Feynman integrals from bottom up

Li Lin Yang
Zhejiang University

The Standard Model (SM) of particle physics

Our current understanding of fundamental constitutes of matter and their interactions

Built upon quantum gauge field theories (in particular, Yang-Mills theories)

What's beyond the SM?

We know that there has to be something new at higher energies beyond the SM

Precision tests of the SM: electron g-2

Precision tests of the SM: electron g-2

Precision tests of the SM: Large Hadron Collider

The LHC is testing the SM at unprecedented energies and precisions!
Backed up by developments in theoretical calculations during the past decades....

Precision tests need precision calculations

Precision tests need precision calculations

The upcoming experimental accuracies are demanding much better theoretical precision for various scattering processes

A lot of theoretical efforts going on

- Analytical methods
> Numerical methods
- Mathematical tools
> Phenomenological applications

Scattering amplitudes

Connecting theories and experiments

- Collider physics
- Dark matter direct/indirect searches
- Gravitational waves
> Cosmology

Revealing new structures of QFTs

Tree-level structures

Surprising insights from tree-level calculations: complicated amplitudes can be made simple if

- We know the correct language to describe them
> We know how they come from simple building blocks

$$
\frac{\langle i j\rangle^{4}}{\langle 12\rangle\langle 23\rangle \cdots\langle(n-1) n\rangle\langle n 1\rangle}
$$

```
Parke-Taylor (1986)
```

Parke-Taylor (1986)
Xu-Zhang-Chang (1987)
Xu-Zhang-Chang (1987)
BCFW (2005)

```
BCFW (2005)
```

Many developments not covered here!

Loop-level amplitudes

Loop integrands

\downarrow

Loop integrals

1

Loop amplitudes

Modern analytic techniques for loop integrals

See, e.g., Weinzierl (2022)
and references therein

Iterated integrals and symbol letters

The calculations based on canonical differential equations show that loop integrals can be represented in terms of Chen's iterated integrals

$$
\int_{x_{0}}^{x} \mathrm{~d} \alpha_{i_{n}}\left(\boldsymbol{x}_{n}\right) \cdots \int_{x_{0}}^{x_{3}} \mathrm{~d} \alpha_{i_{2}}\left(\boldsymbol{x}_{2}\right) \int_{x_{0}}^{x_{2}} \mathrm{~d} \alpha_{i_{1}}\left(\boldsymbol{x}_{1}\right)
$$

Iterated integrals and symbol letters

The calculations based on canonical differential equations show that loop integrals can be represented in terms of Chen's iterated integrals

$$
\int_{x_{0}}^{x} \mathrm{~d} \alpha_{i_{n}}\left(\boldsymbol{x}_{n}\right) \cdots \int_{x_{0}}^{x_{3}} \mathrm{~d} \alpha_{i_{2}}\left(\boldsymbol{x}_{2}\right) \int_{x_{0}}^{x_{2}} \mathrm{~d} \alpha_{i_{1}}\left(\boldsymbol{x}_{1}\right)
$$

Integration kernels $=$ symbol letters

Iterated integrals and symbol letters

The calculations based on canonical differential equations show that loop integrals can be represented in terms of Chen's iterated integrals

$$
\int_{x_{0}}^{x} \mathrm{~d} \alpha_{i_{n}}\left(\boldsymbol{x}_{n}\right) \cdots \int_{\boldsymbol{x}_{0}}^{\boldsymbol{x}_{3}} \mathrm{~d} \alpha_{i_{2}}\left(\boldsymbol{x}_{2}\right) \int_{\boldsymbol{x}_{0}}^{x_{2}} \mathrm{~d} \alpha_{i_{1}}\left(\boldsymbol{x}_{1}\right)
$$

Integration kernels $=$ symbol letters
Encode lots of information about Feynman integrals

Iterated integrals and symbol letters

The calculations based on canonical differential equations show that loop integrals can be represented in terms of Chen's iterated integrals

$$
\int_{x_{0}}^{x} \mathrm{~d} \alpha_{i_{n}}\left(\boldsymbol{x}_{n}\right) \cdots \int_{\boldsymbol{x}_{0}}^{\boldsymbol{x}_{3}} \mathrm{~d} \alpha_{i_{2}}\left(\boldsymbol{x}_{2}\right) \int_{\boldsymbol{x}_{0}}^{x_{2}} \mathrm{~d} \alpha_{i_{1}}\left(\boldsymbol{x}_{1}\right)
$$

Integration kernels $=$ symbol letters
Encode lots of information about Feynman integrals

- The correct language?
- Simple building blocks?

