Decoherence and Bell test of cosmological perturbations: boundary terms and the WKB wave functional

Chon Man Sou (苏俊文)

清华大学 | 📩 cmsou@mail.tsinghua.edu.cn

引力的量子性质, PCFT

2024/08/05

Based on: arXiv:2405.07141

with Junqi Wang & Yi Wang

JHEP 06 (2023) 101 (arXiv:2305.08071) with <u>Sirui Ning</u> & <u>Yi Wang</u>

JHEP 04 (2023) 092 (arXiv:2207.04435) with **Duc Huy Tran** & Yi Wang

Outline

Chon Man Sou (Tsinghua University)

Decoherence and Bell test of cosmological perturbations: boundary terms and the WKB wave functional

引力的量子性质, PCFT

The two-mode squeezed state of cosmological perturbations

Inflation: primordial universe experienced exponential expansion

The geometry of the expanding universe

$$ds^{2} = -dt^{2} + a(t)^{2}d\mathbf{x}^{2} = a^{2}\left(-d\tau^{2} + d\mathbf{x}^{2}\right)$$
conformal time

- Nearly flat, homogenous and isotropic on large scale
- $a(t) \sim e^{Ht}$ as the <u>scale factor</u>, with a nearly constant <u>Hubble parameter</u> (how fast the expansion)

$$H = \frac{\dot{a}}{a}$$

Decoherence and Bell test of cosmological perturbations: boundary terms and the WKB wave functional

Two-mode squeezed states of cosmological perturbations

The dynamics of slow-roll inflation

The simplest inflation model is driven by a real scalar field, inflaton $\phi(\mathbf{x},t)$

• The Hubble parameter changes slowly

 $H^{2} = \frac{1}{3M_{p}^{2}} \left(\frac{\dot{\phi}^{2}}{2} + V(\phi) \right) \quad \text{energy density of inflaton} \\ \text{homogenous background } \phi(t) \\ \text{Planck mass} \quad \checkmark \quad \textbf{Not strictly constant as the equation of motion (EOM)}$

$$\ddot{\phi} + \partial_{\phi} V(\phi) = -3H\dot{\phi}$$

• "Slow" described by the slow-roll parameters

$$\epsilon = -\frac{\dot{H}}{H^2} < \mathcal{O}(10^{-3}) \quad \eta = \frac{\dot{\epsilon}}{H\epsilon} \approx 0.03$$

- Observational constraints
- As small parameters
- Identify <u>the dominated order</u> of decoherence effect

Cosmological perturbations from quantum fluctuation

Spatial metric of 3d hypersurface at time t during inflation

 $h_{ij}(\mathbf{x},t) = a(t)^2 e^{2\zeta(\mathbf{x},t)} \left(e^{\gamma(\mathbf{x},t)} \right)_{ij}$ Maldacena's convention

in the ADM (3+1) decomposition

$$ds^{2} = -N^{2}dt^{2} + h_{ij}(dx^{i} + N^{i}dt)(dx^{j} + N^{j}dt)$$

• Lapse and shift by solving constraint equations

$$N = 1 + \frac{\dot{\zeta}}{H}, \ N^{i} = \frac{1}{a^{2}} \left(-\frac{\partial_{i}\zeta}{H} + a^{2}\epsilon\partial_{i}\partial^{-2}\dot{\zeta} \right)$$

$$\delta\phi = \phi(\mathbf{x}, t) - \phi(t)$$

- **Tensor perturbation** γ_{ij} is related to primordial gravitational wave
 - Primordial gravitons as the quantum fluctuation

Decoherence and Bell test of cosmological perturbations: boundary terms and the WKB wave functional

 $^{(3)}R$ Perturb 3d Ricci scalar

6

The primordial perturbations are related to today's observations

• The perturbations stop evolving when the wavelengths larger than Hubble horizon H^{-1}

The two-mode squeezed state of cosmological perturbations

In Heisenberg picture, the canonical quantization of cosmological perturbations

$$\zeta_{\mathbf{k}} = u_{k}a_{\mathbf{k}} + u_{k}^{*}a_{-\mathbf{k}}^{\dagger}, \ \gamma_{ij}(\mathbf{k}) = \sum_{s=\pm} (v_{k}b_{\mathbf{k}}^{s} + v_{k}^{*}b_{-\mathbf{k}}^{s\dagger})e_{ij}^{s}(\mathbf{k})$$
comoving wavenumber
mode function
mode function

In Schrödinger picture, the BD vacuum becomes squeezed during inflation, e.g. for scalar perturbation

• (Grishchuk & Sidorov, PRD 42, 3413, 1990) (Albrecht, Ferreira, Joyce & Prokopec, astro-ph/9303001)

$$\mathcal{H}_{\mathbf{k}} = \frac{k}{2} (a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}} + a_{-\mathbf{k}}^{\dagger} a_{-\mathbf{k}} + 1) - \frac{i}{2} \frac{(a\sqrt{\epsilon})'}{a\sqrt{\epsilon}} (a_{\mathbf{k}} a_{-\mathbf{k}} - a_{-\mathbf{k}}^{\dagger} a_{\mathbf{k}}^{\dagger})$$
Harmonic oscillator
squeezing

It evolves into a **two-mode squeezed state**, and particles with opposite directions are **entangled**

$$|\Psi_{\mathbf{k},-\mathbf{k}}\rangle = \frac{1}{\cosh r_k} \sum_{n=0}^{\infty} e^{-2in\varphi_k} \tanh^n r_k |n_{\mathbf{k}}, n_{-\mathbf{k}}\rangle$$
Squeezing parameter

8

The wave functional of cosmological perturbations (free theory)

The wave functional in field basis has Gaussian form, but the entanglement is not manifest

$$\langle \zeta, \gamma | \Psi_G \rangle = \Psi_G(\zeta, \gamma) \propto \exp\left[-\frac{1}{2} \left(\int \frac{d^3k}{(2\pi)^3} A_k^{(\zeta)}(t) \zeta_{\mathbf{k}} \zeta_{-\mathbf{k}} + \sum_{s=\pm} A_k^{(\gamma)}(t) \gamma_{\mathbf{k}}^s \gamma_{-\mathbf{k}}^s \right) \right] \stackrel{?}{=} \prod_{\mathbf{k}} \Psi_G^{(\zeta)}(\zeta_{\mathbf{k}}) \Psi_G^{(\gamma)}(\gamma_{\mathbf{k}})$$

mixing of modes with opposite direction

Basis by the eigenstates of field operators $\hat{\zeta}|\zeta\rangle = \zeta|\zeta\rangle \quad \hat{\gamma}_{ij}|\gamma_{ij}\rangle = \gamma_{ij}|\gamma_{ij}\rangle$

