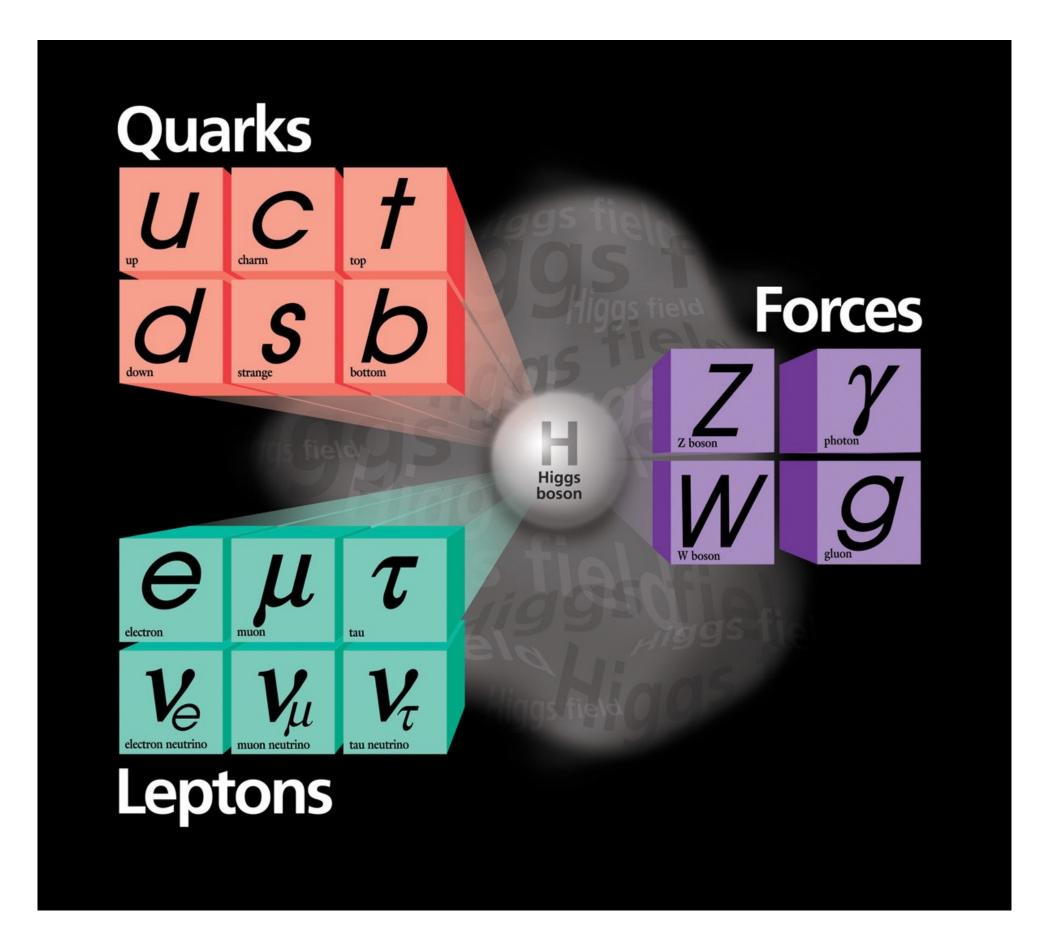
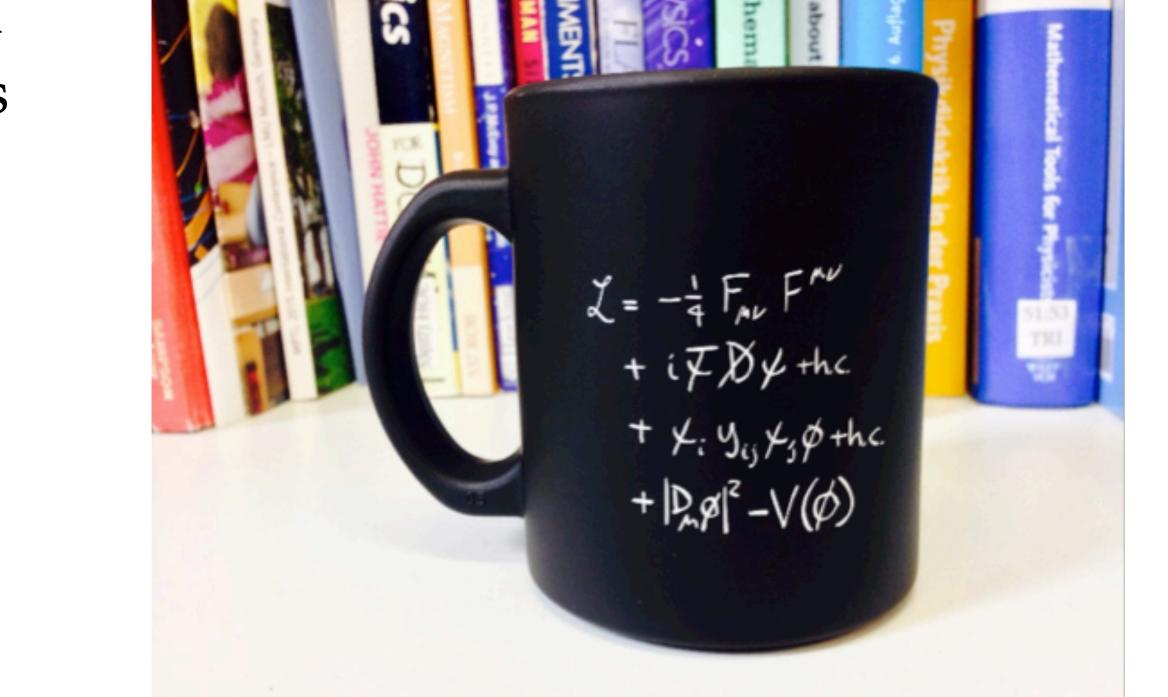
Feynman integrals from bottom up

Li Lin Yang Zhejiang University

The Standard Model (SM) of particle physics

Our current understanding of fundamental constitutes of matter and their interactions

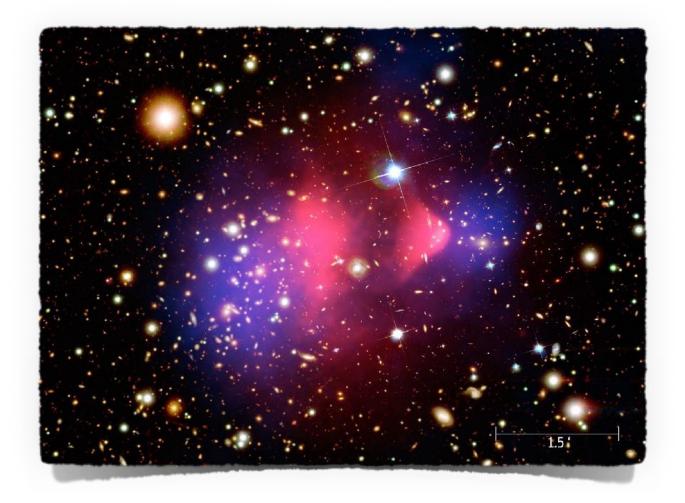


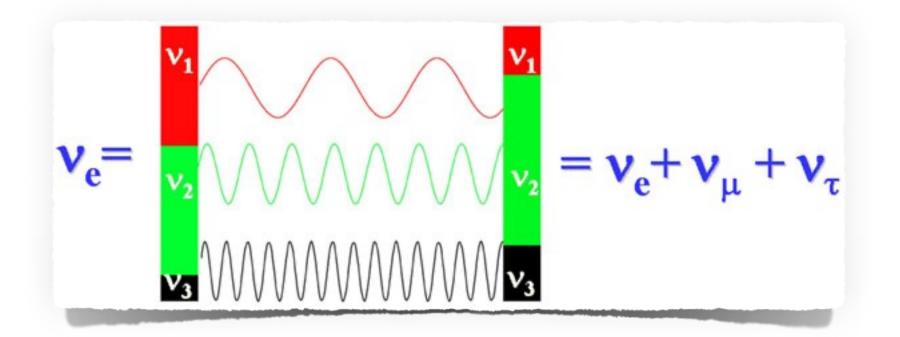


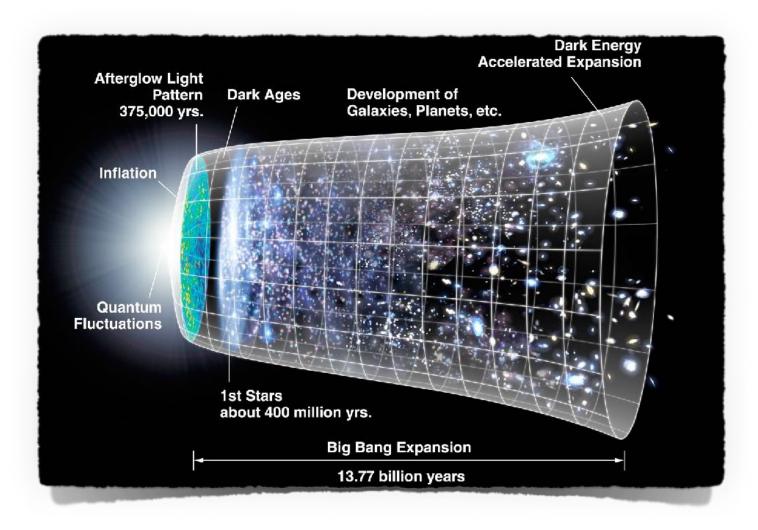
Built upon quantum gauge field theories (in particular, Yang-Mills theories)

What's beyond the SM?

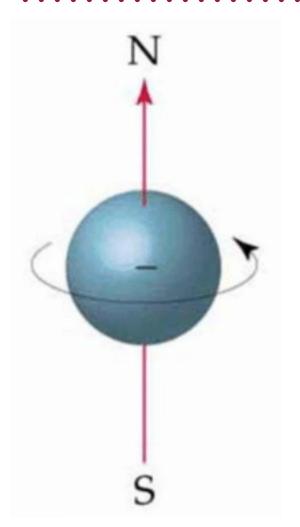
We know that there has to be something new at higher energies beyond the SM





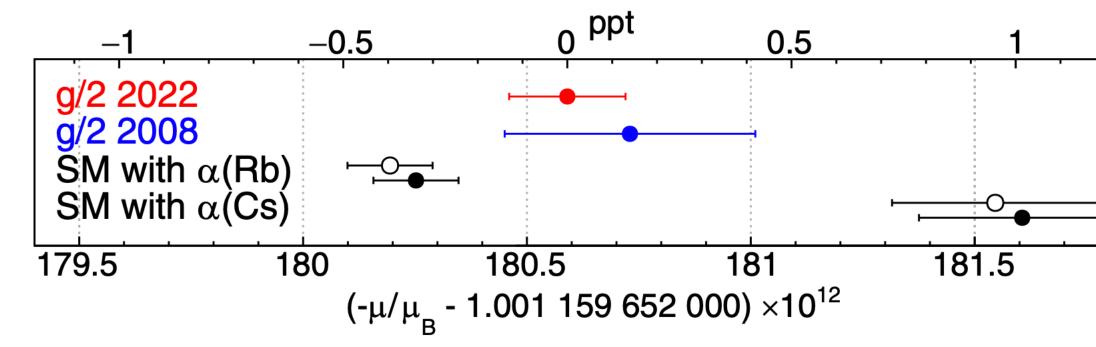


Precision tests of the SM: electron g-2



 $a_e^{\text{EXP}} = 0.001\,159\,652\,180\,59(13)$

 $a_e^{\text{SM}} = 0.001\ 159\ 652\ 181\ 606(11)(12)(229)$

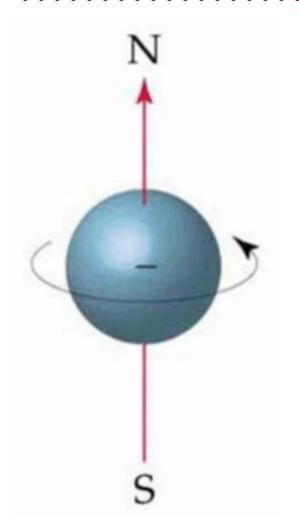


13) Fan et al. (2022)

(11)(12)(229) Aoyama et al. (2019) and a lot of efforts!