Symbol letters

$$
\int_{x_{0}}^{x} \mathrm{~d} \alpha_{i_{n}}\left(\boldsymbol{x}_{n}\right) \cdots \int_{x_{0}}^{x_{3}} \mathrm{~d} \alpha_{i_{2}}\left(\boldsymbol{x}_{2}\right) \int_{x_{0}}^{x_{2}} \mathrm{~d} \alpha_{i_{1}}\left(\boldsymbol{x}_{1}\right) \quad \alpha_{i_{1}} \otimes \alpha_{i_{2}} \otimes \cdots \otimes \alpha_{i_{n}}
$$

Analytic information: singularities determined by letters

Algebraic information, e.g., shuffle algebra:

$$
\begin{gathered}
(a \otimes b) \amalg(c \otimes d)=a \otimes b \otimes c \otimes d+a \otimes c \otimes b \otimes d+c \otimes a \otimes b \otimes d \\
+a \otimes c \otimes d \otimes b+c \otimes a \otimes d \otimes b+c \otimes d \otimes a \otimes b
\end{gathered}
$$

Symbol letters

Geometric information

Polylogarithmic integrals
$\alpha_{i}(\boldsymbol{x})=\log W_{i}(\boldsymbol{x})$

Elliptic integrals, modular forms...
Still calling for better understanding

More complicated manifolds
Studies emerging!

From symbol letters to loop integrals

From symbol letters to loop integrals

Try to understand the symbol letters using Baikov representations + intersection theory

Baikov representations

Change of variables from loop momenta to propagator denominators

$$
\begin{gathered}
\int\left[\prod_{i=1}^{L} \frac{d^{d} k_{i}}{i \pi^{d / 2}}\right] \frac{1}{z_{1}^{a_{1}} z_{2}^{a_{2} \cdots z_{N}^{a_{N}}}} \quad\left[\begin{array}{l}
\mathscr{C}
\end{array} \quad u(z) \frac{\mathrm{d} z_{1} \wedge \cdots \wedge \mathrm{~d} z_{n}}{z_{1}^{a_{1} \cdots z_{n}^{a_{n}}}}\right. \\
z_{m}=\sum_{i, j} A_{m}^{i j} q_{i} \cdot q_{j}+f_{m}
\end{gathered}
$$

Contains all information about an integral family (including all sub-sectors)

$$
u(z)=\left[P_{1}(z)\right]^{\gamma_{1}} \cdots\left[P_{m}(z)\right]^{\gamma_{m}}
$$

Recursive structure of Baikov representations

Geometric formulation of IBP equivalence

The u-functions generate IBP relations among integrals

$$
\begin{aligned}
& I=\int_{\mathscr{C}} u(z) \varphi(z) \\
& 0=\int_{\mathscr{C}} d(u(z) \xi(z))=\int_{\mathscr{C}} u(z) \nabla_{\omega} \xi(z) \nabla_{\omega} \\
& \equiv d+\omega \wedge \begin{array}{l}
\text {-form } \\
(n-1) \text {-form }
\end{array} \begin{array}{l}
\text { covariant } \\
\text { derivative }
\end{array} \\
& \omega \equiv d \log u \quad \begin{array}{l}
\text { connection }
\end{array}
\end{aligned}
$$

$\varphi(z)$ and $\varphi(z)+\nabla_{\omega} \xi(z)$ are equivalent (in the sense of integration)

The equivalence classes form a vector space H_{ω}^{n} (the n-th twisted cohomology group)

$$
\langle\varphi|: \varphi \sim \varphi+\nabla_{\omega} \xi
$$

IBP reduction = vector decomposition

$\operatorname{dim}\left(H_{\omega}^{n}\right)=\nu=\#$ of master integrals with a given ω

