

Cheng-Yong Zhang 张承勇 Jinan University 暨南大学 "2023引力与宇宙学"专题研讨会 中国科学技术大学 2023/04/08

Based on: **2112.07455** Phys.Rev.Lett. 128 (2022) 16, 161105 2204.09260 Phys.Rev.D 106 (2022) 6, L061501 2208.07548 2209.12789 JHEP 01 (2023) 056 Cao(曹周键), Chen(陈前), Liu(刘云旗), Luo, Tian(田雨), Wang(王斌)

Outline

1. Scalarization of Black Hole

2. Critical Behaviors in Dynamical Scalarization

a. Einstein-Maxwell-Scalar (EMS)

b. EMS-AdS

- c. Extended scalar-tensor-Gauss-Bonnet (eSTGB, EsGB)
- 3. Summary and Outlook

Spontaneous scalarization of BHs in EsGB (eSTGB)

Schwarzschild: 1711.01187, 1711.02080, 1711.03390, **PRL 3 Kerr**: 1904.09997, 2006.03095, 2009.03904, 2009.03905, **PRL 4**

$$S = \frac{1}{2} \int d^4x \sqrt{-g} \left[R - \frac{1}{2} \nabla_{\alpha} \varphi \nabla^{\alpha} \varphi + f(\varphi) \mathcal{G} \right]$$

Scalar equationPerturbation equationSchwarzschild $\nabla_{\mu}\nabla^{\mu}\varphi = -\frac{df}{d\varphi}\mathcal{G}$ $\nabla_{\mu}\nabla^{\mu}\delta\phi = \mu_{eff}^{2}\delta\phi,$ $\mu_{eff}^{2} = -\frac{48M^{2}}{r^{6}}\frac{d^{2}f}{d\varphi^{2}}(0) < \mathbf{0}$ tachyonic
instability

Spontaneous scalarization condition: $f(0) = 0, \frac{df}{d\varphi}(0) = 0$ and $\frac{d^2f}{d\varphi^2}(0) > 0$

- **coexistence** of bald and scalarized BHs
- Astrophysical interesting: strong gravity region

$$f = \frac{\lambda^2}{2\kappa} (1 - e^{-\kappa \varphi^2})$$

$$f(0) = 0$$

$$f_{,\varphi}(0) = 0$$

$$f_{,\varphi\varphi}(0) = \lambda^2$$

Spontaneous scalarization of BHs in EMS

Herdeiro, Radu, etc. 1806.05190 PRL

EsGB: elliptic region in evolution, not well-posed for strong coupling

EMS: technically simpler, but without loss of interesting for scalarization

$$S = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left[R - 2\nabla_{\mu}\phi \nabla^{\mu}\phi - f(\phi)F_{\mu\nu}F^{\mu\nu} \right]$$

Perturbation on **RN** with $f = e^{-\alpha\phi^2}$:
$$\nabla_{\mu}\nabla^{\mu}\delta\phi = \mu_{eff}^2\delta\phi, \qquad \mu_{eff}^2 = \frac{\alpha Q^2}{2r^4} < \mathbf{0}$$

Nonlinear scalarization of BHs in EsGB

Doneva, Yazadjiev, 2107.01738 PRD; 2203.00709PRD; 2204.05333PRD; 2208.02077PRD

Linear stable, but nonlinear unstable (decoupling limit)

Questions and motivation:

- 1. The backreaction?
- 2. Are there dynamical critical behaviors in scalarization?
- 3. How the scalar & BH behave in the dynamical process?

Outline

1. Scalarization of Black Hole

- 2. Critical Behaviors in Dynamical Scalarization
 a. Einstein-Maxwell-Scalar (EMS)
 b. EMS AdS
 - b. EMS-AdS
 - c. Extended scalar-tensor-Gauss-Bonnet (eSTGB)
- 3. Summary and Outlook

Nonlinear scalarization in EMS

Our work: 2112.07455 PRL

For $f = e^{\beta \phi^4}$, RN (with $\phi = 0$) is a solution and **linearly stable**:

$$\nabla_{\mu}\nabla^{\mu}\delta\phi = \mu_{eff}^{2}\delta\phi, \qquad \mu_{eff}^{2} = 0$$

But how about SBH? Full nonlinear dynamical simulation!