• The mixing of modes with opposite direction $\pm \mathbf{k}$ is resolved by changing the basis Schrödinger picture

$$\hat{\zeta}_{\mathbf{k}}^{S} \propto a_{\mathbf{k}} + a_{-\mathbf{k}}^{\dagger} \qquad -\mathbf{k} \rightarrow \mathbf{k} \qquad \hat{x}_{\mathbf{k}}^{S} \propto a_{\mathbf{k}} + a_{\mathbf{k}}^{\dagger} \propto \zeta_{\mathbf{k}} + \zeta_{-\mathbf{k}} + \frac{\imath}{k} (\zeta_{\mathbf{k}}' - \zeta_{-\mathbf{k}}')$$
new field: "position" operator conformal time derivative $\frac{d}{d\tau} = \frac{1}{a(t)} \frac{d}{dt}$

• The wave functional in this basis is not separable, thus entangling

$$\langle x_{\mathbf{k}}, x_{-\mathbf{k}} | \Psi \rangle = \Psi(x_{\mathbf{k}}, x_{-\mathbf{k}}) = \frac{1}{\sqrt{\pi}} e^{-\frac{\cosh(2r_k)}{2}(x_{\mathbf{k}}^2 + x_{-\mathbf{k}}^2) + \sinh(2r_k)x_{\mathbf{k}}x_{-\mathbf{k}}} \neq \Psi(x_{\mathbf{k}})\Psi(x_{-\mathbf{k}})$$

Probe the quantum nature with the two-mode squeezed state

Chon Man Sou (Tsinghua University)

Decoherence and Bell test of cosmological perturbations: boundary terms and the WKB wave functional

Two-mode squeezed states of cosmological perturbations

Proposals to probe their quantum nature

Chon Man Sou (Tsinghua University)

Decoherence and Bell test of cosmological perturbations: boundary terms and the WKB wave functional

引力的量子性质, PCFT

11

Cosmological Bell test in the literature

References	Bell violation	Limitations
Campo & Parentani, astro-ph/0510445	CH inequality with joint probabilities on two-mode coherent-state projectors $ v, \mathbf{k}\rangle\langle v, \mathbf{k} \otimes w, -\mathbf{k}\rangle\langle w, -\mathbf{k} $ P(v, w) + P(v, w') + P(v', w) - P(v', w') > P(v) + P(w)	 Practically difficult to measure field's conjugate momentum depends on \$\zeta\$ Affected by minimal decoherence from gravitational non-linearity we focus on this: theoretical constraint
 Martin & Vennin, 1706.05001 Kanno & Soda, 1705.06199 (See also for pseudo spin: Revzen, Mello, Mann & Johansen, quant-ph/0405100) 	CHSH inequality with the <u>pseudo spin</u> <u>operators</u> constructed in field's phase space (discussed in details in the following slides)	

See also (Maldacena, 1508.01082) for constructing a "cosmological Bell violation" independent to conjugate momentum

- **BUT**, it is **not** measuring the entanglement of cosmological perturbations, the **isospin of a massive field** instead
- Require additional massive field, axion and a **<u>quite contrived mass term</u>** coupling between them and inflaton

 $m^2(\phi)h^{\dagger}h + \lambda(\phi)h^{\dagger}(\sigma_x \cos n\theta + \sigma_y \sin n\theta)h$

Decoherence and Bell test of cosmological perturbations: boundary terms and the WKB wave functional

Cosmological Bell test with the pseudo spin

The **cosmological Bell test** relies on the **pseudo spins** of the entangled (k, -k) modes

- (Martin & Vennin, 1706.05001) (see also Revzen, Mello, Mann & Johansen, quant-ph/0405100)
- Constructed with the eigenstates of $\hat{x}_{\pm \mathbf{k}}$ $S_x(\mathbf{k}) = \int_0^{+\infty} dx_{\mathbf{k}} (|x_{\mathbf{k}}\rangle \langle x_{\mathbf{k}}| - |-x_{\mathbf{k}}\rangle \langle -x_{\mathbf{k}}|)$ $S_y(\mathbf{k}) = -\int_0^{+\infty} dx_{\mathbf{k}} (|x_{\mathbf{k}}\rangle \langle -x_{\mathbf{k}}| - |-x_{\mathbf{k}}\rangle \langle x_{\mathbf{k}}|)$ $S_z(\mathbf{k}) = -\int_{-\infty}^{+\infty} dx_{\mathbf{k}} |x_{\mathbf{k}}\rangle \langle -x_{\mathbf{k}}|$

Decoherence and Bell test of cosmological perturbations: boundary terms and the WKB wave functional

13

Cosmological Bell test with the pseudo spin (Cont.)

Construct **Bell inequality** to test the quantum correlation between $\pm k$ modes, which **violates for the two-mode squeezed state**

- The standard CHSH setup with four unit vectors $\,\hat{n},\,\,\hat{n}',\,\,\hat{m},\,\,\hat{m}'$

$$\langle \Psi | \mathcal{B}(\mathbf{k}, -\mathbf{k}) | \Psi \rangle = E(\theta_n, \theta_m) + E(\theta_n, \theta_{m'}) + E(\theta_{n'}, \theta_m) - E(\theta_{n'}, \theta_{m'})$$

 polar angles of unit vectors

where the correlation function $E(\hat{\mathbf{n}}, \hat{\mathbf{m}}) = \langle \Psi | \hat{\mathbf{n}} \cdot \mathbf{S}(\mathbf{k}) \otimes \hat{\mathbf{m}} \cdot \mathbf{S}(-\mathbf{k}) | \Psi \rangle$