Frellesvig et al. (2019-2020)
Weinzierl (2020)

$$
\text { A basis with } \nu \text { vectors } \quad\left\{\left\langle e_{1}\right|,\left\langle e_{2}\right|, \ldots,\left\langle e_{\nu}\right|\right\}
$$

$$
\text { All vectors are linear combinations } \quad\langle\varphi|=\sum_{i=1}^{\nu} c_{i}\left\langle e_{i}\right|
$$

To perform the vector decomposition, one introduces a dual space with elements

$$
\left|\varphi_{R}\right\rangle: \varphi_{R} \sim \varphi_{R}+\nabla_{-\omega} \xi_{R}
$$

The intersection numbers are "scalar-products" between vectors and dual-vectors

$$
\left\langle\varphi_{L} \mid \varphi_{R}\right\rangle_{\omega}=\frac{1}{(2 \pi i)^{n}} \int l_{\omega}\left(\varphi_{L}\right) \wedge \varphi_{R}=\frac{1}{(2 \pi i)^{n}} \int \varphi_{L} \wedge l_{-\omega}\left(\varphi_{R}\right)
$$

Canonical DEs for polylogarithmic integral families

Using these tools, we want to answer two questions

How do we construct the coefficient matrix (symbol letters and rational coefficients)?

Canonical bases from d-log integrands

The idea is simple: we look for integrands of the d-log form

$$
\int_{\mathscr{C}} u(z) \frac{Q d z_{1} \wedge \cdots \wedge d z_{n}}{z_{1}^{a_{1}} \cdots z_{n}^{a_{n}} P_{1}^{b_{1}} \cdots P_{m}^{b_{m}}}=\int_{\mathscr{C}}[G(z)]^{\epsilon} \bigwedge_{j=1}^{n} d \log f_{j}(z)
$$

Two simple building blocks
Only simple poles for all variables

$$
\begin{aligned}
& \mathrm{d} \log (z-c)=\frac{d z}{z-c} \\
& \mathrm{~d} \log \left(\tau\left[z, c ; c_{ \pm}\right]\right)=\frac{\sqrt{\left(c-c_{+}\right)\left(c-c_{-}\right)} d z}{(z-c) \sqrt{\left(z-c_{+}\right)\left(z-c_{-}\right)}} \\
& \equiv \mathrm{d} \log \frac{\sqrt{c-c_{+}} \sqrt{z-c_{-}}+\sqrt{c-c_{-}} \sqrt{z-c_{+}}}{\sqrt{c-c_{+}} \sqrt{z-c_{-}}-\sqrt{c-c_{-}} \sqrt{z-c_{+}}}
\end{aligned}
$$

Intersection numbers between d-log integrals are particularly simple!

Differential equations

We are now ready to derive the canonical DEs

$$
\eta_{I J}=\left\langle\varphi_{I} \mid \varphi_{J}\right\rangle
$$

$$
\left\langle\dot{\varphi}_{I}\right| \equiv \hat{\mathrm{d}}\left\langle\varphi_{I}\right|=(\mathrm{d} \Omega)_{I_{J}}\left\langle\varphi_{J}\right|
$$

$$
(\hat{\mathrm{d}} \Omega)_{I K}=\left\langle\dot{\varphi}_{I} \mid \varphi_{J}\right\rangle\left(\eta^{-1}\right)_{J K}
$$

All symbol letters can be read off from these intersection numbers

Differential equations

We are now ready to derive the canonical DEs

$$
\eta_{I J}=\left\langle\varphi_{I} \mid \varphi_{J}\right\rangle
$$

$$
\left\langle\dot{\varphi}_{I}\right| \equiv \hat{\mathrm{d}}\left\langle\varphi_{I}\right|=(\mathrm{d} \Omega)_{I J}\left\langle\varphi_{J}\right|
$$

$$
(\hat{\mathrm{d}} \Omega)_{I K}=\left\langle\dot{\varphi}_{I} \mid \varphi_{J}\right\rangle\left(\eta^{-1}\right)_{J K}
$$

