partial_{a_{j}, \mu}\right),
\end{aligned}
$$

in differentials w.r.t. to the external position, generates together with the permutation symmetries of the latter a differential ideal that annihilates the $I(\underline{z})$ and is equivalent to the Picard-Fuchs differential ideal that describes the variation of the Hodge structure in the middle cohomology of X and annihilated the periods of Ω.

Regular tilings and Calabi-Yau motives

Figure 4: The $G_{A}^{(8)}$ graph. The A series starts from even dimensional Calabi-Yau spaces

Figure 5: The $G_{B}^{(7)}$ graph. The B series starts from odd dimensional Calabi-Yau spaces

Regular tilings and Calabi-Yau motives

Figure 6: The $G_{A}^{(2)}$ graph and its transformation to a genus 2 Picard curve

$$
y^{3}=\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right)^{2}\left(x-a_{4}\right)^{2}
$$

Regular tilings and Calabi-Yau motives

Figure 6: The $G_{A}^{(2)}$ graph and its transformation to a genus 2 Picard curve

$$
y^{3}=\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right)^{2}\left(x-a_{4}\right)^{2}
$$

Regular tilings and Calabi-Yau motives

Figure 6: The $G_{A}^{(2)}$ graph and its transformation to a genus 2 Picard curve

$$
y^{3}=\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right)^{2}\left(x-a_{4}\right)^{2}
$$

Figure 7: The $G_{B}^{(3)}$ graph and its transformation to a genus Picard curve

$$
y^{3}=\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right)\left(x-a_{4}\right)\left(x-a_{5}\right)^{2}
$$

Regular tilings and Calabi-Yau motives

Figure 6: The $G_{A}^{(2)}$ graph and its transformation to a genus 2 Picard curve

$$
y^{3}=\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right)^{2}\left(x-a_{4}\right)^{2}
$$

Figure 7: The $G_{B}^{(3)}$ graph and its transformation to a genus Picard curve

$$
y^{3}=\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right)\left(x-a_{4}\right)\left(x-a_{5}\right)^{2}
$$

Conclusion and Outlook

Conclusion and Outlook

Conclusion and Outlook

Conclusion and Outlook