• Optimize the violation $\theta_n = 0$, $\theta_{n'} = \pi/2$, $\theta_{m'} = -\theta_m$ $\langle \Psi | \mathcal{B}(\mathbf{k}, -\mathbf{k}) | \Psi \rangle \stackrel{\text{optimize}}{=} 2\sqrt{\langle S_x(\mathbf{k}) S_x(-\mathbf{k}) \rangle^2 + \langle S_z(\mathbf{k}) S_z(-\mathbf{k}) \rangle^2}$ $= 2\sqrt{1 + \tanh(2r_k)^2 \cos(2\varphi_k)^2} > 2$ $\rightarrow +\infty \rightarrow -\pi/2$

Quantum noise of Gravitational wave detectors

Parikh, Wilczek and Zahariade proposed that gravitons can produce noise term to the detector's classical EOM (2005.07211, 2010.08208 & 2010.08205)

• The EOM of GW detector's arm $\xi(t)$

$$\ddot{\xi}(t) - \frac{1}{2} \begin{bmatrix} \ddot{h}(t) - \frac{m_0 G}{c^5} \frac{d^5 \xi^2(t)}{dt^5} + \ddot{N}(t) \end{bmatrix} \xi(t) = 0$$
classical GW effect
quantum noise

- The quantum noise depends on <u>the quantum state</u>
 of the incoming GW
- This can verify the quantum nature of gravity

Quantum noise depends on the state of gravitons

Chon Man Sou (Tsinghua University)

Decoherence and Bell test of cosmological perturbations: boundary terms and the WKB wave functional

Detectability of the squeezed-state quantum noise

However, the current proposals **DO NOT consider decoherence effect during inflation**, will it change the results/interpretations of quantum noise?

Decoherence and Bell test of cosmological perturbations: boundary terms and the WKB wave functional

17

Not only <u>explaining</u> the quantum-to-classical transition, but also <u>constraining</u> the probe of quantum origin

Quantumness vs Decoherence: Quantitative results are important

Chon Man Sou (Tsinghua University)

Decoherence and Bell test of cosmological perturbations: boundary terms and the WKB wave functional

18

Decoherence of cosmological perturbations

Decoherence by tracing out unobserved modes

In general, the **pure** full quantum state of system $\{\xi_q\}$ and environment $\{\mathcal{E}_k\}$ can be described by the **density matrix**

$$\rho(\{\xi, \mathcal{E}\}, \{\tilde{\xi}, \tilde{\mathcal{E}}\}) = \Psi(\xi, \mathcal{E})\Psi^*(\tilde{\xi}, \tilde{\mathcal{E}})^{\clubsuit \Psi(\xi, \mathcal{E})} = \sqrt{\mathcal{P}(\xi, \mathcal{E})}e^{iS(\xi, \mathcal{E})}$$

$$\hat{\rho} = \begin{pmatrix} |\Psi(\xi_1, \mathcal{E}_1)|^2 & \Psi(\xi_1, \mathcal{E}_1)\Psi^*(\xi_2, \mathcal{E}_2) & \dots \\ \Psi(\xi_2, \mathcal{E}_2)\Psi^*(\xi_1, \mathcal{E}_1) & |\Psi(\xi_2, \mathcal{E}_2)|^2 & \dots \\ \vdots & \vdots & \ddots \end{pmatrix} = \begin{pmatrix} \mathcal{P}(\xi_1, \mathcal{E}_1) & \sqrt{\mathcal{P}(\xi_1, \mathcal{E}_1)\mathcal{P}(\xi_2, \mathcal{E}_2)}e^{i(S(\xi_1, \mathcal{E}_1) - S(\xi_2, \mathcal{E}_2))} & \dots \\ \mathcal{P}(\xi_2, \mathcal{E}_2) & \dots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

- Diagonal elements act like classical probability distribution $\mathcal{P}(\xi, \mathcal{E})$
- Off-diagonal involve **quantum interference** with phase difference $e^{i(S(\xi, \mathcal{E}) S(\tilde{\xi}, \tilde{\mathcal{E}}))}$
- Decoherence is characterized by the <u>decaying of off-diagonal elements</u> when the environment is <u>traced out</u>, i.e. <u>loss of quantum interference</u> —> <u>classical statistics</u>

Frameworks to calculate cosmic decoherence

The **reduced density matrix**, describing the open system's quantum state, is usually **not analytically solvable**. In the literature, there are 2 popular types of approximations

Decoherence and Bell test of cosmological perturbations: boundary terms and the WKB wave functional

Decoherence starts from cubic (non-Gaussianity)

Interaction makes **observable modes** (system) coupling with **unobserved modes** (environment)

e.g. the observable range for Cosmic Microwave Background $\mathcal{E}_{\mathbf{k}'}$ (Planck, 2018) $10^{-4} < q < 10^{-1} \mathrm{Mpc}^{-1} \Longrightarrow \zeta = \int_{cuc} \frac{d^3 \mathbf{q}}{(2\pi)^3} e^{i\mathbf{q}\cdot\mathbf{x}} \xi_{\mathbf{q}} + \int_{cuc} \frac{d^3 \mathbf{k}}{(2\pi)^3} e^{i\mathbf{k}\cdot\mathbf{x}} \mathcal{E}_{\mathbf{k}}$ • The perturbative wave functional has the **non-Gaussian** form, e.g. $\Psi(\zeta) \propto \exp\left(\sum_{n=2}^{\infty} \frac{1}{n!} \int_{\mathbf{p}_1,\dots,\mathbf{p}_n} A^{(n)}_{\mathbf{p}_1,\dots,\mathbf{p}_n} \zeta_{\mathbf{p}_1}\dots\zeta_{\mathbf{p}_n}\right)$ $\int \frac{d^3 p_1}{(2\pi)^3} \dots \frac{d^3 p_n}{(2\pi)^3} (2\pi)^3 \delta^3\left(\sum \mathbf{p}_i\right)$ Observed Sq (open system unobserved (environment) System-environment coupling starts from cubic interaction $\int d^3x \, \zeta(\mathbf{x},t)^3 = \int \qquad \zeta_{\mathbf{p}_1} \zeta_{\mathbf{p}_2} \zeta_{\mathbf{p}_3}$ $\int d^3x \, \zeta(\mathbf{x},t)^2 = \int \frac{d^3p}{(2\pi)^3} \zeta_{\mathbf{p}} \zeta_{-\mathbf{p}}$

quadratic term only couples modes with opposite directions

Decoherence by tracing out unobserved modes

Through the cubic interaction, wave functional has cubic term (Nelson, 1601.03734)