All symbol letters can be read off from these intersection numbers

Would like to have universal formulas

Intersection numbers from multivariate residues

$$
\left\langle\varphi_{L} \mid \varphi_{R}\right\rangle=\sum_{\boldsymbol{p}} \operatorname{Res}_{\boldsymbol{z}=\boldsymbol{p}}\left(\psi_{L} \hat{\varphi}_{R}\right)
$$

The poles are determined by the u-function

$$
u(z)=\left[P_{1}(z)\right]^{\gamma_{1}} \cdots\left[P_{m}(z)\right]^{\gamma_{m}}
$$

$$
\nabla_{n} \cdots \nabla_{1} \psi_{L}=\varphi_{L}
$$

Solving this higher partial DE is in general difficult, but simplified if φ_{L} is d-log

A complication: the poles can be non-factorized and/or degenerate, e.g.:

$$
u=z_{1}^{\beta_{1}} z_{2}^{\beta_{2}}\left(z_{1}+z_{2}\right)^{\beta_{3}}
$$

Factorization transformations

It is possible to perform variable changes (in the spirit of sector decomposition) to factorize the non-factorized poles, such that

$$
\begin{aligned}
& \left.\left.\quad u(z)\right|_{z \rightarrow \boldsymbol{p}} \quad u \rightarrow \boldsymbol{x}^{(\alpha)} \quad u\left(\boldsymbol{x}^{(\alpha)}\right)\right|_{\boldsymbol{x}^{(\alpha)} \rightarrow \boldsymbol{\rho}^{(\alpha)}}=\bar{u}_{\alpha}\left(\boldsymbol{\rho}^{(\alpha)}\right) \prod_{i}\left[x_{i}^{(\alpha)}-\rho_{i}^{(\alpha)}\right]^{\gamma_{i}^{(\alpha)}} \\
& \text { Different }(\alpha) \text { labels different variable changes }
\end{aligned}
$$

$$
u=z_{1}^{z_{1}=x_{1}} \begin{gathered}
\\
z_{2}=x_{1}\left(x_{2}-1\right) \\
\end{gathered}
$$

One needs to iterate over different factorizations for complete result

Symbol letters from factorized poles

Since φ_{I} and φ_{J} have only simple poles, $\dot{\varphi}_{I}$ have at most double poles

In this case, the intersection numbers can be computed using simple formulas

$$
\varphi^{(\boldsymbol{b})}=\left.C^{(\boldsymbol{b})} \bigwedge_{i}\left[x_{i}^{(\alpha)}-\rho_{i}^{(\alpha)}\right]^{b_{i}} \mathrm{~d} x_{i}^{(\alpha)} \quad u\left(\boldsymbol{x}^{(\alpha)}\right)\right|_{\boldsymbol{x}^{(\alpha)} \rightarrow \boldsymbol{\rho}^{(\alpha)}}=\bar{u}_{\alpha}\left(\boldsymbol{\rho}^{(\alpha)}\right) \prod_{i}\left[x_{i}^{(\alpha)}-\rho_{i}^{(\alpha)}\right]^{\gamma_{i}^{(\alpha)}}
$$

$$
\left\langle\dot{\varphi}_{I} \mid \varphi_{J}\right\rangle>\begin{array}{ll}
\frac{C_{I}^{(-1)} C_{J}^{(-1)}}{\gamma^{(\alpha)}} \hat{\mathrm{d}} \log \left(\bar{u}_{\alpha}\left(\boldsymbol{\rho}^{(\alpha)}\right)\right) & \text { One double pole } \\
-\frac{\gamma_{k}^{(\alpha)}}{\gamma^{(\alpha)}} \hat{\mathrm{d}} \int C_{I}^{\left(\boldsymbol{b}_{I}\right)} C_{J}^{\left(\boldsymbol{b}_{J}\right)} \hat{\mathrm{d}} \rho_{k}^{(\alpha)} & \text { Only simple poles }
\end{array}
$$

Selection rule: can be non-zero only if φ_{I} and φ_{J} share $(n-1)$-variable poles

