

量子引力低能效应的理论预期

凌意

中国科学院高能物理研究所(IHEP,CAS)

"引力的量子性质"高级研讨班, 彭桓武高能基础理论研究中心, 合肥 08/08/2024

1. Direct quantum gravity effects

$$l_p = \sqrt{G\hbar/c^3} \approx 1.6 \times 10^{-33} cm$$

$$E_p = \sqrt{\hbar c^5 / G} \approx 1.2 \times 10^{19} GeV$$

引力相关的量子效应

1. Direct quantum gravity effects

$$l_p = \sqrt{G\hbar/c^3} \approx 1.6 \times 10^{-33} cm$$
 $E_p = \sqrt{\hbar c^5/G} \approx 1.2 \times 10^{19} GeV$

2. Quantum gravity phenomenology

$$E^{2} = m^{2}c^{4} + p^{2}c^{2} + (l_{p}p)^{n}p^{2}c^{2} \qquad \Delta x \Delta p \ge \frac{\hbar}{2}(1 + l_{p}^{2}\Delta p^{2})$$

引力相关的量子效应

1. Direct quantum gravity effects

$$l_p = \sqrt{G\hbar/c^3} \approx 1.6 \times 10^{-33} cm$$
 $E_p = \sqrt{\hbar c^5/G} \approx 1.2 \times 10^{19} GeV$

2. Quantum gravity phenomenology

$$E^{2} = m^{2}c^{4} + p^{2}c^{2} + (l_{p}p)^{n}p^{2}c^{2} \qquad \Delta x \Delta p \ge \frac{\hbar}{2}(1 + l_{p}^{2}\Delta p^{2})$$

3. Quantum effect over classical gravity

引力相关的量子效应

1. Direct quantum gravity effects

- $l_p = \sqrt{G\hbar/c^3} \approx 1.6 \times 10^{-33} cm$ $E_p = \sqrt{\hbar c^5/G} \approx 1.2 \times 10^{19} GeV$
- 2. Quantum gravity phenomenology

$$E^{2} = m^{2}c^{4} + p^{2}c^{2} + (l_{p}p)^{n}p^{2}c^{2} \qquad \Delta x \Delta p \ge \frac{\hbar}{2}(1 + l_{p}^{2}\Delta p^{2})$$

3. Quantum effect over classical gravity

4. Quantum simulation without gravity

Review of QGEM

Matter-Wave system

Two Stern-Gerlach devices

Bose, et.al., Phys.Rev.Lett. 119 (2017)240401

Marletto and Vedral, Phys.Rev.Lett. 119 (2017) 240402

Review of QGEM

• 引力若是量子的,将引起相位差:

$$|\psi_{t=0}\rangle = \frac{1}{2} \left(|\psi_{1}^{L}\rangle + |\psi_{1}^{R}\rangle \right) \otimes \left(|\psi_{2}^{L}\rangle + |\psi_{2}^{R}\rangle \right) \otimes |g\rangle$$
$$= \frac{1}{2} \left(|LL\rangle + |RR\rangle + |LR\rangle + |RL\rangle \right) \otimes |g\rangle$$

$$\left|\psi_{t=1}\right\rangle = \frac{1}{2} \left(\left|LL\right\rangle \otimes \left|g_{d_{LL}}\right\rangle + \left|RR\right\rangle \otimes \left|g_{d_{RR}}\right\rangle + \left|LR\right\rangle \otimes \left|g_{d_{LR}}\right\rangle + \left|RL\right\rangle \otimes \left|g_{d_{RL}}\right\rangle\right)$$

$$|LL\rangle \rightarrow e^{i\phi_{LL}}|LL\rangle \qquad \phi_{ij} = \frac{Gm^2\Delta t}{\hbar d_{ij}} \qquad \phi_{LL} = \phi_{RR} = \phi_{RR} \neq \phi_{RL} \qquad d \quad R$$

$$m \sim 10^{-11}g, d \sim 10^{-4}cm, t \sim 1s \rightarrow \phi \sim \pi$$

$$\left|\psi\right\rangle = \frac{1}{\sqrt{2}} \left(\left|L_{A}\right\rangle\right| \downarrow \right)_{A} + \left|R_{A}\right\rangle \left|\uparrow\right\rangle_{A}\right) \otimes \left|\varphi_{0}\right\rangle_{B}$$

I. Apparent paradox

$$T_B < D$$
 $T_A < D$

 $T_B: \delta x$ Which path?

 T_A : Recombine the superposition without emitting radiation

I. Apparent paradox

$$T_B < D$$
 $T_A < D$

 $T_B: \delta x$ Which path?

 T_A : Recombine the superposition without emitting radiation

(1) If complementarity holds.

Alice tests the coherence of state and know whether or not open the trap

Violation of causality

I. Apparent paradox

$$T_B < D$$
 $T_A < D$

 $T_B: \delta x$ Which path?

 T_A : Recombine the superposition without emitting radiation

(1) If complementarity holds.

Alice tests the coherence of state and know whether or not open the trap

Violation of causality

(2) If causality holds.