$$\begin{split} \Psi(\xi,\mathcal{E}) \propto \exp\left(\int_{\mathbf{k},\mathbf{k}',\mathbf{q}} \mathcal{F}_{\mathbf{k},\mathbf{k}',\mathbf{q}} \mathcal{E}_{\mathbf{k}} \mathcal{E}_{\mathbf{k}'} \xi_{\mathbf{q}}\right) \Psi_{G}(\mathcal{E},\xi) & \quad \text{Gaussian part} \\ & \quad \text{key point: cubic coefficient of wave functional} \\ \bullet \text{ Property which } \underbrace{\operatorname{turns out to be general: non-Gaussian phase } \operatorname{dominates}_{\operatorname{Re}\mathcal{F}_{\mathbf{k},\mathbf{k}',\mathbf{q}}} \to \mathcal{O}(a^{0}) \quad \operatorname{Im}\mathcal{F}_{\mathbf{k},\mathbf{k}',\mathbf{q}} \to \mathcal{O}(a^{n}) \\ & \quad \text{Make sense as it is related to 3-pt function } \langle \zeta^{3} \rangle \\ \hline \operatorname{Loss of coherence} \text{ when environment are traced out (taking average)} \\ \hline \operatorname{Reduced density matrix:} \\ \rho_{R}(\xi_{\mathbf{q}},\tilde{\xi}_{\mathbf{q}}) = \langle \xi_{\mathbf{q}} | \operatorname{Tr}_{\mathcal{E}}(|\Psi\rangle\langle\Psi|) | \tilde{\xi}_{\mathbf{q}} \rangle \\ & \quad = \langle \Psi(\xi_{\mathbf{q}},\mathcal{E})\Psi^{*}(\tilde{\xi}_{\mathbf{q}},\mathcal{E}) \rangle_{\mathcal{E}} = \left(\int D\mathcal{E} - \left(\int_{\operatorname{Small}} \int_{\operatorname{Cose to diagonal}} \int_{\operatorname{Cose to diagonal}} |\xi_{\mathbf{q}} - \tilde{\xi}_{\mathbf{q}}|^{2} \times \dots \\ & \sim e^{-\Gamma_{\mathrm{deco}}}_{\mathrm{Decoherence exponent}} \\ \end{array} \right) \\ \xrightarrow{\operatorname{Cose to diagonal}} \left(\int_{\operatorname{Cose to diagonal}} \int_{\operatorname{Cose to diagonal}} |\xi_{\mathbf{q}} - \tilde{\xi}_{\mathbf{q}}|^{2} \times \dots \\ & \quad \end{tabular}$$

Decoherence and Bell test of cosmological perturbations: boundary terms and the WKB wave functional

Example: scalar decoherence by bulk interaction (Nelson, 1601.03734)

$$\begin{split} \underbrace{ \begin{array}{l} \underbrace{ \textbf{Ansatz} \text{ of the perturbative wave functional} \\ \Psi(\xi,\mathcal{E}) \propto \exp\left(\int_{\mathbf{k},\mathbf{k}',\mathbf{q}}\mathcal{F}_{\mathbf{k},\mathbf{k}',\mathbf{q}}\mathcal{E}_{\mathbf{k}}\mathcal{E}_{\mathbf{k}'}\xi_{\mathbf{q}}\right)\Psi_{G}(\mathcal{E},\xi) \\ \end{array}} \\ \hline \\ \textbf{Cubic interaction Hamiltonian} \\ H_{\mathrm{int}}(\tau) \supset \int_{\mathbf{k},\mathbf{k}',\mathbf{q}} \tilde{H}_{\mathbf{k},\mathbf{k}',\mathbf{q}}^{\mathrm{int}}(\tau)\mathcal{E}_{\mathbf{k}}\mathcal{E}_{\mathbf{k}'}\xi_{\mathbf{q}} \\ \hline \\ \end{array} \\ \hline \begin{array}{l} \textbf{Match the Schrödinger equation up to }\mathcal{O}(\zeta^{3}) \\ i\partial_{t}\Psi(\xi,\mathcal{E}) = H(t)\psi(\xi,\mathcal{E}) \\ i\partial_{t}\Psi(\xi,\mathcal{E}) = H(t)\psi(\xi,\mathcal{E}) \\ \hline \\ \end{array} \\ \hline \\ \begin{array}{l} \textbf{Solve the cubic coefficient at the leading order as a time integral} \\ \mathcal{F}_{\mathbf{k},\mathbf{k}',\mathbf{q}} \approx i \int_{\tau_{i}}^{\tau} \frac{d\tau'}{H\tau'} \tilde{H}_{\mathbf{k},\mathbf{k}',\mathbf{q}}^{\mathrm{int}}(\tau') \frac{u_{k}(\tau')u_{k'}(\tau')u_{q}(\tau')}{u_{k}(\tau)u_{k'}(\tau)u_{q}(\tau)} + \mathcal{O}\left((\tilde{H}^{\mathrm{int}})^{2}\right) \\ \\ \textbf{with the mode function } u_{k}^{(\zeta)}(\tau) = \frac{H}{2M_{p}\sqrt{\epsilon k^{3}}} \left(1 - ik\tau\right) e^{ik\tau} \\ \hline \end{array}$$

Decoherence and Bell test of cosmological perturbations: boundary terms and the WKB wave functional

Example: scalar decoherence by bulk interaction (Cont.)

For single-field inflation, the <u>leading bulk interaction</u> (from gravitational non-linearity) causing decoherence is M^2

$$\mathcal{L}_{\text{bulk},\zeta} = -\frac{M_p^2}{2}\epsilon(\epsilon + \eta)a\zeta^2\partial_i^2\zeta$$

The ratio of off-diagonal to diagonal elements of reduced density matrix (Nelson, 1601.03734)

$$D(\xi_{\mathbf{q}}, \tilde{\xi}_{\mathbf{q}}) = \left| \frac{\rho_{R}(\xi_{\mathbf{q}}, \tilde{\xi}_{\mathbf{q}})}{\sqrt{\rho_{R}(\xi_{\mathbf{q}}, \xi_{\mathbf{q}})\rho_{R}(\tilde{\xi}_{\mathbf{q}}, \tilde{\xi}_{\mathbf{q}})}} \right| = \int D\mathcal{E} \underbrace{\frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}}}_{\text{cubic phase with Gaussian envelope}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}} \right) \sim e^{-\Gamma_{\text{deco}}} \\ \frac{1 - \log p}{2} \left(- \frac{P_{k}}{Q_{p_{k}}}$$