Symbol letters from factorized poles

The integration can be recasted as d-logs by studying the univariate intersection numbers after taking the residues $-\frac{\gamma_{k}^{(\alpha)}}{\gamma^{(\alpha)}} \hat{\mathrm{d}} \int C_{I}^{\left(\boldsymbol{b}_{I}\right)} C_{J}^{\left(\boldsymbol{b}_{J}\right)} \hat{\mathrm{d}} \rho_{k}^{(\alpha)}$ of the $(n-1)$-variable poles

$$
\begin{aligned}
\left\langle\dot{\varphi}_{I} \mid \varphi_{I}\right\rangle & =\sum_{\alpha \neq I} \frac{\gamma^{(\alpha)}}{\gamma^{(I)}} \hat{\mathrm{d}} \log \left(c_{I}-c_{\alpha}\right)+\eta_{I I} \beta_{0} \hat{\mathrm{~d}} \log P_{0} \\
\left\langle\dot{\varphi}_{I} \mid \varphi_{J}\right\rangle & =-\hat{\mathrm{d}} \log \left(c_{I}-c_{J}\right)+\eta_{I J} \beta_{0} \hat{\mathrm{~d}} \log P_{0}, \\
\left\langle\dot{\varphi}_{I} \mid \varphi_{I}\right\rangle & =\frac{1}{\gamma^{(I)}} \hat{\mathrm{d}} \log \left(\bar{u}_{I}\left(c_{I}\right)\right)-\hat{\mathrm{d}} \log \left(c_{+}-c_{-}\right) \\
& +\hat{\mathrm{d}} \log \left(c_{I}-c_{+}\right)+\hat{\mathrm{d}} \log \left(c_{I}-c_{-}\right), \\
\left\langle\dot{\varphi}_{I} \mid \varphi_{J}\right\rangle & =\left\langle\dot{\varphi}_{J} \mid \varphi_{I}\right\rangle=-\hat{\mathrm{d}} \log \tau\left[c_{I}, c_{J} ; c_{ \pm}\right] .
\end{aligned}
$$

Purely algebraic method to determine the symbol letters starting from a single u-function

A new algorithmic approach

Problems of the previous approach

- Relying on the construction of d-log basis
- Not easy for algorithmic implementation

$$
\begin{aligned}
& d \log \frac{G\left(\left\{q_{1}, q_{2}, \ldots, q_{n}, l\right\},\left\{q_{1}, q_{2}, \ldots, q_{n}, q_{n+1}\right\}\right)-\sqrt{-G\left(q_{1}, \ldots, q_{n}\right) G\left(q_{1}, \ldots, q_{n+1}, l\right)}}{G\left(\left\{q_{1}, q_{2}, \ldots, q_{n}, l\right\},\left\{q_{1}, q_{2}, \ldots, q_{n}, q_{n+1}\right\}\right)+\sqrt{-G\left(q_{1}, \ldots, q_{n}\right) G\left(q_{1}, \ldots, q_{n+1}, l\right)}} \\
& d \log \frac{G\left(\left\{q_{1}, q_{2}, \ldots, q_{n}, l\right\},\left\{q_{1}, q_{2}, \ldots, q_{n}, q_{n+1}\right\}\right)-\sqrt{G\left(q_{1}, \ldots, q_{n+1}\right) G\left(q_{1}, \ldots, q_{n}, l\right)}}{G\left(\left\{q_{1}, q_{2}, \ldots, q_{n}, l\right\},\left\{q_{1}, q_{2}, \ldots, q_{n}, q_{n+1}\right\}\right)+\sqrt{G\left(q_{1}, \ldots, q_{n+1}\right) G\left(q_{1}, \ldots, q_{n}, l\right)}} .
\end{aligned}
$$ (especially the factorization of poles)

But together with the generic one-loop results, it already hints at possible forms of symbol letters!
> They are written in terms of Gram determinants evaluated at certain singular points
> These Gram determinants are connected in the recursive structure of Baikov representations

Identify the rational letters from leading singularities

Constructing d-log integrands under maximal cut (much simpler than the full construction)

