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The Standard Model (SM) of particle physics

2

Our current understanding of fundamental 
constitutes of matter and their interactions

Built upon quantum gauge field theories 

(in particular, Yang-Mills theories)



What’s beyond the SM?

3

We know that there has to be something new at higher energies beyond the SM



Precision tests of the SM: electron g-2

4

aEXP
e = 0.001 159 652 180 59(13)

aSM
e = 0.001 159 652 181 606(11)(12)(229)

FIG. 1: Overview of 389 diagrams which represents 6354 vertex diagrams of Set V. The horizontal

solid lines represent the electron propagators in a constant weak magnetic field. Semi-circles stand

for photon propagators. The left-most figures are denoted as X001–X025 from the top to the

bottom. The top figure in the second column from the left is denoted X026, and so on.

III. FORMULATION

Most of these diagrams are so huge and complicated that numerical integration is the only

viable option at present. In order to evaluate them on a computer which requires that every

step of computation is finite, however, it is necessary to remove all sources of divergence of

the integrand before carrying out integration. This is achieved by the introduction of K-

operation which deals with the UV divergences [22, 47], and R-subtraction and I-operation

which deal with the IR divergences [23, 47]. See IIID and III E for more details.

In practice it is very difficult to carry out such a calculation without making mistakes

because of the gigantic size of the integral and a large number of terms required for renor-

malization. To deal with this problem we developed an automatic code-generating algorithm

gencodeN [22, 23], in which N implies that it works for the q-type diagrams of any order

8

Fan et al. (2022)

Aoyama et al. (2019) and a lot of efforts!
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Calls for better understanding measurements of 
the fine-structure-constant in atomic physics



Precision tests of the SM: Large Hadron Collider
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cross-sections, are: production in association with a vector boson or 
‘Higgsstrahlung’ (VH) depicted in Fig. 1c, and production in association 
with top (tH and ttH) or bottom (bbH) quarks, depicted in Fig. 1d–f. 
The bbH mode has not been studied in the context of the SM Higgs 
boson because of limited sensitivity.

Events are categorized according to the signatures particular to each 
production mechanism. For example, they are categorized as 
VBF-produced if there are two high transverse momentum (pT) jets, or 
as VH-produced if there are additional charged leptons (ℓ) and/or pT

miss, 
or ttH- and tH-produced if there are jets identified as coming from b 
quarks, or otherwise ggH-produced. (The top quark predominantly 
decays into a W boson and a b-quark jet).

Decays
In the SM, particle masses arise from spontaneous breaking of the gauge 
symmetry, through gauge couplings to the Higgs field in the case of 
vector bosons, and Yukawa couplings in the case of fermions. The SM 
Higgs boson couples to vector bosons, with an amplitude proportional 
to the gauge boson mass squared mV

2, and to fermions with an amplitude 
proportional to the fermion mass mf. Hence, for example, the coupling 
is stronger for the third generation of quarks and leptons than for those 
in the second generation. The observation of many Higgs boson decays 
to SM particles and the measurement of their branching fractions are 
a crucial test of the validity of the theory. Any sizeable deviation from 
the predictions could indicate the presence of BSM physics.

The Higgs boson, once produced, rapidly decays into a pair of  
fermions or a pair of bosons. In the SM, its lifetime is τ ≈ 1.6 × 10 sH

−22 , 
and its inverse, the natural width, is Γ ħ τ= / = 4.14 ± 0.02 MeVH  (ref. 39), 
where ħ is the reduced Planck's constant. The natural width is the sum 
of all the partial widths, and the ratios of the partial widths to the total 
width are called branching fractions and represent the probabilities 
for that decay channel to occur. The Higgs boson does not couple 
directly to massless particles (for example, the gluon or the photon), 
but can do so through quantum loops (for example, Fig. 1a,i,j).

By design, the event selections do not overlap among analyses target-
ing different final states. Where the final states are similar, the overlap 
has been checked and found to be negligible.