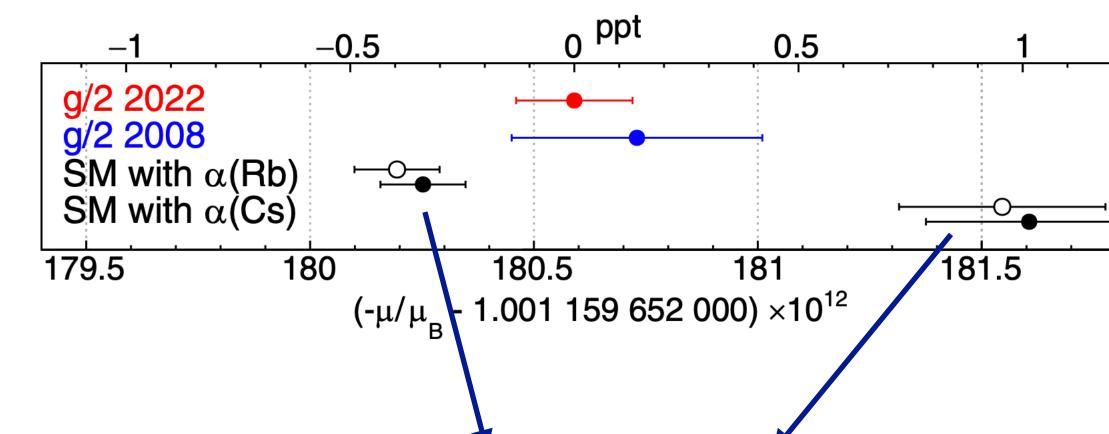
														Ma
														<u> </u>
			<u>fan</u>											Ma
														Ma
														A
														ſ
														Ma
	\frown	\sim			\frown			\frown		\sim		\frown		
					\frown						\frown			
\frown	\frown				\frown		-			-	\frown	-		
\frown		_	_	\frown	\frown	\frown						_	\frown	
	\frown				\frown			\frown						
														(a
														Ma
			- 6 M M					6						
							\mathcal{A}							
		<u>~~~~</u>						60						
	\frown			\frown				\frown	\sim		\frown			
\frown					\sim						\sim		\sim	
	\frown													
							\frown							
\frown			-									-		
		\sim			\sim					\frown	\frown		\frown	

Precision tests of the SM: electron g-2



 $a_{o}^{\text{EXP}} = 0.001\ 159\ 652\ 180\ 59(13)$

 $a_{\circ}^{\text{SM}} = 0.001\ 159\ 652\ 181\ 606(11)(12)(229)$



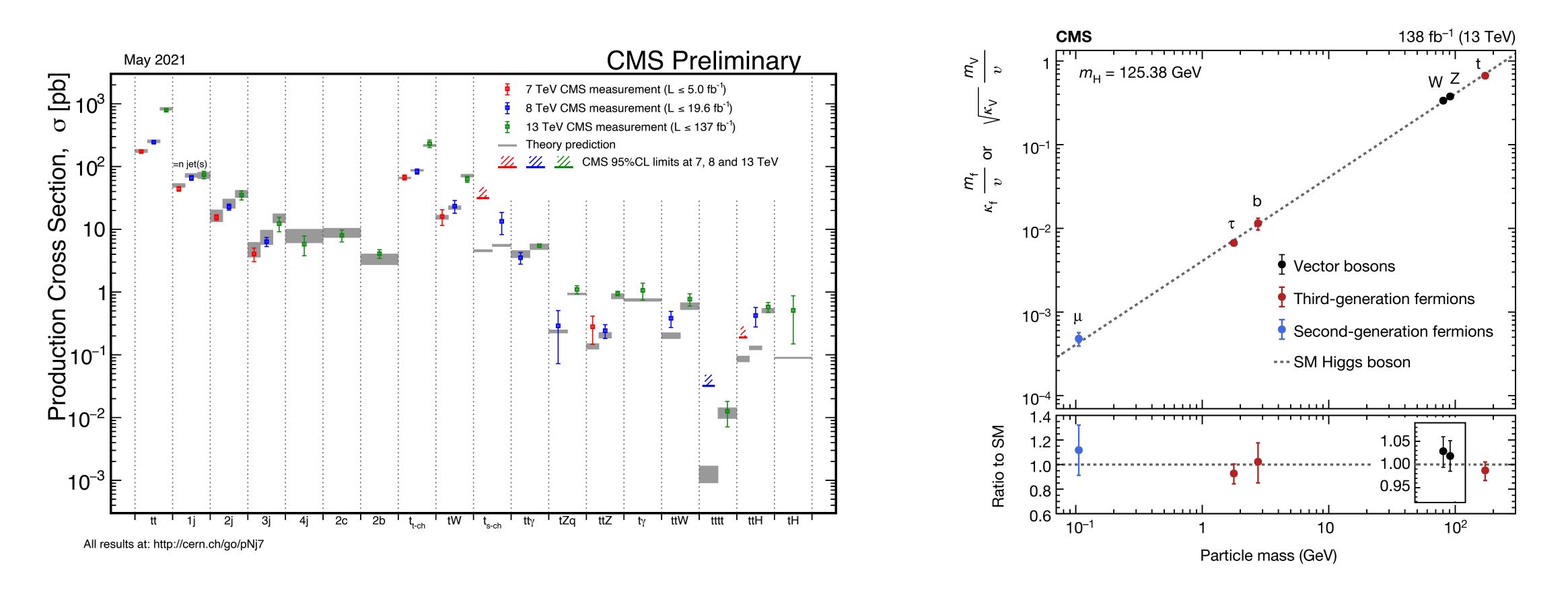
Calls for better understanding measurements of the fine-structure-constant in atomic physics

Fan et al. (2022)

Aoyama et al. (2019) and a lot of efforts!

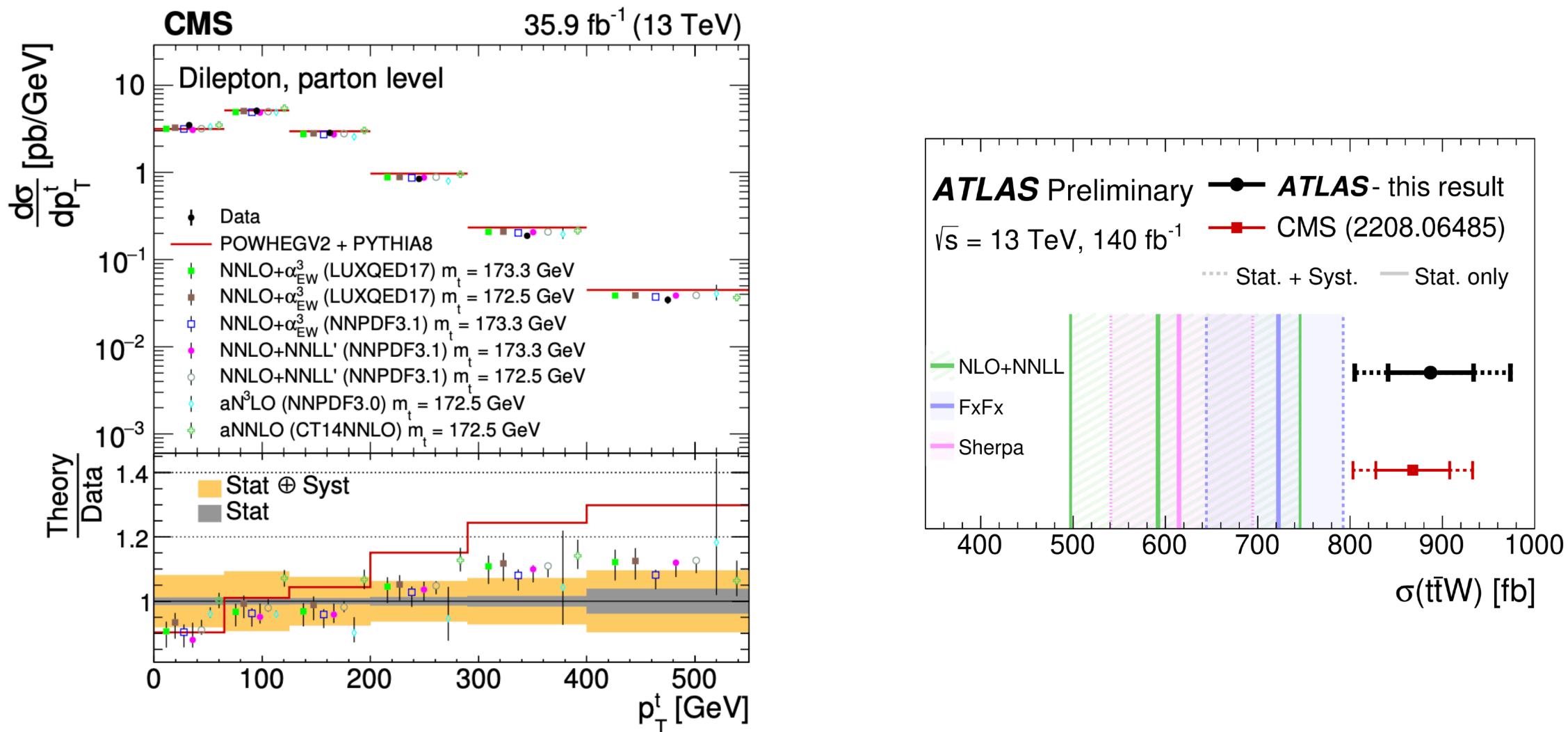
Land (m) $\int m$ (m) (\overline{m}) -(m)(A) ((π)

Precision tests of the SM: Large Hadron Collider

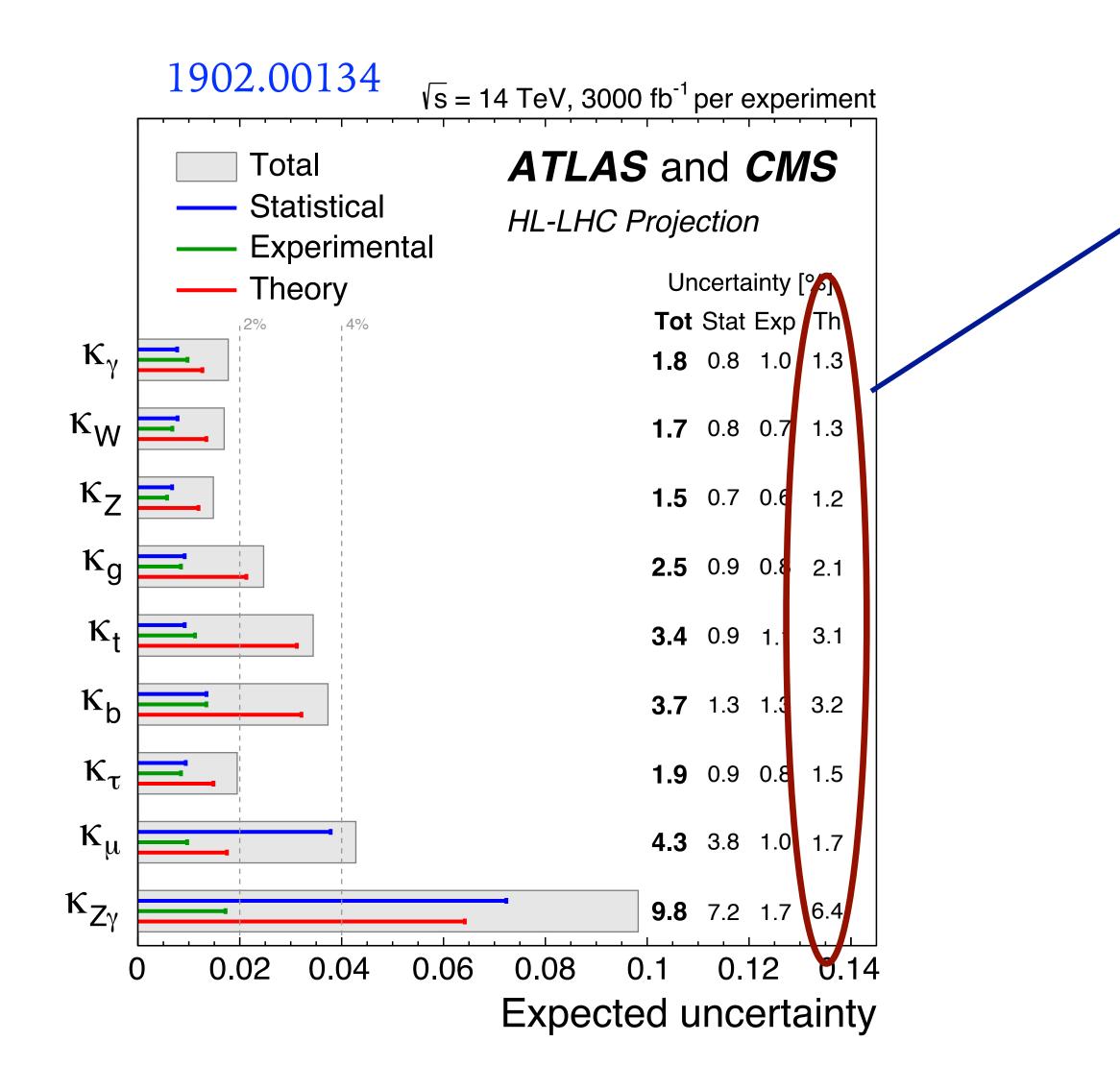


The LHC is testing the SM at unprecedented energies and precisions! Backed up by developments in theoretical calculations during the past decades....