Or analyzing the singularities of the u-functions in the projective coordinates (particularly easy for algorithmic implementation)

$$
\begin{aligned}
\tilde{u}_{1}\left(x_{4}\right) & =\left[\tilde{G}(p) \tilde{G}\left(l_{2}\right)\right]^{\epsilon}\left[\tilde{G}\left(l_{1}, l_{2}\right) \tilde{G}\left(l_{2}, p\right)\right]^{-1 / 2-\epsilon}, \\
\tilde{G}(p) & =s, \quad \tilde{G}\left(l_{2}, p\right)=-\lambda\left(x_{4}, s, m_{2}^{2}\right) / 4, \\
\tilde{G}\left(l_{2}\right) & =x_{4}, \quad \tilde{G}\left(l_{1}, l_{2}\right)=-\left(x_{4}-m_{1}^{2}\right)^{2} / 4,
\end{aligned}
$$

Singular points in the $\left[x_{4}: x_{0}\right]$ space:

$$
[0: 1],\left[m_{1}^{2}, 0\right],[1,0]
$$

All rational letters

$$
s, m_{1}^{2}, m_{2}^{2}, \lambda\left(s, m_{1}^{2}, m_{2}^{2}\right)
$$

Search for irrational letters

Look for irrational letters of the form

$$
W(P, Q)=\frac{P+\sqrt{Q}}{P-\sqrt{Q}} \longrightarrow \text { Combinations of Gram determinants }
$$

The Gram determinants that can be combined are not arbitrary!

- Constraints from recursive structure

$$
\begin{aligned}
& B=G\left(\left\{\boldsymbol{k}, q_{i}\right\},\left\{\boldsymbol{k}, q_{j}\right\}\right), A=G\left(\boldsymbol{k}, q_{i}\right), \\
& C=G\left(\boldsymbol{k}, q_{j}\right), D=G(\boldsymbol{k}), E=G\left(\boldsymbol{k}, q_{i}, q_{j}\right),
\end{aligned}
$$

> Relations among different determinants

$$
B^{2}+D E=A C
$$

$$
\begin{aligned}
\left.\partial_{B} \log W(B,-D E)\right|_{D E} & =\frac{2 \sqrt{-D E}}{-A C} \\
\left.\partial_{B} \log W(B, A C)\right|_{D E} & =\frac{2}{\sqrt{A C}}
\end{aligned}
$$

Proof-of-concept implementation

At the moment only for planar topologies
Not fully optimized, but already delivering many cutting-edge results!

- Checked against literature whenever possible
- Predict new results not available in literature
- Part of new results verified by bootstrapping the canonical DEs

What's next?

- Obvious step: implementation for non-planar cases
> Stranger irrational letters (nested square roots)

$$
\log \frac{R+\sqrt{P+\sqrt{Q}}}{R-\sqrt{P+\sqrt{Q}}}
$$

- Beyond polylogarithms?

Beyond polylogarithms

Elliptic integrals and iterated integrals over them

$$
\begin{aligned}
F(x ; k) & =\int_{0}^{x} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)}} \\
E(x ; k) & =\int_{0}^{x} \frac{\sqrt{1-k^{2} t^{2}}}{\sqrt{1-t^{2}}} d t \\
\Pi(n ; \varphi \mid m) & =\int_{0}^{\sin \varphi} \frac{1}{1-n t^{2}} \frac{d t}{\sqrt{\left(1-m t^{2}\right)\left(1-t^{2}\right)}}
\end{aligned}
$$

Appearing in cutting-edge calculations

Many developments not covered here!

Elliptic integrals and elliptic curves

Functions can be categorized by the underlying geometry

- The geometric object underlying MPLs is a sphere
- The geometric object underlying iterated elliptic integrals is an elliptic curve (a torus)

$$
y^{2}=P(x) \quad \text { (Degree-3 or } 4 \text { polynomial with distinct roots) }
$$

Canonical DEs for elliptic integral families

Want to extend the concepts of canonical DEs to elliptic cases

What are the corresponding symbol letters?
(No longer logarithms!)