Chon Man Sou (Tsinghua University)

Decoherence and Bell test of cosmological perturbations boundary terms and the WKB wave functional

Summary of the estimation of decoherence in the literature

system	environment	bulk interaction	<u>e-folds after</u> <u>crossing horizon</u> for decoherence	references
$\zeta_{ m observed}$	$\zeta_{ m sub}$ $\zeta_{ m unobserved, super}$	$-\frac{M_p^2}{2}\epsilon(\epsilon+\eta)a\zeta^2\partial_i^2\zeta$	10 - 15 Uncertainty by slow- roll parameters	Nelson, 1601.03734 (perturbative wave functional)
$\zeta_{ m observed}$	$\zeta_{ m sub} \ \gamma_{ij, \ m sub}$	$\frac{M_p^2 \epsilon^2 \zeta \partial_i \zeta \partial_i \zeta}{\frac{M_p^2}{8} \epsilon \zeta \partial_l \gamma_{ij} \partial_l \gamma_{ij}}$	13	Burgess et al., 2211.11046 (Markovian approximation)
γ_{ij} \clubsuit Maldacena's convention	$\zeta_{ m sub}$	$M_p^2 \epsilon a \gamma_{ij} \partial_i \zeta \partial_j \zeta$	10	Burgess et al., 2211.11046
h ^{TT} SVT decomposition	$h_{ij, \rm\ sub}^{ m TT}$	All three-tensor interactions of $h_{ij}^{ m TT}$	5 - 10 ← Uncertainty by IR cutoff	Gong & Seo, 1903.12295

Not the end of the story, still has boundary terms (total time derivative)!

So far we have seen:

the cosmic decoherence as a **fundamental constraint** of testing the quantumness of cosmological perturbations, besides the practical difficulty of measurement

However, neglecting boundary terms, which exist by **well-defined variational principle in GR**, cause the following problems:

- 1. wrong estimation of cosmic decoherence, as **boundary term terms dominate the effect**
- 2. wrong estimation of the two-mode squeezing, as it depends on <u>canonical transformation</u> (Grain & Vennin, 1910.01916)

Summary the flow of the technical part

Boundary terms (total time derivative, independent to ζ , $\dot{\gamma}_{ij}$), usually neglected in the non-Gaussianity literature, e.g.

$$\mathcal{L}_{\mathrm{bd},\zeta} = M_p^2 \frac{d}{dt} (-2Ha^3 e^{3\zeta}) \quad \mathcal{L}_{\mathrm{bd},\zeta-\gamma} = M_p^2 \frac{d}{dt} \left[-\frac{a\partial_i \zeta \partial_j \zeta \gamma_{ij}}{H} - \frac{a\zeta \left(\partial_l \gamma_{ij}\right)^2}{8H} \right]$$

- From the standard integration by parts (IBP), the boundary terms cause **slow-roll unsuppressed** NG phase to the wave functional $\Psi(\zeta, \gamma_{ij})$
- **Independent to the IBP**, seen from the WKB approximation of the Wheeler-• **DeWitt equation**

Lead to great improvement of estimating the cosmic decoherence, by several slow-roll order

- Squeezing and thus Bell violation are affected by the boundary terms
- Estimate the **possible window** of having Bell violation for scalar curvature • perturbation

Boundary terms in cosmological perturbation theory

Deriving the cubic interactions from the gravitational action is **complicated**

Follow the famous paper of primordial non-Gaussianity (Maldacena, astro-ph/0210603)

• Consider the simplest single-field inflation

$$S = \int d^4x \mathcal{L} = \int d^4x \sqrt{-g} \left[\frac{M_p^2}{2} R - \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V(\phi) \right] + S_{\text{GHY}} \quad \textbf{(1)}$$

Gibbons-Hawking-York boundary term Adding it = Ignoring covariance derivative (as usual) in $R = {}^{(3)}R - K^2 + K^{\mu}_{\nu}K^{\nu}_{\mu} - 2\nabla_{\mu} \left(-Kn^{\mu} + n^{\nu}\nabla_{\nu}n^{\mu}\right)$

 $=-M_p^2\int_{\Omega M}d^3y\sqrt{h}K$

30

 For fixed induced metric h^{ij} on boundary (hypersurface at equal time), the GHY term is the <u>only</u> <u>option</u> to make the <u>variation well-defined</u>, so boundary terms <u>unique</u> (Chakraborty, 1607.05986)

The correct non-Gaussian correlators like $\langle \zeta \zeta \zeta \rangle$ is NOT simply from expanding (1)

• Integration by parts and rearrange with EOM to select bulk terms with correct slow-roll orders:

Deriving the cubic interactions from the gravitational action is complicated

Done with the Mathematica package *MathGR* (Ning, **Sou** & Wang, 2305.08071)

• Bulk terms

$$\mathcal{L}_{\zeta\zeta\zeta} = M_p^2 \left[a^3 \epsilon (\epsilon - \eta) \zeta \dot{\zeta}^2 + a \epsilon (\epsilon + \eta) \zeta (\partial_i \zeta)^2 + \left(\frac{\epsilon}{2} - 2\right) \frac{\partial^2 \chi}{a} \partial_i \chi \partial_i \zeta + \frac{\epsilon}{4a} \partial^2 \zeta (\partial_i \chi)^2 \right]$$

$$\mathcal{L}_{\zeta\zeta\gamma} = M_p^2 \left[-\frac{1}{2} a \epsilon \chi \partial_i \partial_j \zeta \dot{\gamma}_{ij} + \frac{\partial_i \chi \partial_j \chi \partial^2 \gamma_{ij}}{4a} + a \epsilon \partial_i \zeta \partial_j \zeta \gamma_{ij} \right] \text{ slow-roll suppressed}$$

$$\mathcal{L}_{\zeta\gamma\gamma} = M_p^2 \left[\frac{1}{8} a^3 \epsilon \zeta \dot{\gamma}_{ij}^2 - \frac{1}{4} a \partial_l \chi \dot{\gamma}_{ij} \partial_l \gamma_{ij} + \frac{1}{8} a \epsilon \zeta (\partial_l \gamma_{ij})^2 \right]$$