Precision tests need precision calculations



Precision tests need precision calculations



The upcoming experimental accuracies are demanding **much better** theoretical precision for various scattering processes

A lot of theoretical efforts going on

- Analytical methods
- Numerical methods
- Mathematical tools
- Phenomenological applications

Scattering amplitudes

Connecting theories and experiments

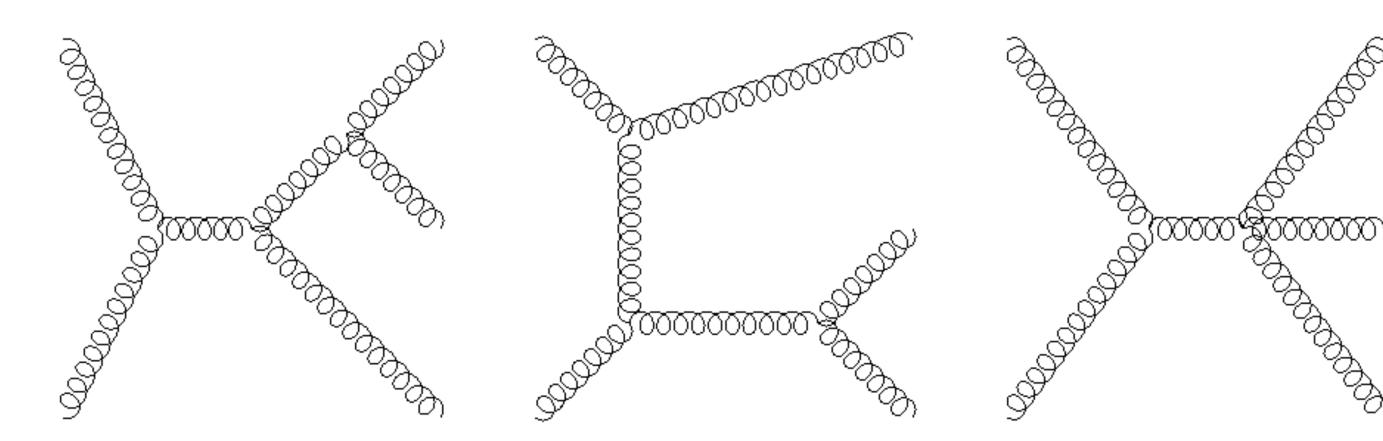
- Collider physics
- Dark matter direct/indirect searches
- ► Gravitational waves
- ► Cosmology

Revealing new structures of QFTs

Tree-level structures

Surprising insights from tree-level calculations: complicated amplitudes can be made simple if

- > We know the **correct language** to describe them
- > We know how they come from simple building blocks

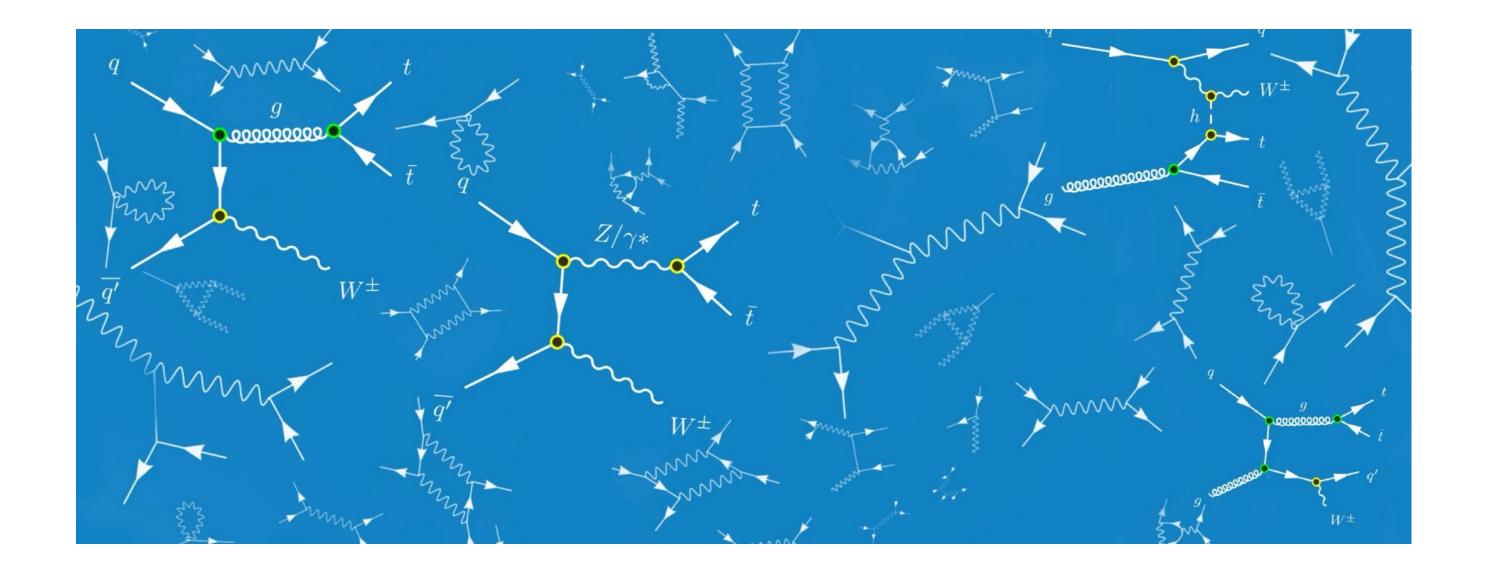


$$rac{\langle i \; j
angle^4}{\langle 1 \; 2
angle \langle 2 \; 3
angle \cdots \langle (n-1) \; n
angle \langle n \; 1 \;$$

Parke-Taylor (1986) Xu-Zhang-Chang (1987) **BCFW (2005)**

Many developments not covered here!

Loop-level amplitudes



Loop integrals

Loop amplitudes

Modern analytic techniques for loop integrals

Canonical basis

IBP reduction

Routine for polylogarithmic integrals Extending to elliptic integrals and more

See, e.g., Weinzierl (2022) and references therein

Differential Equations

Canonical DEs Solutions

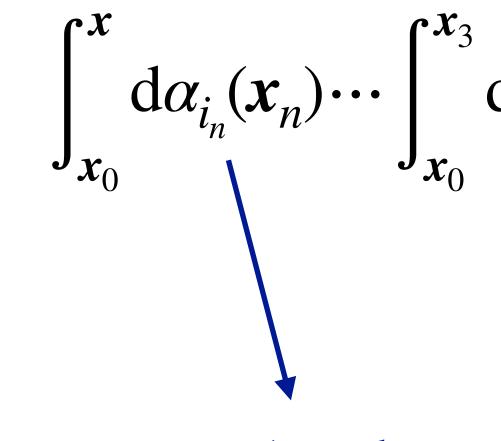
 $d\vec{f}(\boldsymbol{x},\epsilon) = \epsilon \, d\alpha_i(\boldsymbol{x}) A_i \, \vec{f}(\boldsymbol{x},\epsilon)$

The calculations based on canonical differential equations show that loop integrals can be represented in terms of Chen's iterated integrals

$$\int_{\boldsymbol{x}_0}^{\boldsymbol{x}} \mathrm{d}\alpha_{i_n}(\boldsymbol{x}_n) \cdots \int_{\boldsymbol{x}_0}^{\boldsymbol{x}_3} \mathrm{d}\alpha_{i_2}(\boldsymbol{x}_2) \int_{\boldsymbol{x}_0}^{\boldsymbol{x}_2} \mathrm{d}\alpha_{i_1}(\boldsymbol{x}_1)$$

ρ....

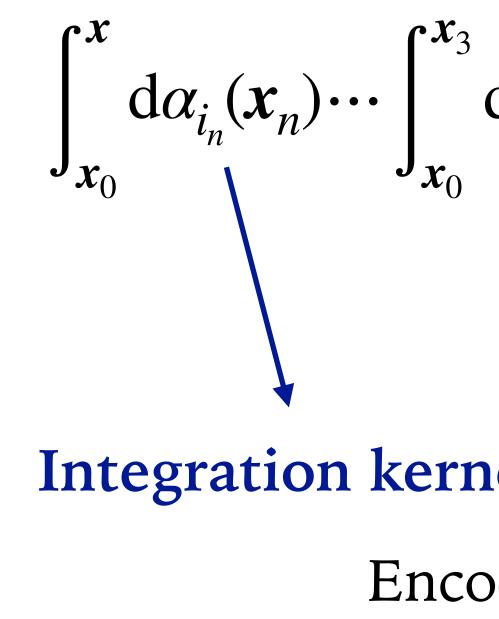
The calculations based on canonical differential equations show that loop integrals can be represented in terms of Chen's iterated integrals



$$d\alpha_{i_2}(\boldsymbol{x}_2) \int_{\boldsymbol{x}_0}^{\boldsymbol{x}_2} d\alpha_{i_1}(\boldsymbol{x}_1)$$

Integration kernels = symbol letters

The calculations based on canonical differential equations show that loop integrals can be represented in terms of Chen's iterated integrals

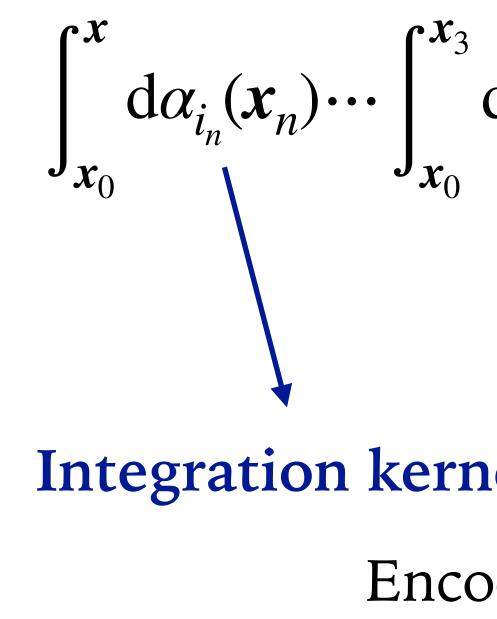


$$d\alpha_{i_2}(\boldsymbol{x}_2) \int_{\boldsymbol{x}_0}^{\boldsymbol{x}_2} d\alpha_{i_1}(\boldsymbol{x}_1)$$

Integration kernels = symbol letters

Encode lots of information about Feynman integrals

The calculations based on canonical differential equations show that loop integrals can be represented in terms of Chen's iterated integrals

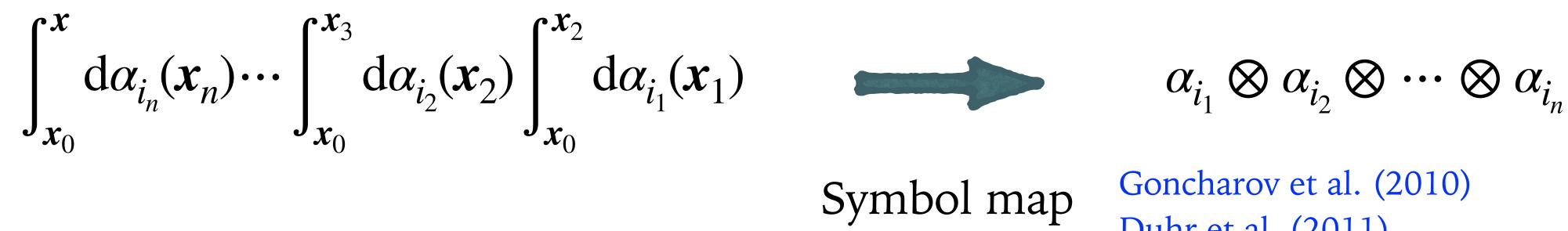


$$d\alpha_{i_2}(\boldsymbol{x}_2) \int_{\boldsymbol{x}_0}^{\boldsymbol{x}_2} d\alpha_{i_1}(\boldsymbol{x}_1)$$

- Integration kernels = symbol letters
 - Encode lots of information about Feynman integrals
 - ► The correct language?
 - Simple building blocks?

els ? <s?

Symbol letters



Analytic information: singularities determined by letters

Algebraic information, e.g., shuffle algebra:

$$(a \otimes b) \sqcup (c \otimes d) =$$

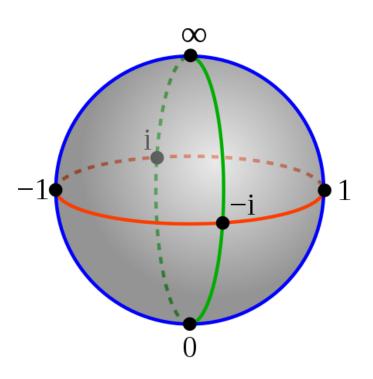
 $\pm a \otimes c \otimes d$

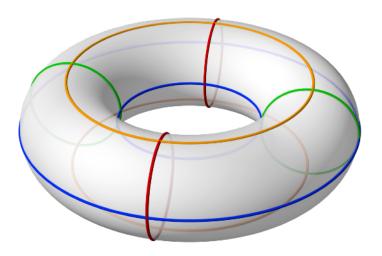
Goncharov et al. (2010) Symbol map Duhr et al. (2011)

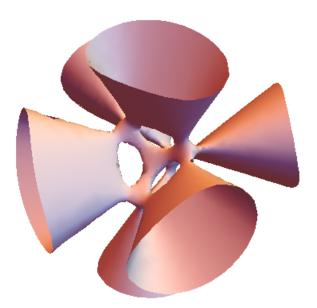
 $a\otimes b\otimes c\otimes d+a\otimes c\otimes b\otimes d+c\otimes a\otimes b\otimes d$ $+ a \otimes c \otimes d \otimes b + c \otimes a \otimes d \otimes b + c \otimes d \otimes a \otimes b$.