Detailed information on the analyses included in the new combina-
tion along with improvements, and the online and offline criteria used to 
select events for the analyses can be found in Methods, Extended Data 
Tables 2 and 3, and the associated references. Online reconstruction is 
performed in real time as the data are being collected. Offline recon-
struction is performed later on stored data. The background-subtracted 
distributions of the invariant mass of final-state particles in the indi-
vidual decay channels are shown in Extended Data Figs. 3 and 4. The 
channels that are used in this combination are as follows.

Bosonic decay channels: H → γγ (Fig. 1i, j)42; H → ZZ → 4ℓ (Fig. 1g)43; 
H → WW → ℓνℓv (Fig. 1g)44, H → Zγ (Fig. 1i, j)45; fermionic decay channels: 
H → ττ, third-generation fermion (Fig. 1h)46, H → bb, third-generation 
fermion (Fig. 1h)47–51, H → µµ, second-generation fermion (Fig. 1h)52;  
ttH and tH with multileptons (Fig. 1d–f)53; Higgs boson decays beyond 
the SM35.

Higgs boson pair production
The measurement of the pair production of Higgs bosons can probe its 
self-interaction λ. The pair production modes are shown in Fig. 1k–o.

In the ggH mode, there are two leading contributions: in the first 
(Fig. 1l), two Higgs bosons emerge from a top or bottom quark loop; 
in the second (Fig. 1k), a single virtual Higgs boson, H*, emerges from 
the top or bottom quark loop and then decays to two Higgs bosons 
(gg → H* → HH).  Explicit establishment of the latter contribution, a 
direct manifestation of the Higgs boson’s self-interaction, would elu-
cidate the strikingly unusual potential of the BEH field.

In the VBF mode, there are three subprocesses that can lead to pro-
duction of a pair of Higgs bosons: (1) through a virtual Higgs boson 
(Fig. 1m); (2) through a four-point interaction: VV → HH (Fig. 1n); and 
(3) through the exchange of a vector boson (Fig. 1o).
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Fig. 3 | A portrait of the Higgs boson couplings to fermions and vector 
bosons. Left: constraints on the Higgs boson coupling modifiers to fermions 
(κf) and heavy gauge bosons (κV), in different datasets: discovery (red), the full 
LHC Run 1 (blue) and the data presented here (black). The SM prediction 
corresponds to κV = κf = 1 (diamond marker). Right: the measured coupling 
modifiers of the Higgs boson to fermions and heavy gauge bosons, as functions 

of fermion or gauge boson mass, where υ is the vacuum expectation value of 
the BEH field (‘Notes on self-interaction strength’ in Methods). For gauge 
bosons, the square root of the coupling modifier is plotted, to keep a linear 
proportionality to the mass, as predicted in the SM. The P value with respect to 
the SM prediction for the right plot is 37.5%.

The LHC is testing the SM at unprecedented energies and precisions!

Backed up by developments in theoretical calculations during the past decades….



Precision tests need precision calculations
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Precision tests need precision calculations
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Fig. 30: (left) Summary plot showing the total expected ±1� uncertainties in S2 (with YR18 systematic
uncertainties) on the coupling modifier parameters for ATLAS (blue) and CMS (red). The filled coloured
box corresponds to the statistical and experimental systematic uncertainties, while the hatched grey area
represent the additional contribution to the total uncertainty due to theoretical systematic uncertainties.
(right) Summary plot showing the total expected ±1� uncertainties in S2 (with YR18 systematic uncer-
tainties) on the coupling modifier parameters for the combination of ATLAS and CMS extrapolations.
For each measurement, the total uncertainty is indicated by a grey box while the statistical, experimental
and theory uncertainties are indicated by a blue, green and red line respectively.

a simple scaling of the cross sections and luminosities is applied, which is a fair assessment with the
current systematic uncertainties and assuming that the experimental performance and systematic uncer-
tainties are unchanged with respect to the current LHC experiments. Two scenarios are then assumed
for the theoretical and modelling systematic uncertainties on the signal and backgrounds. The first (S2)
is the foreseen baseline scenario at HL-LHC, and the second (S20) is a scenario where theoretical and
modelling systematic uncertainties are halved, which in many cases would correspond to uncertainties
roughly four times smaller than for current Run 2 analyses. It should be noted that HL-LHC measure-
ments, whose precision is limited by systematic uncertainties, would also improve for S2’. The results
of these projections are reported in Table 40.