$$\mathcal{L}_{\gamma\gamma\gamma} = M_p^2 \left[\frac{1}{4} a \partial_m \gamma_{il} \partial_l \gamma_{jm} \gamma_{ij} + \frac{1}{8} a \partial_i \gamma_{lm} \partial_j \gamma_{lm} \gamma_{ij} \right], \text{ slow-roll unsuppressed}$$
• EOM terms

$$\begin{split} f(\zeta,\gamma) &= -\frac{\dot{\zeta}\zeta}{H} + \frac{1}{4a^2H^2} \begin{bmatrix} (\partial_i\zeta)^2 - \partial^{-2}\partial_i\partial_j \left(\partial_i\zeta\partial_j\zeta\right) \end{bmatrix} - \frac{1}{2a^2H} \begin{bmatrix} \partial_i\zeta\partial_i\chi - \partial^{-2}\partial_i\partial_j \left(\partial_i\zeta\partial_j\chi\right) \end{bmatrix} \\ &+ \frac{\partial_i\partial_j\zeta\dot{\gamma}_{ij}}{4H} \partial^{-2} \\ f_{ij}(\zeta,\gamma) &= -\frac{\zeta\dot{\gamma}_{ij}}{H} + \frac{\partial_i\zeta\partial_j\zeta}{a^2H^2} + \frac{2\chi\partial_i\partial_j\zeta}{a^2H} \\ & \text{EOM terms are zero at the} \\ & \text{leading order} \\ \frac{\delta L_2}{\delta\zeta} &= 2M_p^2 \begin{bmatrix} -\frac{d}{dt} \left(\epsilon a^3\dot{\zeta}\right) + \epsilon a\partial^2\zeta \end{bmatrix} \\ \frac{\delta L_2}{\delta\gamma_{ij}} &= \frac{M_p^2}{4} \begin{bmatrix} -\frac{d}{dt} \left(a^3\dot{\gamma}_{ij}\right) + a\partial^2\gamma_{ij} \end{bmatrix} , \end{split}$$

• Boundary terms $\mathcal{L}_{bd,\zeta\zeta\zeta} = M_p^2 \frac{d}{dt} \left\{ -9a^3 H \zeta^3 + \frac{a}{H} (1-\epsilon) \zeta (\partial_i \zeta)^2 - \frac{1}{4aH^3} (\partial_i \zeta)^2 \partial^2 \zeta \right\}$ $\left[-\frac{\epsilon a^3}{H} \zeta \dot{\zeta}^2 - \frac{\zeta}{2aH} \left[(\partial_i \partial_j \chi)^2 - (\partial^2 \chi)^2 \right] + \frac{\zeta}{2aH^2} (\partial_i \partial_j \zeta \partial_i \partial_j \chi - \partial^2 \zeta \partial^2 \chi) \right] \right\}$ $\mathcal{L}_{bd,\zeta\zeta\gamma} = M_p^2 \frac{d}{dt} \left(-\frac{a\partial_i \zeta \partial_j \zeta \gamma_{ij}}{H} + \frac{a\partial_i \zeta \partial_j \zeta \dot{\gamma}_{ij}}{4H^2} + \frac{a\chi \partial_i \partial_j \zeta \dot{\gamma}_{ij}}{2H} \right)$ $\mathcal{L}_{bd,\zeta\gamma\gamma} = M_p^2 \frac{d}{dt} \left[-\frac{a\zeta (\partial_l \gamma_{ij})^2}{8H} + \frac{a\partial_i \zeta \partial_j \zeta \dot{\gamma}_{ij}}{8H} \right]$ $\chi = a^2 \epsilon \partial^{-2} \dot{\zeta}$ Depends on $\dot{\zeta}$ or $\dot{\gamma}_{ij}$

red boxes equivalent to non-linear field redefinitions (Burrage, Ribeiro & Serry, 1103.4126) (Arroja & Tanaka, 1103.1102)

Chon Man Sou (Tsinghua University)

Decoherence and Bell test of cosmological perturbations: boundary terms and the WKB wave functional

Field redefinition can only remove boundary terms with $\dot{\zeta}\,,\,\dot{\gamma}_{ij}$

For the field redefinition (Burrage, Ribeiro & Serry, 1103.4126) (Arroja & Tanaka, 1103.1102)

$$\zeta \to \zeta_n - f(\zeta_n, \tilde{\gamma}), \, \gamma_{ij} \to \tilde{\gamma}_{ij} - f_{ij}(\zeta_n, \tilde{\gamma})$$

the quadratic actions change as

$$S_{2}^{(\zeta)}(\zeta) \to S_{2}^{(\zeta)}(\zeta_{n}) - M_{p}^{2} \int_{\partial \mathcal{M}} d^{3}x \, 2\epsilon a^{3} \dot{\zeta}_{n} f - \int_{\mathcal{M}} d^{4}x \, f \frac{\delta L_{2}}{\delta \zeta} + \dots$$
$$S_{2}^{(\gamma)}(\gamma) \to S_{2}^{(\gamma)}(\tilde{\gamma}) - M_{p}^{2} \int_{\partial \mathcal{M}} d^{3}x \, \frac{a^{3}}{4} \dot{\tilde{\gamma}}_{ij} f_{ij} - \int_{\mathcal{M}} d^{4}x \, f_{ij} \frac{\delta L_{2}}{\delta \gamma_{ij}} + \dots$$

so this type of boundary terms contribute to correlators $\langle \zeta^n \rangle$, $\langle \gamma^n \rangle$

• This agrees with the interaction picture calculation (in-in formalism)

 $\langle 0|\bar{T}e^{i\int_{-\infty}^{t}\partial_{t'}K(\zeta_{I},t')dt'}\zeta_{I}^{n}(t)Te^{-i\int_{-\infty}^{t}\partial_{t'}K(\zeta_{I},t')dt'}|0\rangle = \langle 0|e^{iK(\zeta_{I},t)}\zeta_{I}^{n}(t)e^{-iK(\zeta_{I},t)}|0\rangle$

• But for the boundary terms **independent** to ζ , $\dot{\gamma}_{ij}$, they are neglected in the literature because of **no contribution** to usual correlators