Symbol letters

Geometric information







- Polylogarithmic integrals $\alpha_i(\mathbf{x}) = \log W_i(\mathbf{x})$
- Elliptic integrals, modular forms... Still calling for better understanding

More complicated manifolds Studies emerging!

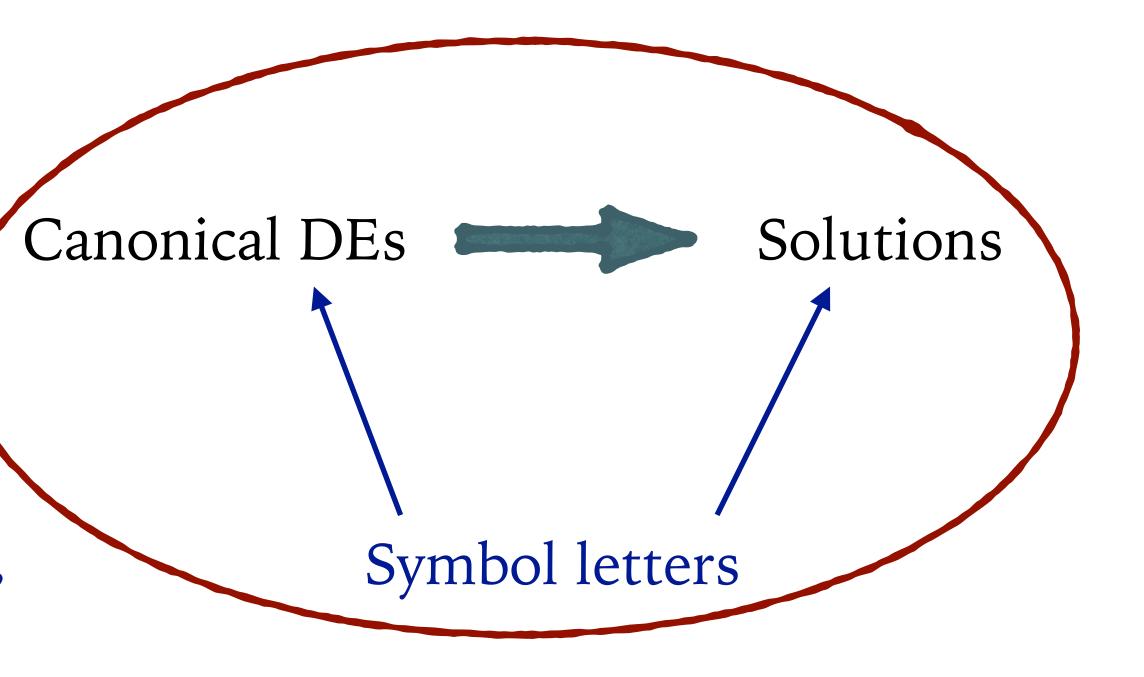
From symbol letters to loop integrals

IBP reduction

Canonical basis

"Bottom-up"

Differential Equations



From symbol letters to loop integrals

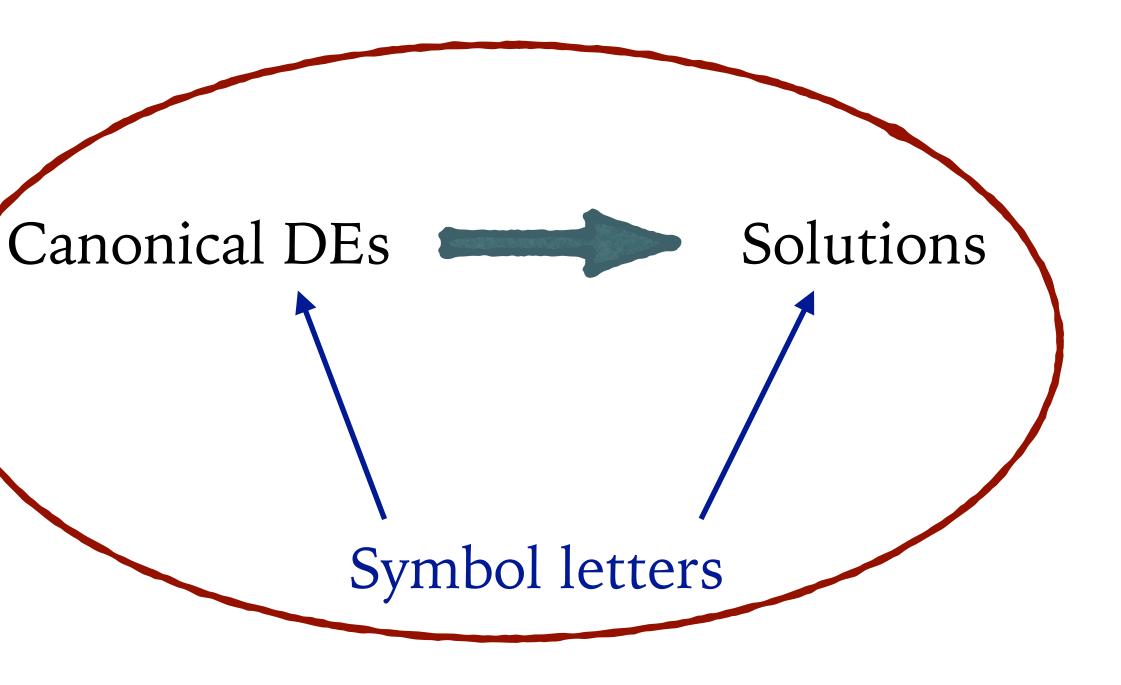
IBP reduction

Canonical basis

"Bottom-up"

Try to understand the symbol letters using Baikov representations + intersection theory 15

Differential Equations



Baikov representations

Change of variables from loop momenta to propagator denominators

$$\int \left[\prod_{i=1}^{L} \frac{d^d k_i}{i\pi^{d/2}}\right] \frac{1}{z_1^{a_1} z_2^{a_2} \cdots z_N^{a_N}}$$
$$z_m = \sum_{i,j} A_m^{ij} q_i \cdot q_j + f_m$$

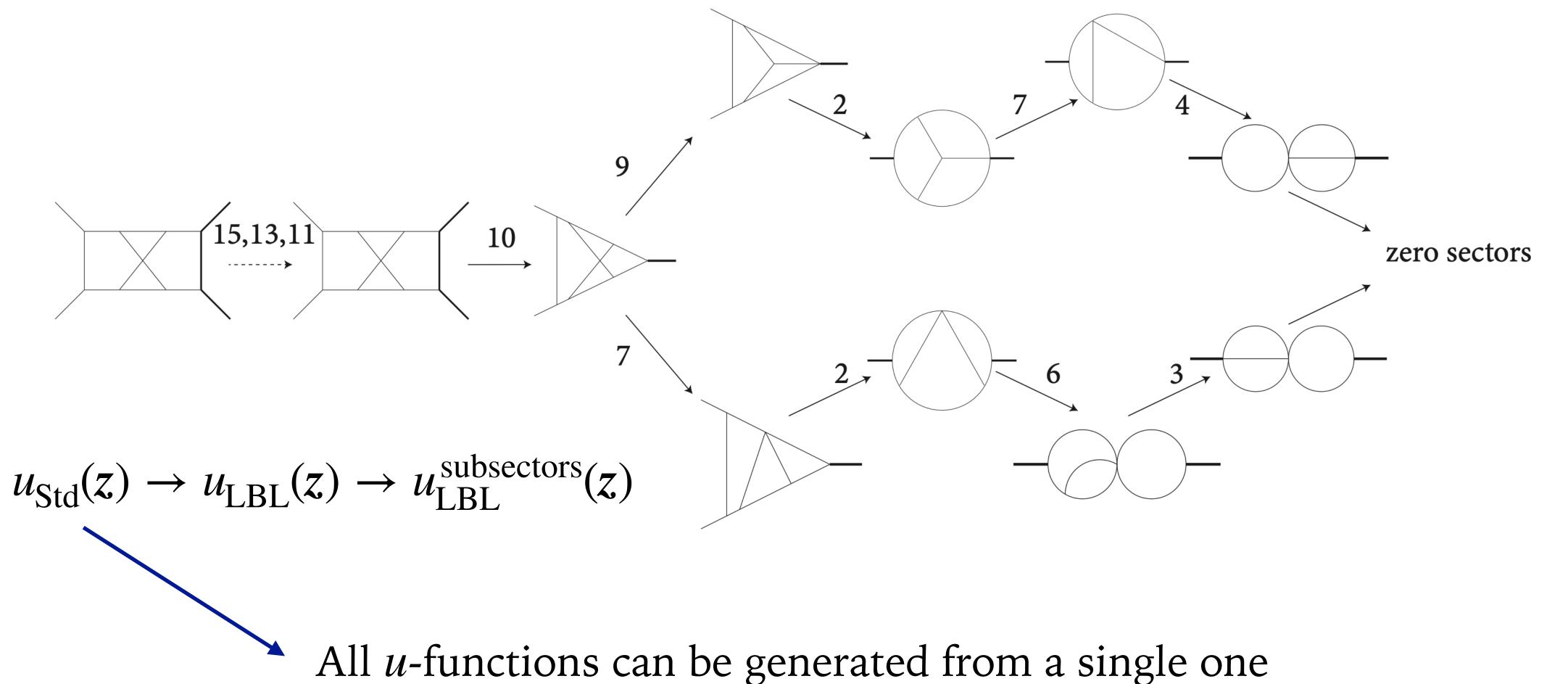
Contains all information about an integral family (including all sub-sectors)

u(z) =

$$\int_{\mathscr{C}} u(z) \frac{\mathrm{d}z_1 \wedge \cdots \wedge \mathrm{d}z_n}{z_1^{a_1} \cdots z_n^{a_n}}$$

$$= \left[P_1(z)\right]^{\gamma_1} \cdots \left[P_m(z)\right]^{\gamma_m}$$

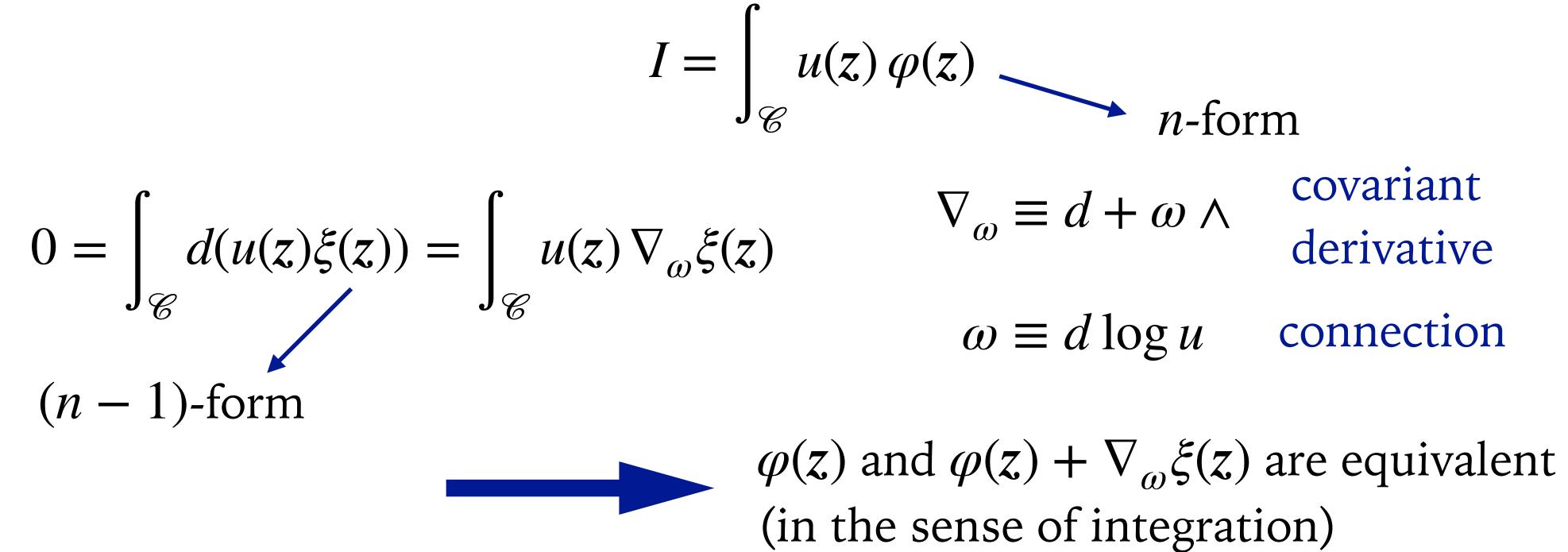
Recursive structure of Baikov representations



Jiang, LLY (2023)

Geometric formulation of IBP equivalence

The *u*-functions generate IBP relations among integrals



The equivalence classes form a vector space H_{ω}^n (the *n*-th twisted cohomology group) $\langle \varphi | : \varphi \sim \varphi + \nabla_{\omega} \xi$

Frellesvig et al. (2019)

IBP reduction = vector decomposition

 $\dim(H_{\omega}^n) = \nu = \#$ of master integrals with a given ω

A basis with ν vector

All vectors are linear combinatio

To perform the vector decomposition, one introduces a dual space with elements $|\varphi_R\rangle$: φ_R

The **intersection numbers** are "scalar-products" between vectors and dual-vectors

 $\langle \varphi_L | \varphi_R \rangle_{\omega} = \frac{1}{(2\pi i)^n} \int \iota_{\omega}(\varphi_L)$

Cho, Matsumoto (1995) Frellesvig et al. (2019-2020) Weinzierl (2020)

ors
$$\{\langle e_1 |, \langle e_2 |, \dots, \langle e_{\nu} |\}$$

ons
$$\langle \varphi | = \sum_{i=1}^{\nu} c_i \langle e_i |$$

$$\sim \varphi_R + \nabla_{-\omega} \xi_R$$

$$f_{L}(z) \wedge \varphi_{R} = \frac{1}{(2\pi i)^{n}} \int \varphi_{L} \wedge \iota_{-\omega}(\varphi_{R})$$

Canonical DEs for polylogarithmic integral families

Using these tools, we want to answer two questions

 $d\vec{f}(\boldsymbol{x},\epsilon) = \epsilon \left(\sum_{i} d\log(W_{i}(\boldsymbol{x}))\boldsymbol{A}_{i}\right) \vec{f}(\boldsymbol{x},\epsilon)$

How do we find a canonical basis?