2.8 Higgs couplings precision overview in the Kappa-framework and the nonlinear EFT24

After the discovery of the Higgs boson at the LHC, the first exploration of the couplings of the new
particle at Run I and Run II has achieved an overall precision at the level of ten percent. One of the main
goals of Higgs studies at the HL-LHC or HE-LHC will be to push the sensitivity to deviations in the
Higgs couplings close to the percent level.

In this section we study the projected precision that would be possible at such high luminosity
and high energy extensions of the LHC from a global fit to modifications of the different single-Higgs
couplings. Other important goals of the Higgs physics program at the HL/HE-LHC, such as extend-
ing/complementing the studies of the total rates with the information from differential distributions, or
getting access to the Higgs trilinear coupling, will be covered in other parts of this document.

In order to study single-Higgs couplings, we introduce a parametrisation, the nonlinear EFT, that
24 Contacts: J. de Blas, O. Catà, O. Eberhardt, C. Krause

67

1902.00134 The upcoming experimental accuracies 
are demanding much better theoretical 
precision for various scattering processes

➤ Analytical methods 
➤ Numerical methods 
➤ Mathematical tools 
➤ Phenomenological applications

A lot of theoretical efforts going on



Scattering amplitudes

8

Connecting theories and experiments

Revealing new structures of QFTs

➤ Collider physics 
➤ Dark matter direct/indirect searches 
➤ Gravitational waves 
➤ Cosmology



Tree-level structures
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Surprising insights from tree-level calculations: 
complicated amplitudes can be made simple if

Parke-Taylor (1986) 
Xu-Zhang-Chang (1987) 
BCFW (2005)

Many developments not covered here!

➤ We know the correct language to describe them 
➤ We know how they come from simple building blocks



Loop-level amplitudes
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Loop integrands

Loop integrals

Loop amplitudes



Modern analytic techniques for loop integrals
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Canonical basis Canonical DEs Solutions

IBP reduction Differential Equations

See, e.g.,  Weinzierl (2022) 
and references therein

➤ Routine for polylogarithmic integrals 
➤ Extending to elliptic integrals and more

d ⃗f(x, ϵ) = ϵ dαi(x) Ai
⃗f(x, ϵ)



Iterated integrals and symbol letters
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∫
x

x0

dαin(xn)⋯∫
x3

x0

dαi2(x2)∫
x2

x0

dαi1(x1)

The calculations based on canonical differential equations show that loop integrals can be 
represented in terms of Chen’s iterated integrals
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∫
x

x0

dαin(xn)⋯∫
x3

x0

dαi2(x2)∫
x2

x0

dαi1(x1)

The calculations based on canonical differential equations show that loop integrals can be 
represented in terms of Chen’s iterated integrals

Integration kernels = symbol letters

Encode lots of information about Feynman integrals

➤ The correct language? 
➤ Simple building blocks?



Symbol letters
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∫
x

x0

dαin(xn)⋯∫
x3

x0

dαi2(x2)∫
x2

x0

dαi1(x1) αi1 ⊗ αi2 ⊗ ⋯ ⊗ αin

Symbol map Goncharov et al. (2010) 
Duhr et al. (2011)

Analytic information: singularities determined by letters

Algebraic information, e.g., shuffle algebra:



Symbol letters
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αi(x) = log Wi(x)

Geometric information

Elliptic integrals, modular forms… 

Still calling for better understanding

Polylogarithmic integrals

More complicated manifolds 

Studies emerging!