We will see that they contribute to decoherence

Slow-roll order estimation of cubic interaction terms

Bulk/Boundary	Туре	Leading interaction of each type	Slow-roll order
Bulk	$\zeta\zeta\zeta$	$\epsilon(\epsilon + \eta)a(\partial_i\zeta)^2\zeta$	$\epsilon(\epsilon + \eta)\zeta^3$
Bulk	$\zeta\zeta\gamma$	$\epsilon a \partial_i \zeta \partial_j \zeta \gamma_{ij}$	$\epsilon^{rac{3}{2}}\zeta^3$
Bulk	$\zeta\gamma\gamma$	$\epsilon a \zeta \partial_l \gamma_{ij} \partial_l \gamma_{ij}$	$\epsilon^2 \zeta^3$
Bulk	$\gamma\gamma\gamma$	$a\partial_i\gamma_{lm}\partial_j\gamma_{lm}\gamma_{ij}$	$\epsilon^{rac{3}{2}}\zeta^3$
Boundary	$\zeta\zeta\zeta$	$\partial_t \left(a^3 \zeta^3 \right)$	ζ^3
Boundary	$\zeta \zeta \gamma$	$\partial_t \left(a \partial_i \zeta \partial_j \zeta \gamma_{ij} \right)$	$\epsilon^{rac{1}{2}}\zeta^3$
Boundary	$\zeta\gamma\gamma$	$\partial_t \left(a \zeta \partial_l \gamma_{ij} \partial_l \gamma_{ij} \right)$	$\epsilon \zeta^3$

- The <u>slow-roll order</u> is estimated with $\Delta_{\gamma}^2 \sim \mathcal{O}(\epsilon) \Delta_{\zeta}^2 \implies \gamma \sim \mathcal{O}\left(\sqrt{\epsilon}\right) \zeta$
- Boundary terms are less slow-roll suppressed

Revisit the boundary term of ζ : contribute a phase

the boundary term contributes a pure phase

Chon Man Sou (Tsinghua University)

Decoherence and Bell test of cosmological perturbations: boundary terms and the WKB wave functional

Boundary terms in cosmological perturbation theory

The non-Gaussian phase from the WKB approximation of Wheeler-DeWitt

Chon Man Sou (Tsinghua University)

Decoherence and Bell test of cosmological perturbations: boundary terms and the WKB wave functional

引力的量子性质, PCFT

Several ways to see that the boundary terms contribute a **non-Gaussian phase** to the wave functional (**Sou**, Tran & Wang, 2207.04435) (Ning, **Sou** & Wang, 2305.08071)

$$\mathcal{L} = \mathcal{L}_2 - \partial_t \mathcal{K} = f_{aa}(t)\dot{\alpha}^a \dot{\alpha}^a + j_{aa}(t)\alpha^a \alpha^a - \partial_t \left(F_{abc}(t)\alpha^a \alpha^b \alpha^c\right)$$

1. Calculate evolution operator at the cubic order $|\Psi(t)\rangle = U(t,t_i)|\Psi(t_i)\rangle$ $H_{bd}(\zeta,\gamma,t) = \int \partial_t \mathcal{K}(\zeta,\gamma,t) \quad U(t,t_i) = \exp\left(-i\int \mathcal{K}\right) U_{free}(t,t_i) \quad \langle \zeta,\gamma|\Psi(t)\rangle = \exp\left(-i\int \mathcal{K}(\zeta,\gamma,t)\right) \Psi_G(\zeta,\gamma,t)$ Spatial integral

2. Canonical quantization in the Schrödinger picture

$$\Pi_{a} = \frac{\partial \mathcal{L}}{\partial \dot{\alpha}^{a}} = 2f_{bb}\delta^{b}_{a}\dot{\alpha}^{b} - (F_{dbc} + F_{bdc} + F_{bcd})\delta^{d}_{a}\alpha^{b}\alpha^{c} \qquad \qquad \Psi(\vec{\alpha}) = e^{-i\int F_{abc}\alpha^{a}\alpha^{b}\alpha^{c}}\Psi_{\text{free}}(\vec{\alpha})$$

3. The WKB limit of the Wheeler-DeWitt equation

Systematic way to find out the slow-roll unsuppressed phase?

So far our analysis is based on integration by parts (IBP) and rearrangement with EOM terms (Maldacena, astro-ph/0210603)

 Question: there are (infinitely) many ways to do IBP to the action, how to ensure the correct phase factor in the wave functional?

Goal: finding a method independent to integration by parts

The form of wave functional with long wavelength

At the long wavelength limit $a(t) \rightarrow +\infty$, the wave functional looks like (Pimentel, 1309.1793):

$$\Psi(h_{ij}, \phi) = e^{iW(h_{ij}, \phi)} Z(h_{ij}, \phi)$$

Real, local, grows as $\mathcal{O}(a^n)$ Non-local, converges at large $a(t)$

• Only $Z(h_{ij}, \phi)$ contributes to usual cosmological correlators

$$\langle O(h_{ij})\rangle = \int Dh_{ij} \left|\Psi(h_{ij},\phi)\right|^2 O(h_{ij}) = \int Dh_{ij} \left|Z(h_{ij},\phi)\right|^2 O(h_{ij})$$

• e.g. the free wave functional of scalar curvature perturbation

$$\Psi(\zeta) \propto \exp\left[-\epsilon \frac{M_p^2}{H^2} \int_{\mathbf{k}} \left(k^3 + ik^2 Ha\right) \zeta_{\mathbf{k}} \zeta_{-\mathbf{k}}\right] \implies \langle \zeta_{\mathbf{k}} \zeta_{-\mathbf{k}} \rangle \propto \frac{H^2}{4\epsilon M_p^2 k^3} \\ \subset Z(h_{ij}, \phi) \quad \propto {}^{(3)}R \subset W(h_{ij}, \phi)$$

Some reasoning

The WKB approximation of Wheeler-DeWitt equation

To obtain the phase dominated at long wavelength, apply the **WKB approximation** to the Wheeler-DeWitt equation

$$\mathcal{H}\left(\phi, h_{ab}, \frac{\delta}{\delta\phi}, \frac{\delta}{\delta h_{ab}}\right) \Psi(h_{ij}, \phi) = 0 \qquad \Psi(h_{ij}, \phi) \sim e^{i\frac{W(h_{ij}, \phi)}{\hbar}}$$