How do we construct the coefficient matrix (symbol letters and rational coefficients)?

Canonical bases from d-log integrands

The idea is simple: we look for integrands of the d-log form

$$\int_{\mathscr{C}} u(z) \frac{Q \, dz_1 \wedge \dots \wedge dz_n}{z_1^{a_1} \cdots z_n^{a_n} P_1^{b_1} \cdots P_m^{b_m}} = \int_{\mathscr{C}} \left[G(z) \right]^{\epsilon} \bigwedge_{j=1}^n d \log f_j(z)$$

Two simple building blocks

Only simple poles for all variables

$$u(z) = \left[P_1(z)\right]^{\gamma_1} \cdots \left[P_m(z)\right]^{\gamma_m}$$

Intersection numbers between d-log integrals are particularly simple!

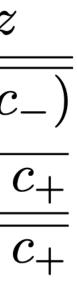
Chen, Jiang, Xu, LLY (2020) Chen, Jiang, Ma, Xu, LLY (2022)

See also: Dlapa et al. (2021)

$$d \log(z - c) = \frac{dz}{z - c}$$

$$d \log(\tau[z, c; c_{\pm}]) = \frac{\sqrt{(c - c_{\pm})(c - c_{-})}dz}{(z - c)\sqrt{(z - c_{\pm})(z - c_{-})}}$$

$$\equiv d \log \frac{\sqrt{c - c_{\pm}}\sqrt{z - c_{-}} + \sqrt{c - c_{-}}\sqrt{z - c_{-}}}{\sqrt{c - c_{\pm}}\sqrt{z - c_{-}} - \sqrt{c - c_{-}}\sqrt{z - c_{-}}}$$



Differential equations

We are now ready to derive the canonical DEs

$$\langle \dot{\varphi}_I | \equiv \hat{\mathrm{d}} \langle \varphi_I | = (\hat{\mathrm{d}} \Omega)_{IJ} \langle \varphi_J |$$

All symbol letters can be read off from these intersection numbers

$$\eta_{IJ} = \langle \varphi_I | \varphi_J \rangle$$

$$\left(\hat{\mathrm{d}}\Omega\right)_{IK} = \left\langle \dot{\varphi}_{I} | \varphi_{J} \right\rangle \left(\eta^{-1}\right)_{JK}$$

Differential equations

We are now ready to derive the canonical DEs

$$\langle \dot{\varphi}_I | \equiv \hat{\mathrm{d}} \langle \varphi_I | = (\hat{\mathrm{d}} \Omega)_{IJ} \langle \varphi_J |$$

All symbol letters can be read off from these intersection numbers

$$\eta_{IJ} = \langle \varphi_I | \varphi_J \rangle$$

$$\left(\hat{\mathrm{d}}\Omega\right)_{IK} = \left\langle \dot{\varphi}_{I} | \varphi_{J} \right\rangle \left(\eta^{-1}\right)_{JK}$$

Would like to have universal formulas

Intersection numbers from multivariate residues

$$\langle \varphi_L | \varphi_R \rangle = \sum_{\boldsymbol{p}} \operatorname{Res}_{\boldsymbol{z}=\boldsymbol{p}} \left(\psi_L \hat{\varphi}_R \right)$$

The poles are determined by the *u*-function $u(z) = \left[P_1(z)\right]^{\gamma_1} \cdots \left[P_m(z)\right]^{\gamma_m}$

A complication: the poles can be non-factorized and/or degenerate, e.g.:

$$u = z_1^{\beta_1}$$

Chestnov et al. (2022)

$\nabla_n \cdots \nabla_1 \psi_L = \varphi_L$

Solving this higher partial DE is in general difficult, but simplified if φ_L is d-log

 $z_2^{\beta_2}(z_1+z_2)^{\beta_3}$

Factorization transformations

It is possible to perform variable changes (in the spirit of sector decomposition) to factorize the non-factorized poles, such that

Diffe

$$u(\boldsymbol{x}^{(\alpha)})|_{\boldsymbol{x}^{(\alpha)} \to \boldsymbol{\rho}^{(\alpha)}} = \bar{u}_{\alpha}(\boldsymbol{\rho}^{(\alpha)}) \prod_{i} \left[x_{i}^{(\alpha)} - \boldsymbol{\rho}_{i}^{(\alpha)} \right]^{\gamma_{i}^{(\alpha)}}$$
(a) labels different variable changes

$$z_{1} = x_{1}$$

$$z_{2} = x_{1}(x_{2} - 1)$$

$$u = x_{1}^{\beta_{1}} z_{2}^{\beta_{2}} (z_{1} + z_{2})^{\beta_{3}}$$

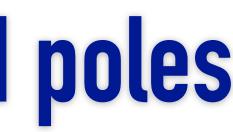
$$u = x_{1}^{\beta_{1} + \beta_{2} + \beta_{3}} x_{2}^{\beta_{3}} (x_{2} - 1)^{\beta_{2}}$$

One needs to iterate over different factorizations for complete result

Symbol letters from factorized poles

Since φ_I and φ_I have only simple poles, $\dot{\varphi}_I$ have at most double poles

In this case, the intersection numbers can be computed using simple formulas



Chen, Feng, LLY (2023)

Selection rule: can be non-zero only if φ_I and φ_I share (n-1)-variable poles

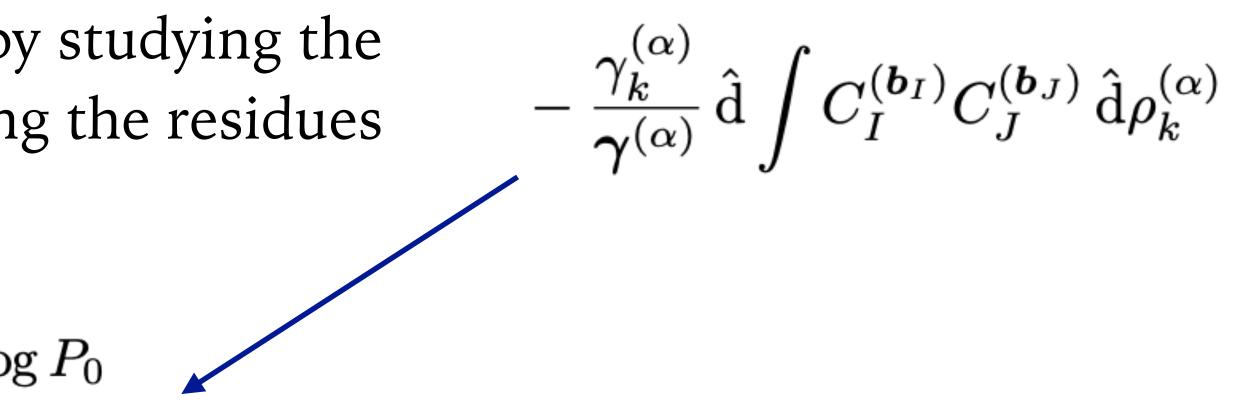
Symbol letters from factorized poles

The integration can be recasted as d-logs by studying the univariate intersection numbers after taking the residues of the (n - 1)-variable poles

$$\begin{aligned} \langle \dot{\varphi}_{I} | \varphi_{I} \rangle &= \sum_{\alpha \neq I} \frac{\gamma^{(\alpha)}}{\gamma^{(I)}} \,\hat{\mathrm{d}} \log(c_{I} - c_{\alpha}) + \eta_{II} \beta_{0} \,\hat{\mathrm{d}} \log(c_{I} - c_{\alpha}) \\ \langle \dot{\varphi}_{I} | \varphi_{J} \rangle &= -\hat{\mathrm{d}} \log(c_{I} - c_{J}) + \eta_{IJ} \beta_{0} \,\hat{\mathrm{d}} \log P_{0} \,, \end{aligned}$$

$$\begin{aligned} \langle \dot{\varphi}_I | \varphi_I \rangle &= \frac{1}{\gamma^{(I)}} \,\hat{\mathrm{d}} \log(\bar{u}_I(c_I)) - \hat{\mathrm{d}} \log(c_+ - c_-) \\ &\quad + \hat{\mathrm{d}} \log(c_I - c_+) + \hat{\mathrm{d}} \log(c_I - c_-) \,, \\ \langle \dot{\varphi}_I | \varphi_J \rangle &= \langle \dot{\varphi}_J | \varphi_I \rangle = - \hat{\mathrm{d}} \log \tau [c_I, c_J; c_\pm] \,. \end{aligned}$$

Chen, Feng, LLY (2023)



Purely algebraic method to determine the symbol letters starting from a single *u*-function

A new algorithmic approach

Problems of the previous approach

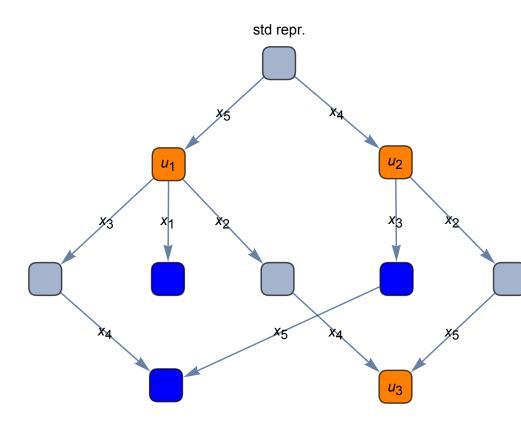
- Relying on the construction of d-log b
- Not easy for algorithmic implementat (especially the factorization of poles)

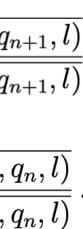
But together with the generic one-loop results, it already hints at possible forms of symbol letters!