From symbol letters to loop integrals
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Canonical basis Canonical DEs Solutions

IBP reduction Differential Equations

Symbol letters“Bottom-up”



From symbol letters to loop integrals
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Canonical basis Canonical DEs Solutions

IBP reduction Differential Equations

Symbol letters

Try to understand the symbol letters using Baikov representations + intersection theory

“Bottom-up”



Baikov representations
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Change of variables from loop momenta to propagator denominators

∫𝒞
u(z)

dz1 ∧ ⋯ ∧ dzn

za1
1 ⋯zan

n∫ [
L

∏
i=1

ddki

iπd/2 ] 1
za1
1 za2

2 ⋯zaN
N

Baikov (1996)

Contains all information about an integral family (including all sub-sectors)

u(z) = [P1(z)]γ1⋯[Pm(z)]γm

zm = ∑
i,j

Aij
m qi ⋅ qj + fm



Recursive structure of Baikov representations
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uStd(z) → uLBL(z) → usubsectors
LBL (z)

All -functions can be generated from a single oneu

Jiang, LLY (2023)



Geometric formulation of IBP equivalence
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I = ∫𝒞
u(z) φ(z)

 and  are equivalent 
(in the sense of integration)
φ(z) φ(z) + ∇ωξ(z)

0 = ∫𝒞
d(u(z)ξ(z)) = ∫𝒞

u(z)∇ωξ(z)
∇ω ≡ d + ω ∧

ω ≡ d log u connection

covariant 
derivative

-form(n − 1)

Frellesvig et al. (2019)

়࿄Ц ۚ ࿄ ۠ ࿄ Ҭ ٜᆘྼ

<latexit sha1_base64="HXlVmBr8vmZ7FLGju6bcuwb5R4g="></latexit>

The equivalence classes form a vector space  (the -th twisted cohomology group)Hn
ω n

-formn

The -functions generate IBP relations among integralsu



IBP reduction = vector decomposition
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# of master integrals with a given dim(Hn
ω) = ν = ω

A basis with  vectorsν Ь়ംႲЦ И ়ംႳЦ И Н И ়ംᆌЦЭ

<latexit sha1_base64="OfwubIuZrFuP56Yeo3wNXwxUjzc="></latexit>

়࿄Ц Ҳ ᆌٯᅎႽႲ ഀᅎ ়ംᅎЦ

<latexit sha1_base64="D+jnz66ojomkE30XcLj7CtaX3lc=">AAACYnicbVDBattAEF2rTZuqaWMnx4Sy1AR6aI0UAm0PgdBe0kMgpXZisByxWo/txatdsTubYIR+ol/Ta/MXufdDulJ8qJM+GHi8N8PMvKyQwmIU3bWCJ083nj3ffBG+3Hr1ervd2bmw2hkOA66lNsOMWZBCwQAFShgWBlieSbjMFl9r//IajBVa9XFZwDhnMyWmgjP0Utp+n2SGlck1M8VcVPSYJtblaSmO4+oqUY7yVNCmBVJRpe1u1Isa0MckXpEuWeE87bTeJBPNXQ4KuWTWjuKowHHJDAouoQoTZ6FgfMFmMPJUsRzsuGzequiBVyZ0qo0vhbRR/50oWW7tMs98Z85wbh96tfg/b+Rw+mlcClU4BMXvF02dpKhpnRGdCAMc5dITxo3wt1I+Z4Zx9EmGa2t8NAvAal10SnA9gQ/NAWFiAWtWP1H+6H8b0v6NpmeN5xONH+b3mFwc9uKj3ufvR92TL6tsN8keeUvekZh8JCfklJyTAeHkJ/lFfpPb1p8gDDrB7n1r0FrN7JI1BPt/AVgyuFs=</latexit>

All vectors are linear combinations

Ц࿄ᄼু ۚ ࿄ᄼ ۠ ࿄ᄼ Ҭ ٜႼᆘྼᄼ

<latexit sha1_base64="jRMwqUMFgTSa+pLJ0kdLvEmCulI="></latexit>

To perform the vector decomposition, one introduces a dual space with elements

The intersection numbers are “scalar-products” between vectors and dual-vectors

়࿄ᄶЦ࿄ᄼুᆘ Ҳ ѲШѳ྾ആЩᅕ ڣ ཙᆘШ࿄ᄶЩ ڜ ࿄ᄼ Ҳ ѲШѳ྾ആЩᅕ ࿄ᄶڣ ڜ ཙႼᆘШ࿄ᄼЩ

<latexit sha1_base64="Hd5k4Y+J0LctggIBcuYK6ZFdefE="></latexit>

Cho, Matsumoto (1995) 
Frellesvig et al. (2019-2020) 
Weinzierl (2020)



Canonical DEs for polylogarithmic integral families
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d ⃗f(x, ϵ) = ϵ (∑
i

dlog(Wi(x)) Ai) ⃗f(x, ϵ)

How do we find a canonical basis?