Hamiltonian constraint

• the leading order $\mathcal{O}(\hbar^{0})$ is the solution of the Hamilton-Jacobi equation (Salopek & Stewart, Class. Quantum Grav., 9 1943, 1992) $W(h_{ij}, \phi) \approx M_{p}^{2} \int_{\Sigma} d^{3}x \sqrt{h} \left(U(\phi) + M(\phi)h^{ij}\partial_{i}\phi\partial_{j}\phi + \Phi(\phi)^{(3)}R \right) + \mathcal{O}(a^{0})$ $Only include \zeta$ $\approx M_{p}^{2} \int_{\Sigma} d^{3}x a^{3}e^{3\zeta} \left(-2H + \frac{1}{2H}{}^{(3)}R \right) + \mathcal{O}(\epsilon, \eta)$ $\supset M_{p}^{2} \int_{\Sigma} d^{3}x \left[-9a^{3}H\zeta^{3} + \frac{a\zeta(\partial_{i}\zeta)^{2}}{H} - \frac{a\zeta(\partial_{l}\gamma_{ij})^{2}}{8H} - \frac{a\partial_{i}\zeta\partial_{j}\zeta\gamma_{ij}}{H} + \frac{a\partial_{m}\gamma_{il}\partial_{l}\gamma_{jm}\gamma_{ij}}{4H} + \frac{a\partial_{i}\gamma_{lm}\partial_{j}\gamma_{lm}\gamma_{ij}}{8H} \right]$ Slow-roll unsuppressed boundary terms Henden and ext to integration by parts (net needed) (Ning. Set 8, Warg 2005, 09071)

Independent to integration by parts (not needed)! (Ning, Sou & Wang, 2305.08071)

Decoherence and Bell test of cosmological perturbations: boundary terms and the WKB wave functional

Improved estimation of cosmic decoherence

Chon Man Sou (Tsinghua University)

Decoherence and Bell test of cosmological perturbations: boundary terms and the WKB wave functional

引力的量子性质, PCFT

Compare the decoherence exponent for scalar curvature perturbation ζ

boundary terms and the WKB wave functional

decoherence

Decoherence of gravitons γ_{ij}

Solid: scalar curvature perturbation ζ , wavy: primordial graviton γ_{ij}

Previous results with bulk interactions (Gong & Seo, 1903.12295) (Burgess et al., 2211.11046)

Bulk terms give slow-roll suppressed

Decoherence and Bell test of cosmological perturbations: boundary terms and the WKB wave functional

Decoherence of primordial gravitons γ_{ij} by different interactions

Chon Man Sou (Tsinghua University)

Decoherence and Bell test of cosmological perturbations: boundary terms and the WKB wave functional

 Improved estimation of cosmic decoherence

Cosmological Bell test with decoherence

The effect of boundary term on squeezing

There is an **inconsistency** in the values of squeezing parameter in the literature, e.g.

$$\sinh r_k = \left| \frac{1}{2k\tau} \right| \propto e^{N_{\rm cross}} (1) \qquad \text{in (Polarski & Starobinsky, gr-qc/9504030)}$$
$$\sinh r_k = \left| \frac{1}{2k^2\tau^2} \right| \propto e^{2N_{\rm cross}} (2) \qquad \text{in (Kanno & Soda, 1705.06199)}$$

This is related to the **boundary term** while redefining scalar perturbation to the Mukhanov-Sasaki variable $y = aM_p\sqrt{2\epsilon}\zeta = z\zeta$ $S_2^{(\zeta)} = \int d\tau d^3x \frac{z^2}{2} \left[\zeta'^2 - (\partial_i \zeta)^2 \right] = \frac{1}{2} \int d\tau d^3x \left[y'^2 - (\partial_i y)^2 + \frac{z''}{z} y^2 - \partial_\tau \left(\frac{z'}{z} y^2 \right) \right]$

canonically normalized

- Including the boundary term corresponds to different state:
- If the boundary term is included, then (1), otherwise (2)

$$S \to S + S_{\rm bd}$$

$$\Psi(\zeta) \to e^{iS_{\rm bd}(\zeta)}\Psi(\zeta)$$

The effect of boundary term on squeezing (Cont.)

With the dominated boundary term

$$\mathcal{L}_{\mathrm{bd},\zeta} \supset -M_p^2 \partial_t (2a^3 H e^{3\zeta}) \supset -M_p^2 \partial_t (9a^3 H \zeta^2)$$

the quadratic action with the Mukhanov-Sasaki variable is

$$S_2^{(\zeta)} = \frac{1}{2} \int d\tau d^3 x \left[y^{\prime 2} - (\partial_i y)^2 + \frac{z^{\prime \prime}}{z} y^2 - \partial_\tau \left(\frac{z^{\prime}}{z} y^2 \right) + \partial_\tau \left(\frac{9}{\epsilon \tau} y^2 \right) \right]$$

• lead to change of <u>conjugate momentum</u> $p_y = y' - \frac{z}{z}y + \frac{y}{\epsilon \tau}y$

Thus the squeezing parameter is affected (Sou, Wang & Wang, 2405.07141)

$$\sinh r_{k} = \left| \sqrt{\frac{k}{2}} f_{k} - \sqrt{\frac{1}{2k}} g_{k} \right| = \sqrt{\frac{81 + (k\tau)^{2} (\epsilon + 9)^{2}}{4\epsilon^{2} (k\tau)^{4}}}$$

field's mode function

conjugate-momentum mode function

- the <code>squeezing</code> is enhanced by the factor $\propto 1/\epsilon$
- For primordial gravitons, there is <u>no such an enhancement</u>, as there is no such a boundary term at quadratic order

47

Possible window of Bell violation for scalar perturbation

There is a window of around 5 e-folds with Bell violation (Sou, Wang & Wang, 2405.07141)

- Quantifying cosmic decoherence is essential for testing the quantum nature of cosmological perturbations, as it is a fundamental constraint
- The **boundary terms**, naturally exist in the action of cosmological perturbations, can **contribute faster decoherence effect** by trancing out unobserved modes
 - Improve the decoherence calculations for both scalar curvature perturbation and primordial gravitons
- The non-Gaussian phase can be analyzed systematically with the WKB approximation of the Wheeler-DeWitt equation, a way independent to the tedious IBP
- Revisit the cosmological Bell test with **decoherence** and **squeezing** by the boundary terms
 - There is a window of <u>5 e-folds</u> having the cosmological Bell violation