- They are written in terms of Gram determinants evaluated at certain singular points
- These Gram determinants are connected in the recursive structure of Baikov representations

$$d \log \frac{G(\{q_1, q_2, \dots, q_n, l\}, \{q_1, q_2, \dots, q_n, q_{n+1}\}) - \sqrt{-G(q_1, \dots, q_n)G(q_1, \dots, q_n)}}{G(\{q_1, q_2, \dots, q_n, l\}, \{q_1, q_2, \dots, q_n, q_{n+1}\}) + \sqrt{-G(q_1, \dots, q_n)G(q_1, \dots, q_n)}}$$

$$d \log \frac{G(\{q_1, q_2, \dots, q_n, l\}, \{q_1, q_2, \dots, q_n, q_{n+1}\}) - \sqrt{G(q_1, \dots, q_{n+1})G(q_1, \dots, q_n)}}{G(\{q_1, q_2, \dots, q_n, l\}, \{q_1, q_2, \dots, q_n, q_{n+1}\}) + \sqrt{G(q_1, \dots, q_{n+1})G(q_1, \dots, q_n)}}$$





Identify the rational letters from leading singularities

Constructing d-log integrands under maximal cut (much simpler than the full construction)

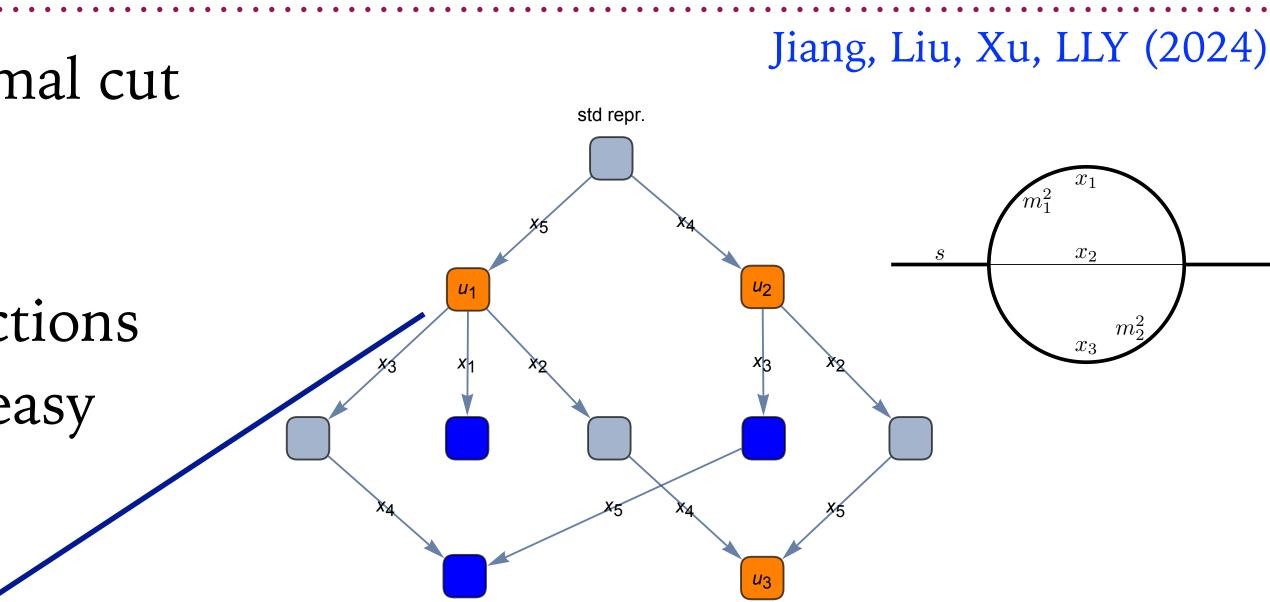
Or analyzing the singularities of the *u*-functions in the projective coordinates (particularly easy for algorithmic implementation)

$$\tilde{u}_1(x_4) = \left[\tilde{G}(p)\tilde{G}(l_2)\right]^{\epsilon} \left[\tilde{G}(l_1, l_2)\tilde{G}(l_2, p)\right]^{-1/2-\epsilon}$$

$$\tilde{G}(p) = s, \quad \tilde{G}(l_2, p) = -\lambda(x_4, s, m_2^2)/4,$$

$$\tilde{G}(l_2) = x_4, \quad \tilde{G}(l_1, l_2) = -(x_4 - m_1^2)^2/4,$$

Scan all "minimal representations"



, Singular points in the $[x_4 : x_0]$ space: [0 : 1], $[m_1^2, 0]$, [1,0]

All rational letters

 $s, m_1^2, m_2^2, \lambda(s, m_1^2, m_2^2)$

Search for irrational letters

Look for irrational letters of the form

$$W(P,Q) = \frac{P + \sqrt{Q}}{P - \sqrt{Q}}$$

The Gram determinants that can be combined are not arbitrary!

- ► Constraints from recursive structure
- Constraints from d-log construction
- Relations among different determinants

$$B^2 + DE = AC$$

Combinations of Gram determinants

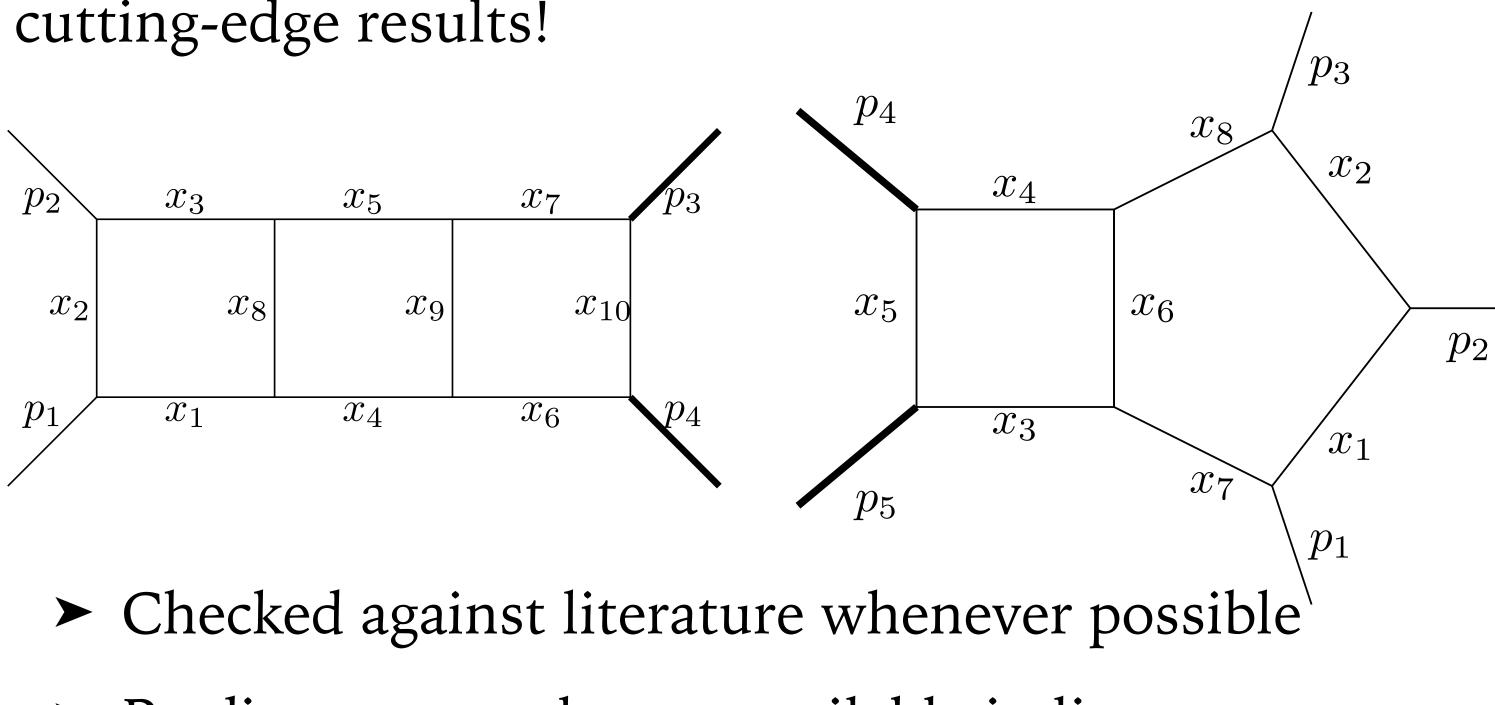
$$B = G(\{k, q_i\}, \{k, q_j\}), A = G(k, q_i),$$

$$C = G(k, q_j), D = G(k), E = G(k, q_i, q_j),$$

$$\partial_B \log W(B, -DE) \Big|_{DE} = \frac{2\sqrt{-DE}}{-AC},$$
$$\partial_B \log W(B, AC) \Big|_{DE} = \frac{2}{\sqrt{AC}},$$

Proof-of-concept implementation

At the moment only for planar topologies Not fully optimized, but already delivering many cutting-edge results!



- Predict new results not available in literature
- > Part of new results verified by bootstrapping the canonical DEs

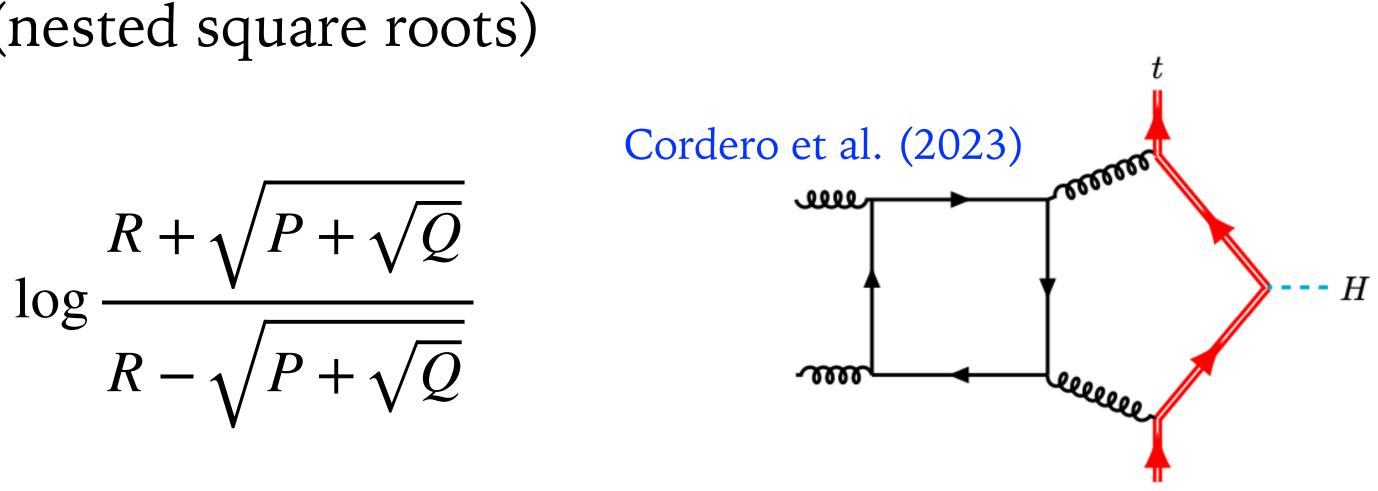
https://github.com/windfolgen/Baikovletter


```
nalList = {m2, s, t, s + t, m2 - s, 4*m2 + s, 4*m2 + s + t, 4*m2 - s,
  4*m2 - t, s^2 - 4*m2*t + s*t, 4*m2*s + 4*m2*t - s*t,
  m2^2*s - 2*m2*s*t - 4*m2*t^2 + s*t^2
areRoots = {s*t*(-4*m2*s - 4*m2*t + s*t), s*(-4*m2 + s), (4*m2 - s)*s,
   s*(s + t)*(s^2 - 4*m2*t + s*t), s*(4*m2 + s), (4*m2 - t)*t,
   (s + t)*(4*m2 + s + t), s*(m2^2*s - 2*m2*s*t - 4*m2*t^2 + s*t^2), m2*s}
  braicIndependent = {Log[-((-s + Sqrt[-((4*m2 - s)*s)])/
          (s + Sqrt[-((4*m2 - s)*s)]))],
   Log[-((-(s*t) + Sqrt[-(s*t*(4*m2*s + 4*m2*t - s*t))])/
         (s*t + Sqrt[-(s*t*(4*m2*s + 4*m2*t - s*t))]))],
   Log[-((-(s*(s + t)) + Sqrt[s*(s + t)*(s^2 - 4*m^2*t + s*t)])/
           (s*(s + t) + Sqrt[s*(s + t)*(s^2 - 4*m2*t + s*t)]))],
   Log[-((2*m2*s + 4*m2*t - s*t + Sqrt[(4*m2 - s)*t*(4*m2*s + 4*m2*t - s)*t*(4*m2*s + 3*m2*t - s)*t*(4*m2*t - s)*t*(4*m2*t - s)*t*(4*m2*t - s)*t*(4*m2*
                    s*t)])/(-2*m2*s - 4*m2*t + s*t +
             Sqrt[(4*m2 - s)*t*(4*m2*s + 4*m2*t - s*t)]))],
   Log[-((-s^2 + 4*m2*t - s*t + Sqrt[(4*m2 - s)*(s + t)*(-s^2 + 4*m2*t - s)*(s + t)*(-s^2 + 4*m2*t - s^2)]
                   s*t)])/(s^2 - 4*m2*t + s*t + Sqrt[(4*m2 - s)*(s + t)*
                  (-s^2 + 4*m2*t - s*t)]))],
   Log[-((-2*m2 + Sqrt[m2*(4*m2 - s)])/(2*m2 + Sqrt[m2*(4*m2 - s)]))],
   Log[-(((-I)*(m2*s + 4*m2*t - s*t) +
             I*Sqrt[-((4*m2 - s)*(m2^2*s - 2*m2*s*t - 4*m2*t^2 + s*t^2))])/
          (I*(m2*s + 4*m2*t - s*t) +
            I*Sqrt[-((4*m2 - s)*(m2^2*s - 2*m2*s*t - 4*m2*t^2 + s*t^2))]))],
   Log[-((-(t*(3*m2*s + 4*m2*t - s*t)) +
             Sqrt[-(t*(4*m2*s + 4*m2*t - s*t)*(m2^2*s - 2*m2*s*t - 4*m2*t^2 +
                      s*t^2))])/(t*(3*m2*s + 4*m2*t - s*t) +
           Sqrt[-(t*(4*m2*s + 4*m2*t - s*t)*(m2^2*s - 2*m2*s*t - 4*m2*t^2 +
                     s*t^2))]))],
   Log[-((I*(4*m2 - s)*t*(s + t) + I*Sqrt[t*(s + t)*(4*m2*s + 4*m2*t - s*t)*)]
                    (-s^2 + 4*m2*t - s*t)])/((-I)*(4*m2 - s)*t*(s + t) +
            I*Sqrt[t*(s + t)*(4*m2*s + 4*m2*t - s*t)*(-s^2 + 4*m2*t - s*t)]))],
   Log[-((-2*m2*t + Sqrt[m2*t*(4*m2*s + 4*m2*t - s*t)])/
         (2*m2*t + Sqrt[m2*t*(4*m2*s + 4*m2*t - s*t)]))],
   Log[-((t + Sqrt[-((4*m2 - t)*t)])/(-t + Sqrt[-((4*m2 - t)*t)]))],
   Log[-((m2 + Sqrt[m2*s])/(-m2 + Sqrt[m2*s]))],
   Log[-((I*s + (2*I)*Sqrt[m2*s])/((-I)*s + (2*I)*Sqrt[m2*s]))],
   Log[-((2*m2 + s + Sqrt[s*(4*m2 + s)])/(-2*m2 - s + s)])/(-2*m2 - s + s)])/(-2*m2 - s + s)]
             Sqrt[s*(4*m2 + s)]))],
   Log[-((I*(s + t) + I*Sqrt[(s + t)*(4*m2 + s + t)])/
         ((-I)*(s + t) + I*Sqrt[(s + t)*(4*m2 + s + t)]))]
   Log[-((s*(m2 + t) + Sqrt[s*(m2^2*s - 2*m2*s*t - 4*m2*t^2 + s*t^2)])/
           (-(s*(m2 + t)) + Sqrt[s*(m2^2*s - 2*m2*s*t - 4*m2*t^2 + s*t^2)]))],
   Log[-((s*(m2 - t) + Sqrt[s*(m2^2*s - 2*m2*s*t - 4*m2*t^2 + s*t^2)])/
           (-(s*(m2 - t)) + Sqrt[s*(m2^2*s - 2*m2*s*t - 4*m2*t^2 + s*t^2)]))],
   Log[-((4*m2*s + 2*m2*t - s*t + Sqrt[s*(4*m2 - t)*(4*m2*s + 4*m2*t - s*t)])
                    s*t)])/(-4*m2*s - 2*m2*t + s*t +
             Sqrt[s*(4*m2 - t)*(4*m2*s + 4*m2*t - s*t)]))],
   Log[-((s*(4*m2 + s + t) + Sqrt[-(s*(4*m2 + s + t)*(-s^2 + 4*m2*t - t)*(-s^2 + 4*m2*t - t)*(-s^2 + 4*m2*t - t)*(-s^2 + t
                       s*t))])/(-(s*(4*m2 + s + t)) +
             Sqrt[-(s*(4*m2 + s + t)*(-s^2 + 4*m2*t - s*t))]))],
   Log[-((t*(s + t) + Sqrt[-((4*m2 - t)*t*(s + t)*(4*m2 + s + t))])/
              -(t*(s + t)) + Sart[-((4*m2 - t)*t*(s + t)*(4*m2 + s + t))]))]
   Log[-(((4*m2 + s)*t + Sqrt[-(s*(4*m2 + s)*(4*m2 - t)*t)])/
         (-((4*m2 + s)*t) + Sqrt[-(s*(4*m2 + s)*(4*m2 - t)*t)]))],
   Log[-((I*s + (2*I)*Sqrt[-(m2*s)])/((-I)*s + (2*I)*Sqrt[-(m2*s)]))],
   Log[-((-((4*m2 + s)*(s + t)) + Sqrt[s*(4*m2 + s)*(s + t)*)]
                 (4*m2 + s + t)])/((4*m2 + s)*(s + t) +
```