How do we construct the coefficient matrix 
(symbol letters and rational coefficients)?

Using these tools, we want to answer two questions



Canonical bases from d-log integrands
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The idea is simple: we look for integrands of the d-log form

Two simple building blocks

Chen, Jiang, Xu, LLY (2020) 
Chen, Jiang, Ma, Xu, LLY (2022)

∫𝒞
u(z)

Q dz1 ∧ ⋯ ∧ dzn

za1
1 ⋯zan

n Pb1
1 ⋯Pbm

m
= ∫𝒞

[G(z)]ϵ
n

⋀
j=1

d log fj(z)

u(z) = [P1(z)]γ1⋯[Pm(z)]γm

Only simple poles for all variables

See also: Dlapa et al. (2021)

Intersection numbers between d-log integrals are particularly simple!



Differential equations
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We are now ready to derive the canonical DEs

All symbol letters can be read off from these intersection numbers

Chen, Feng, LLY (2023)



Differential equations
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We are now ready to derive the canonical DEs

All symbol letters can be read off from these intersection numbers

Chen, Feng, LLY (2023)

Would like to have universal formulas



Intersection numbers from multivariate residues
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Chestnov et al. (2022)

The poles are determined by the -functionu
u(z) = [P1(z)]γ1⋯[Pm(z)]γm

A complication: the poles can be non-factorized and/or degenerate, e.g.:

u = zβ1
1 zβ2

2 (z1 + z2)β3

Solving this higher partial DE is in general 
difficult, but simplified if  is d-logφL



Factorization transformations

24

It is possible to perform variable changes (in the spirit of sector decomposition) to 
factorize the non-factorized poles, such that

u(z)
z→p

z → x(α)

Different  labels different variable changes(α)
Non-vanishing

u = zβ1
1 zβ2

2 (z1 + z2)β3

z1 = x1
z2 = x1(x2 − 1)

u = xβ1+β2+β3
1 xβ3

2 (x2 − 1)β2

Chen, Feng, LLY (2023)

One needs to iterate over different factorizations for complete result



Symbol letters from factorized poles
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Since  and  have only simple poles,  have at most double polesφI φJ
·φI

In this case, the intersection numbers can be computed using simple formulas

Only simple poles

One double pole

Chen, Feng, LLY (2023)

Selection rule: can be non-zero only if  and  share -variable polesφI φJ (n − 1)



Symbol letters from factorized poles
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The integration can be recasted as d-logs by studying the 
univariate intersection numbers after taking the residues 
of the -variable poles(n − 1)

Purely algebraic method to determine 
the symbol letters starting from a 
single -functionu

Chen, Feng, LLY (2023)



A new algorithmic approach
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Problems of the previous approach

➤ Relying on the construction of d-log basis 
➤ Not easy for algorithmic implementation 

(especially the factorization of poles)

Jiang, Liu, Xu, LLY (2024)

But together with the generic one-loop results, it already hints at possible 
forms of symbol letters!

➤ They are written in terms of Gram determinants 
evaluated at certain singular points 

➤ These Gram determinants are connected in the 
recursive structure of Baikov representations

x5 x4

x3 x2x1 x3 x2

x4 x4x5 x5

std repr.

u1 u2

u3



Identify the rational letters from leading singularities
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x5 x4

x3 x2x1 x3 x2

x4 x4x5 x5

std repr.

u1 u2

u3

s

x1

x2

x3

m2
1

m2
2

Constructing d-log integrands under maximal cut 
(much simpler than the full construction)

Or analyzing the singularities of the -functions 
in the projective coordinates (particularly easy 
for algorithmic implementation)

u

Jiang, Liu, Xu, LLY (2024)

Singular points in the  space:[x4 : x0]

[0 : 1], [m2
1 ,0], [1,0]

Scan all “minimal representations”
s, m2

1 , m2
2 , λ(s, m2

1 , m2
2)

All rational letters



Search for irrational letters
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W(P, Q) =
P + Q

P − Q

Combinations of Gram determinants
Look for irrational letters of the form

Jiang, Liu, Xu, LLY (2024)

The Gram determinants that can be combined are not arbitrary!