Sunrise and Banana families

Lessons from equal-mass sunrise and banana families:
we should utilize modular transformations and modular forms associated with the elliptic curves

Modular variable

$$
\tau=\frac{\psi_{2}}{\psi_{1}} \quad \text { Modular transformation } \quad \tau \rightarrow \frac{a \tau+b}{c \tau+d}
$$

Sunrise and Banana families

The canonical DEs can be derived by analyzing the Picard-Fuchs operator, e.g.:

$$
L_{3}^{(0)}=\frac{d^{3}}{d x^{3}}+\left[\frac{3}{x}+\frac{3}{2(x-4)}+\frac{3}{2(x-16)}\right] \frac{d^{2}}{d x^{2}}+\frac{7 x^{2}-68 x+64}{x^{2}(x-4)(x-16)} \frac{d}{d x}+\frac{1}{x^{2}(x-16)} .
$$

It turns out that the symbol letters can be expressed as modular forms, e.g.:

$$
b_{0}=\frac{2}{3} \sqrt{3} \frac{\eta(2 \tau)^{6} \eta(3 \tau)}{\eta(\tau)^{3} \eta(6 \tau)^{2}}, \quad b_{1}=6 \sqrt{3} \frac{\eta(\tau) \eta(6 \tau)^{6}}{\eta(2 \tau)^{2} \eta(3 \tau)^{3}} .
$$

But this cannot be the whole story in more complicated cases!

Single parameter elliptic families with non-trivial sub-sectors

(a)

Jiang, Wang, LLY, Zhao (2023)

$$
y=-\frac{m^{2}}{s}
$$

Non-trivial sub-sectors: 2 top-sector MIs +9 sub-sector MIs for family (a) 3 top-sector MIs +15 sub-sector MIs for family (b)

Canonical DEs and solutions

Again possible to derive canonical DEs (including sub-sectors)

$$
\frac{1}{2 \pi i} \frac{d \vec{M}}{d \tau}=\varepsilon\left(\begin{array}{ccccccccccc}
\eta_{1,2} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\eta_{4} & \eta_{1,2} & 0 & 8 \eta_{3} & -12 \rho & -28 \eta_{3} & 16 \eta_{3} & 10 \eta_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -\eta_{2,2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \eta_{2,2} & 0 & -\eta_{2,2} & \frac{\eta_{2,2}}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \eta_{2,2}+2 \Phi_{1} & 3 \vartheta & 0 & 0 & 0 & -\vartheta & -\vartheta \\
0 & 0 & 0 & 0 & -\vartheta & -\eta_{2,2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -\eta_{2,2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -\eta_{2,2} & -2 \varphi & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 \varphi & \eta_{2,2}+3 \Phi_{2} & 0 & -\varphi \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \eta_{2,2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \vec{M}
$$

The symbol letters are no longer purely modular forms
Non-trivial contributions from singularities of sub-sectors (punctures on the torus)
Open Question: can we construct these "elliptic symbol letters" algebraically?

Numerical evaluation

The iterated integrals can be evaluated using q-expansion

$$
q=e^{2 \pi i \tau}
$$

$$
I\left(f_{1}, f_{2}, \ldots, f_{n} ; \tau, \tau_{0}\right)=(2 \pi i)^{n} \int_{\tau_{0}}^{\tau} d \tau_{1} \int_{\tau_{0}}^{\tau_{1}} d \tau_{2} \cdots \int_{\tau_{0}}^{\tau_{n-1}} d \tau_{n} f_{1}\left(\tau_{1}\right) f_{2}\left(\tau_{2}\right) \ldots f_{n}\left(\tau_{n}\right)
$$

Needs to understand the analytic continuation and argument transformation properties of these iterated integrals!

Summary and outlook

- Towards building all symbol letters in a loop integral family automatically
- Baikov representations + intersection theory
> Algorithmic approach for planar cases (with proof-of-concept implementation)
- Bootstrapping canonical DEs
- Extension to non-planar cases in progress
> Relation and combination with other approaches (Schubert, Landau, ...)
- Applications in more situations...
- Extension to elliptic integrals and more complicated cases?

Summary and outlook

- Towards building all symbol letters in a loop integral family automatically
- Baikov representations + intersection theory
- Algorithmic approach for planar cases (with proof-of-concept implementation)
- Bootstrapping canonical DEs
- Extension to non-planar cases in progress
> Relation and combination with other approaches (Schubert, Landau, ...)
- Applications in more situations...
- Extension to elliptic integrals and more complicated cases?
Thank you!