What's next?

Obvious step: implementation for non-planar cases

Stranger irrational letters (nested square roots)



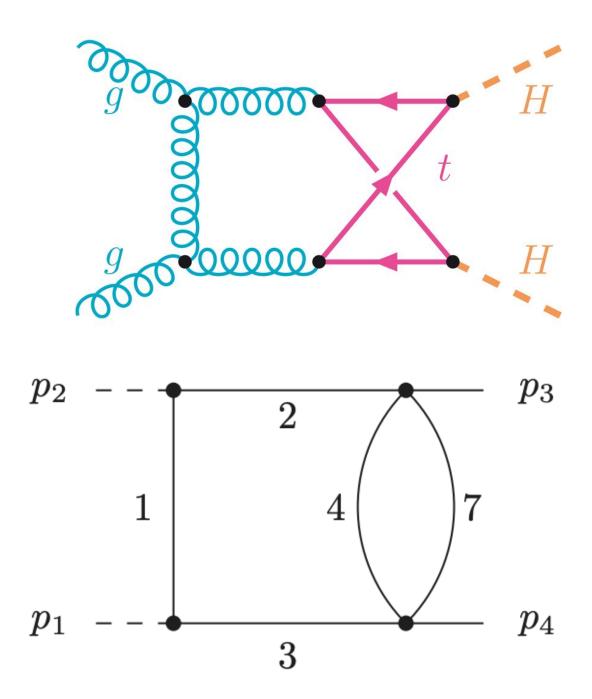
Beyond polylogarithms?

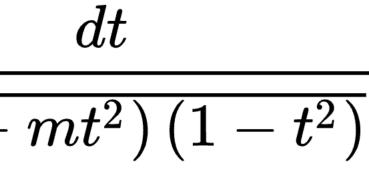
Beyond polylogarithms

Elliptic integrals and iterated integrals over them

$$egin{aligned} F(x;k) &= \int_{0}^{x} rac{dt}{\sqrt{(1-t^2)\left(1-k^2t^2
ight)}} \ E(x;k) &= \int_{0}^{x} rac{\sqrt{1-k^2t^2}}{\sqrt{1-t^2}} \, dt \ \Pi(n;arphi \,|\, m) &= \int_{0}^{\sinarphi} rac{1}{1-nt^2} rac{d}{\sqrt{(1-mt^2)^2}} \, dt \end{aligned}$$

Appearing in cutting-edge calculations



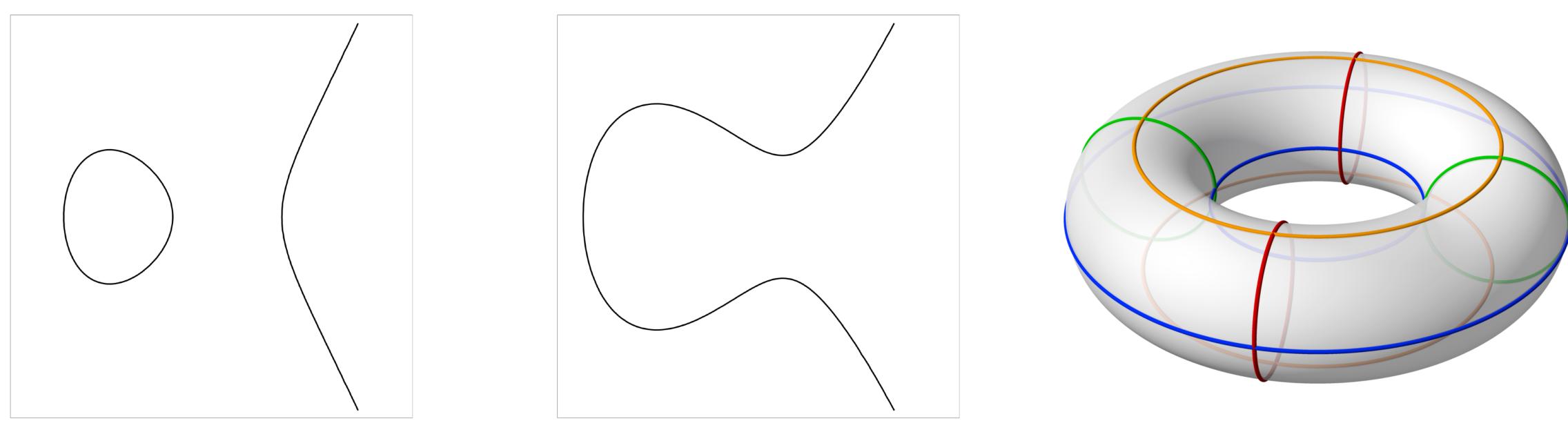


Many developments not covered here!

Elliptic integrals and elliptic curves

Functions can be categorized by the underlying geometry

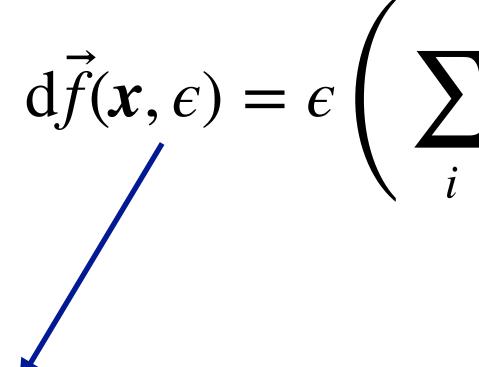
- The geometric object underlying MPLs is a sphere
- > The geometric object underlying iterated elliptic integrals is an elliptic curve (a torus)



 $y^2 = P(x)$ (Degree-3 or 4 polynomial with distinct roots)

Canonical DEs for elliptic integral families

Want to extend the concepts of canonical DEs to elliptic cases

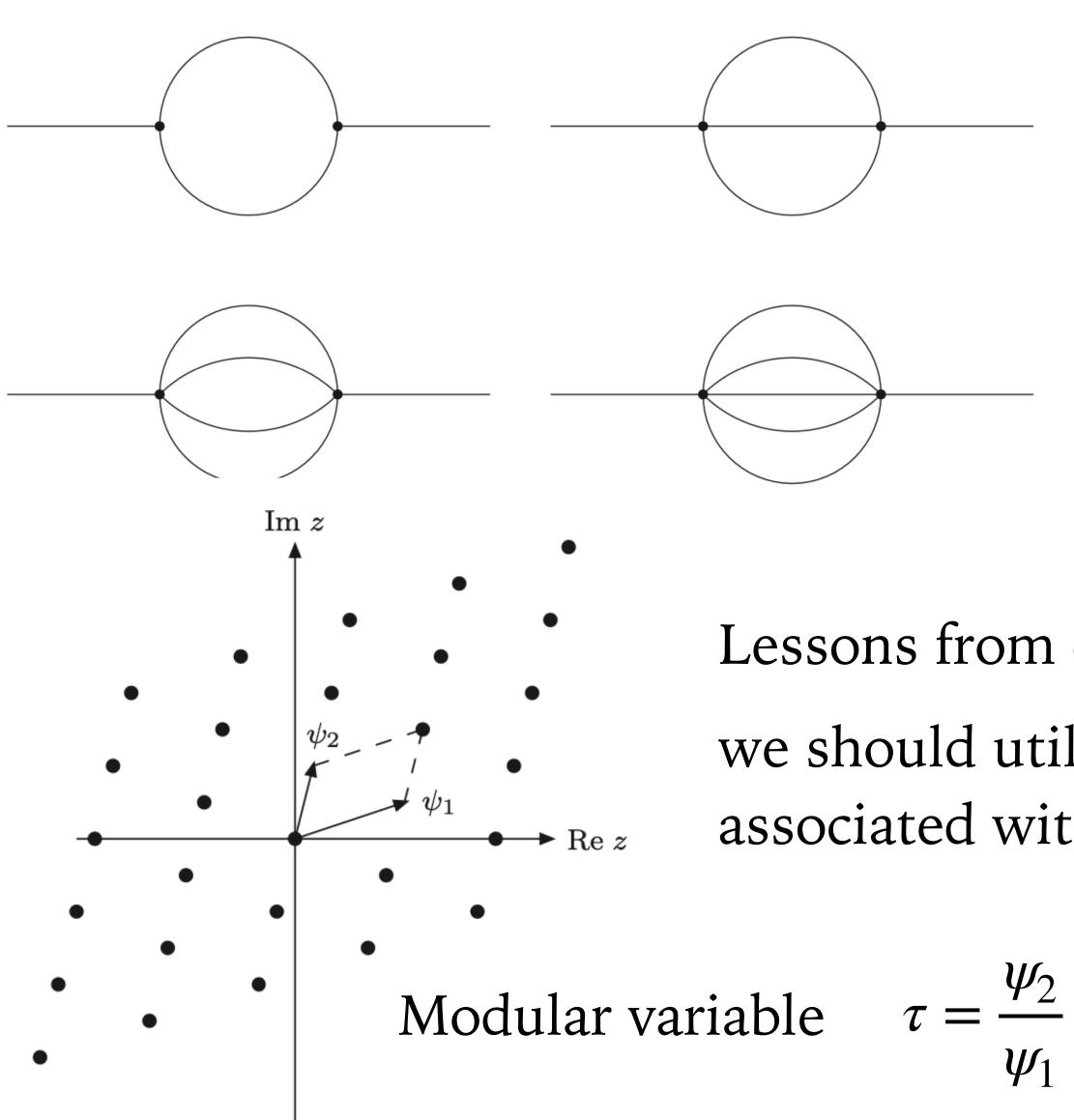


How to find a canonical basis?