Alice maintains the coherence Bob acquired which path

Violation of complementarity

II. EM Version

Before open the trap

$$\left|\psi\right\rangle = \frac{1}{\sqrt{2}} \left(\left|L_{A}\right\rangle\right|\downarrow\right\rangle_{A} \left|\alpha_{L}\right\rangle_{F} + \left|R_{A}\right\rangle\left|\uparrow\right\rangle_{A} \left|\alpha_{R}\right\rangle_{F}\right) \otimes \left|\varphi_{0}\right\rangle_{B} \left|\left\langle\alpha_{L}\right|\alpha_{R}\right\rangle_{F}\right| = 1$$

II. EM Version

Before open the trap

$$\left|\psi\right\rangle = \frac{1}{\sqrt{2}} \left(\left|L_{A}\right\rangle\right|\downarrow\right)_{A} \left|\alpha_{L}\right\rangle_{F} + \left|R_{A}\right\rangle\left|\uparrow\right\rangle_{A} \left|\alpha_{R}\right\rangle_{F}\right) \otimes \left|\varphi_{0}\right\rangle_{B} \left|\left\langle\alpha_{L}\right|\alpha_{R}\right\rangle_{F}\right| = 1$$

(1) Vacuum fluctuations of electric field c=1

$$\Delta E \sim \frac{1}{R^2}$$
 $m\ddot{\kappa} = Eq$

The displacement of the position of a classical free particle over the time scale **R**

$$\Delta x \sim \frac{q}{m} \Delta E \Delta t^2 \sim \frac{q}{m} \frac{1}{R^2} R^2 \sim \frac{q}{m}$$

Limit Bob's ability to entangle his particle with Alice.

II. EM Version

Before open the trap

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left(|L_A\rangle |\downarrow\rangle_A |\alpha_L\rangle_F + |R_A\rangle |\uparrow\rangle_A |\alpha_R\rangle_F \right) \otimes |\varphi_0\rangle_B |\langle\alpha_L |\alpha_R\rangle_F | = 1$$

(1) Vacuum fluctuations of electric field c=1

$$\Delta E \sim \frac{1}{R^2}$$
 $m\ddot{\mathbf{x}} = \mathbf{E}\mathbf{q}$

The displacement of the position of a classical free particle over the time scale **R**

$$\Delta x \sim \frac{q}{m} \Delta E \Delta t^2 \sim \frac{q}{m} \frac{1}{R^2} R^2 \sim \frac{q}{m}$$

Limit Bob's ability to entangle his particle with Alice.

To significant entanglement it is necessary to have

$$\delta x > \frac{q_B}{m_B}$$

Bob will be able to obtain significant "which path" information iff

$$\frac{D_A}{D^3}T_B^2 > 1$$

Bob will be able to obtain significant "which path" information iff

$$\frac{D_A}{D^3}T_B^2 > 1$$

(ii) The amount of entangling radiation emitted by Alice's particle

 $\mathcal{E} \sim \left(\frac{D_A}{T_A^2}\right)^2 T_A$ Photon's frequency $\frac{1}{T_A} \implies N \sim \left(\frac{D_A}{T_A}\right)^2$

Alice can avoid emitting entangling radiation iff

$$D_A < T_A$$

1. Main case of interest

$$T_B < D, \quad T_A < D$$

(a)
$$D_A < T_A$$

Alice can close her superposition without radiation

$$D_A < T_A < D$$

Bob is unable to acquire "which path" information in time T_B

$$T_B < D$$

$$\frac{D_A}{D^3}T_B^2 = \frac{D_A}{D}\frac{T_B^2}{D^2} < 1$$

Alice recohere particle, Bob can do nothing to stop her

1. Main case of interest

$$T_B < D, \quad T_A < D$$

(a)
$$D_A < T_A$$

Alice can close her superposition without radiation

$$D_A < T_A < D$$

Bob is unable to acquire "which path" information in time $T_B < D$

$$\frac{D_A}{D^3}T_B^2 = \frac{D_A}{D}\frac{T_B^2}{D^2} < 1$$

Alice recohere particle, Bob can do nothing to stop her

$$(b) \quad D_A > T_A$$

Alice's particle will necessarily emit entangling radiation, recoherence experiment fails

Bob's particle can obtain "which path" information.

Summary

If no vacuum fluctuation

(a) $D_A < D$

Bob would obtain "which-path" information in time $T_B < D$

If he influences Alice's state \rightarrow Violation of causality

If he doesn't

→ Violation of comlementarity

Summary

If no vacuum fluctuation

(a) $D_A < D$

Bob would obtain "which-path" information in time $T_B < D$

If he influences Alice's state \rightarrow Violation of causality

If he doesn't

→ Violation of comlementarity

If no quantized radiation

 $(b) \quad D_A > D$

Alice would be able to recohere her particle in $T_A < D$

But Bob can obtain "which path" information in $T_B < D$

→ Violation of causality or complementarity

(II) $T_A > D_A > D$ No radiation

Bob could obtain "which path" information if release Bob could not obtain "which path" information if he doesn't

No causality issue

(II) $T_A > D_A > D$ No radiation

Bob could obtain "which path" information if release Bob could not obtain "which path" information if he doesn't

No causality issue

$$(III) \quad T_{\mathcal{A}} \qquad D_{\mathcal{A}} > D$$

No radiation

Bob can acquire "which path" information

Alice's particle must be entangled with Bob's at the end of process.

How can Bob's particle become entangled with Alice's?

$$t < T_{A} \qquad \left| x = L, \uparrow \right\rangle_{A} \left| \phi_{L} \right\rangle_{F} \left| R \right\rangle_{B} + \left| x = R, \downarrow \right\rangle_{A} \left| \phi_{R} \right\rangle_{F} \left| L \right\rangle_{B}$$

$$t > T_{A} \qquad |x = 0\rangle_{A} |\phi_{0}\rangle_{F} \otimes \left(\left|\uparrow\right\rangle_{A} |R\rangle_{B} + \left|\downarrow\right\rangle_{A} |L\rangle_{B}\right)$$

Summary and outlooks

• QGEM provides a strategy to test the nature of gravity, quantum or classical.

• Current theoretical investigation supports that the gravity should be quantum.

• Could we propose more Gedanken experiments at low energy level to signalize the quantum nature of gravity?

Thanks !