➤ Constraints from recursive structure 
➤ Constraints from d-log construction  
➤ Relations among different determinants



Proof-of-concept implementation
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https://github.com/windfolgen/Baikovletter

p2

p1

p3

p4x1

x2

x3

x4

x5

x6

x7

x8 x9 x10

p1

p2

p3
p4

p5

x1

x2

x7

x8

x6

x4

x3

x5

At the moment only for planar topologies 

Not fully optimized, but already delivering many 
cutting-edge results!

➤ Checked against literature whenever possible 
➤ Predict new results not available in literature 
➤ Part of new results verified by bootstrapping the 

canonical DEs



What’s next?
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log
R + P + Q

R − P + Q

Cordero et al. (2023)

➤ Obvious step: implementation for non-planar cases

➤ Stranger irrational letters (nested square roots)

➤ Beyond polylogarithms?



Beyond polylogarithms
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Elliptic integrals and iterated integrals over them

aQHp2 JAb LQi2
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Appearing in cutting-edge calculations

Many developments not covered here!



Elliptic integrals and elliptic curves
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y2 = P(x) (Degree-3 or 4 polynomial with distinct roots)

➤ The geometric object underlying MPLs is a sphere
➤ The geometric object underlying iterated elliptic integrals is an elliptic curve (a torus)

Functions can be categorized by the underlying geometry



Canonical DEs for elliptic integral families
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d ⃗f(x, ϵ) = ϵ (∑
i

dαi(x) Ai) ⃗f(x, ϵ)

Want to extend the concepts of canonical DEs to elliptic cases

How to find a canonical basis?

What are the corresponding symbol letters? 

(No longer logarithms!)



Sunrise and Banana families
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Pogel, Wang, Weinzierl (2022)

Lessons from equal-mass sunrise and banana families: 

we should utilize modular transformations and modular forms 
associated with the elliptic curves

τ =
ψ2

ψ1
Modular variable τ →

aτ + b
cτ + d

Modular transformation



Sunrise and Banana families
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Pogel, Wang, Weinzierl (2022)

The canonical DEs can be derived by analyzing the Picard-Fuchs operator, e.g.:

It turns out that the symbol letters can be expressed as modular forms, e.g.:

But this cannot be the whole story in more complicated cases!



Single parameter elliptic families with non-trivial sub-sectors
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Appearing in, e.g., HH&ZH production and Higgs decays

y = −
m2

s

Non-trivial sub-sectors: 2 top-sector MIs + 9 sub-sector MIs for family (a) 

3 top-sector MIs + 15 sub-sector MIs for family (b)

Jiang, Wang, LLY, Zhao (2023)



Canonical DEs and solutions
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The symbol letters are no longer purely modular forms 

Non-trivial contributions from singularities of sub-sectors (punctures on the torus)

Open Question: can we construct these “elliptic symbol letters” algebraically?

Jiang, Wang, LLY, Zhao (2023)

Again possible to derive canonical DEs (including sub-sectors)



Numerical evaluation
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q = e2πiτThe iterated integrals can be evaluated using q-expansion

Needs to understand the analytic continuation 
and argument transformation properties of 
these iterated integrals!

Jiang, Wang, LLY, Zhao (2023)



Summary and outlook
➤ Towards building all symbol letters in a loop integral family automatically 

➤ Baikov representations + intersection theory 

➤ Algorithmic approach for planar cases (with proof-of-concept implementation) 

➤ Bootstrapping canonical DEs 

➤ Extension to non-planar cases in progress 

➤ Relation and combination with other approaches (Schubert, Landau, …) 

➤ Applications in more situations… 

➤ Extension to elliptic integrals and more complicated cases?

40
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Thank you!