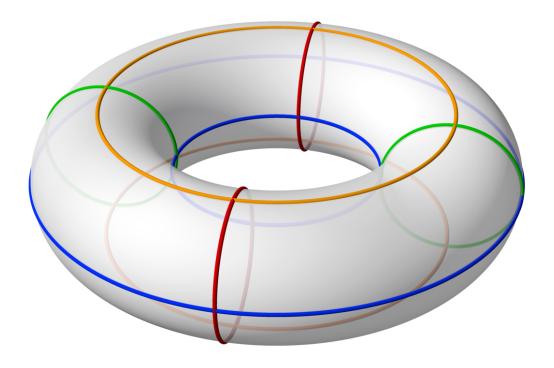
 $d\vec{f}(\boldsymbol{x},\epsilon) = \epsilon \left(\sum_{i} d\alpha_{i}(\boldsymbol{x})A_{i}\right)\vec{f}(\boldsymbol{x},\epsilon)$

What are the corresponding symbol letters? (No longer logarithms!)

Sunrise and Banana families



Pogel, Wang, Weinzierl (2022)



Lessons from equal-mass sunrise and banana families:

we should utilize modular transformations and modular forms associated with the elliptic curves

> $a\tau + b$ Modular transformation $\tau
> ightarrow$ $c\tau + d$

Sunrise and Banana families

The canonical DEs can be derived by analyzing the Picard-Fuchs operator, e.g.:

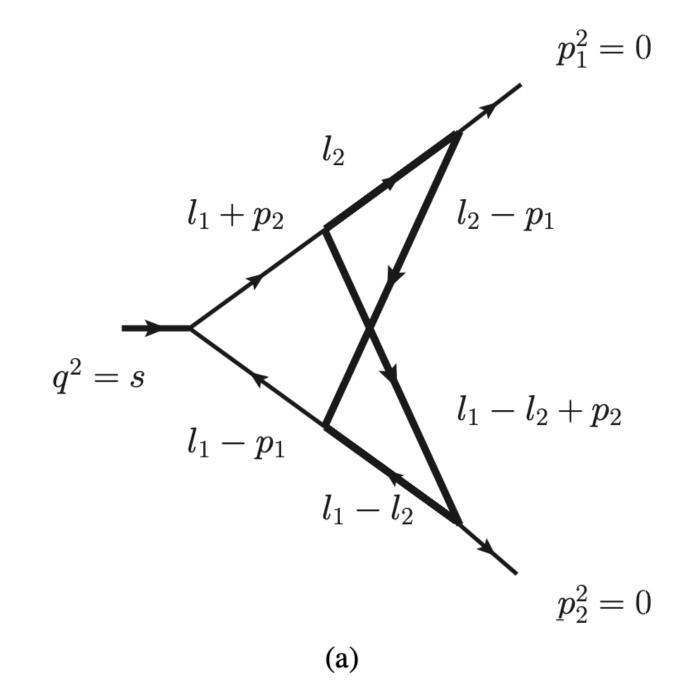
$$L_{3}^{(0)} = \frac{d^{3}}{dx^{3}} + \left[\frac{3}{x} + \frac{3}{2(x-4)} + \frac{3}{2(x-16)}\right]\frac{d^{2}}{dx^{2}} + \frac{7x^{2} - 68x + 64}{x^{2}(x-4)(x-16)}\frac{d}{dx} + \frac{1}{x^{2}(x-16)}.$$

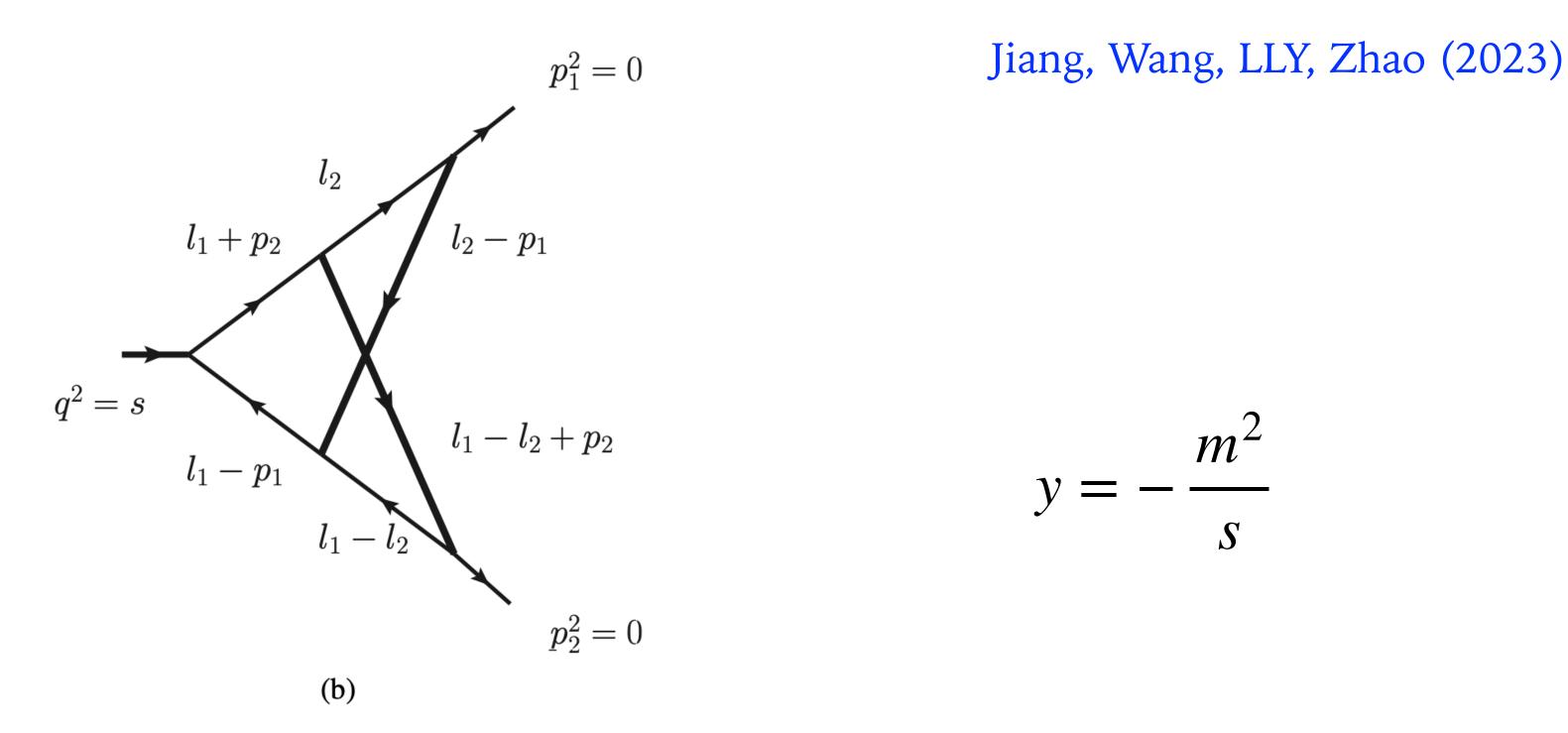
It turns out that the symbol letters can be expressed as modular forms, e.g.:

$$b_{0} = \frac{2}{3}\sqrt{3}\frac{\eta(2\tau)^{6}\eta(3\tau)}{\eta(\tau)^{3}\eta(6\tau)^{2}}, \qquad b_{1} = 6\sqrt{3}\frac{\eta(\tau)\eta(6\tau)^{6}}{\eta(2\tau)^{2}\eta(3\tau)^{3}}.$$

But this cannot be the whole story in more complicated cases!

Single parameter elliptic families with non-trivial sub-sectors





Appearing in, e.g., HH&ZH production and Higgs decays

Non-trivial sub-sectors: 2 top-sector MIs + 9 sub-sector MIs for family (a)

3 top-sector MIs + 15 sub-sector MIs for family (b)

Canonical DEs and solutions

Again possible to derive canonical DEs (including sub-sectors)

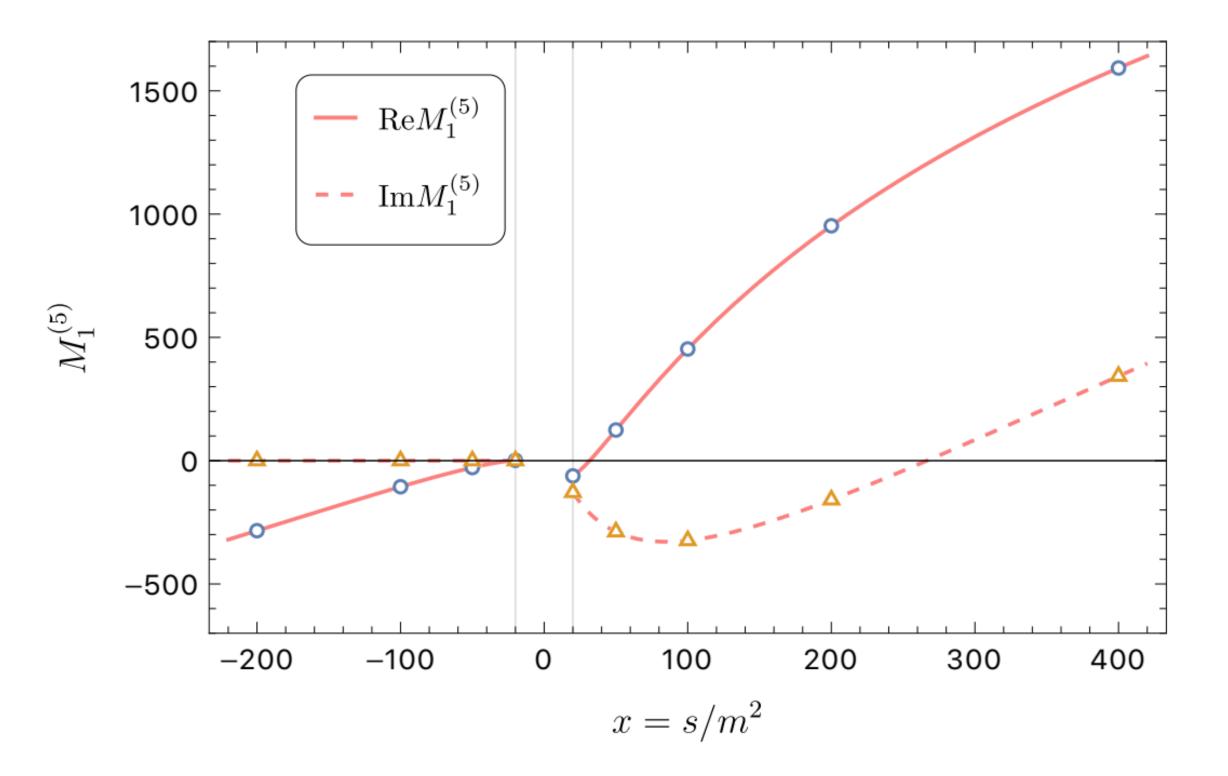
The symbol letters are no longer purely modular forms Non-trivial contributions from singularities of sub-sectors (punctures on the torus) Open Question: can we construct these "elliptic symbol letters" algebraically?

	0	0	0	0 \	
3	10η3	0	0	0	
2	0	0	0	0	
	0	0	0	0	
	0	0	$-\vartheta$	$-\vartheta$	
	0	0	0	0	M
	$-\eta_{2,2}$	0	0	0	
	$-\eta_{2,2}$	-2 φ	0	0	
		$\eta_{2,2} + 3\omega_2$	0	-φ	
	0	0	$\eta_{2,2}$	0	
	0	0	0	0 /	

Numerical evaluation

The iterated integrals can be evaluated using q-expansion

$$I(f_{1}, f_{2}, ..., f_{n}; \tau, \tau_{0}) = (2\pi i)^{n} \int_{\tau_{0}}^{\tau} d\tau_{1} \int_{\tau_{0}}^{\tau_{1}} d\tau_{2} \cdots \int_{\tau_{0}}^{\tau_{n-1}} d\tau_{n} f_{1}(\tau_{1}) f_{2}(\tau_{2}) \dots f_{n}(\tau_{n})$$



ng q-expansion $q = e^{2\pi i \tau}$

Needs to understand the analytic continuation and argument transformation properties of these iterated integrals!

)23)

Summary and outlook

- > Towards building all symbol letters in a loop integral family automatically
 - Baikov representations + intersection theory
 - > Algorithmic approach for planar cases (with proof-of-concept implementation)
 - Bootstrapping canonical DEs
- Extension to non-planar cases in progress
- Relation and combination with other approaches (Schubert, Landau, ...)
- ► Applications in more situations...
- Extension to elliptic integrals and more complicated cases?

Summary and outlook

- > Towards building all symbol letters in a loop integral family automatically
 - Baikov representations + intersection theory
 - > Algorithmic approach for planar cases (with proof-of-concept implementation)
 - Bootstrapping canonical DEs
- Extension to non-planar cases in progress
- Relation and combination with other approaches (Schubert, Landau, ...)
- ► Applications in more situations...
- Extension to elliptic integrals and more complicated cases?