Painleve-Gullstrand (PG) coordinate: **Initial configuration:** Full nonlinear dynamics in spherical symmetric spacetime $RN (M_0 = 1, Q = 0.9)$ $ds^{2} = -(1-\zeta^{2})\alpha^{2}dt^{2} + 2\zeta\alpha dtdr + dr^{2} + r^{2}d\Omega_{2}^{2}.$ + scalar perturbation (ingoing) apparent horizon: $\zeta(t, r) = 1$ ϕ_0 $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 2\left(f(\phi)T^{A}_{\mu\nu} + T^{\phi}_{\mu\nu}\right)$ 0.025 $\phi_0 = \begin{cases} 0, & r < 4 \\ p(9-r)^2(r-4)^2 e^{-\frac{1}{9-r} - \frac{1}{r-4}}, & 4 \le r \le 9 \\ 0, & r > 9 \end{cases}$ 0.020 $abla_{\mu}
abla^{\mu}\phi = rac{1}{4}rac{df(\phi)}{d\phi}F_{\mu
u}F^{\mu
u}.$ 0.015 0.010 $\nabla_{\mu} \left(f(\phi) F^{\mu\nu} \right) = 0.$ 0.005 0.000 8 15 5 10

$$dt_{s} = dt - \zeta dr_{*} = dt - \frac{\zeta}{(1 - \zeta^{2})\alpha} dr$$
$$\delta \phi = e^{-i\omega t_{s}} \frac{R(r)}{r}$$

Schrodinger-like equation (Buell, Shadwick, 1995)

$$0 = \left(\partial_{r_*}^2 + \omega^2 - V_{\text{eff}}\right)R.$$

Only for the CS, there is $\int_{-\infty}^{\infty} V_{\text{eff}} dr_* < 0$

CS has **tachyonic** instability (as RN in spontaneous scalarization) which gives precisely the unstable mode η_{ϕ}

QNMs: matched
1 first order WKB method / shooting method
2 Prony method

Dynamical descalarization from SBH

Initial configuration: SBH ($M_0 = 1.2, Q = 0.9$) + scalar perturbation (ingoing)

 $p_{*3} \simeq 0.0012848778022796 (\delta p/p \sim 10^{-13})$

Interim Summary

- 1. We found **new BH scalarization & descalarization mechanism** through the accretion of the scalar field
- 2. We uncovered **novel dynamical critical behaviors** in the bald/scalarized BH transition
- 3. How about other cases?
 - EMS-AdS
 - eSTGB

Outline

1. Scalarization of Black Hole

2. Critical Behaviors in Dynamical Scalarization

a. Einstein-Maxwell-Scalar (EMS)

b. EMS-AdS

- c. Extended scalar-tensor-Gauss-Bonnet (eSTGB)
- 3. Summary and Outlook

Dynamical critical scalarization and descalarization in AdS spacetime Our work: 2204.09260 PRD (Letter)

The difference between asymptotically flat and AdS spacetime: **confining boundary**

- Turbulent instability in AdS space (1104.3702PRL)
- Superradiant instability of RN-AdS (1601.01384PRL) and Kerr-AdS (1801.09711PRL)

Dynamical critical scalarization

 $f = e^{\alpha \phi^4}$: Type I with an attractor

 $f = e^{\beta \phi^2}$: Type I with an attractor

50

Dynamical critical descalarization

 $f = e^{\alpha \phi^4}$: Type I with an attractor

 $f = e^{\beta \phi^2}$: Type II without an attractor

Interim Summary

- 1. We pointed out that **RN-AdS is special critical solution** in EMS theory with spontaneous scalarization
- 2. We uncovered type I & II dynamical critical behaviors in the BH **descalarization** transition
- 3. How about other cases?
 - eSTGB

Outline

1. Scalarization of Black Hole

2. Critical Behaviors in Dynamical Scalarization

a. Einstein-Maxwell-Scalar (EMS)

b. EMS-AdS

- c. Extended scalar-tensor-Gauss-Bonnet (eSTGB)
- 3. Summary and Outlook

Dynamical critical scalarization and descalarization in eSTGB theory

Our work: 2208.07548

$$S = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left[R - \frac{1}{2} (\partial \phi)^2 + f(\phi) \left(\beta R + \mathcal{G} \right) \right]$$

- β suppresses the elliptic region and makes the code stable
- The first model of spontaneous scalarization (for neutron star) (Damour 1993PRL)

BH **nonlinear** scalarization:
$$f = \frac{\lambda^2}{4\kappa} \left(1 - e^{-\kappa \varphi^4}\right)$$

- PG coordinate
- Initial condition: Schwarzschild BH with $M_0 = 1$, and $\beta = -2.5$, $\lambda = \frac{50}{3}$, $\kappa = 1000$

$$\phi_0 = \begin{cases} 0, & r < 8\\ p(18-r)^2(r-8)^2 e^{-\frac{1}{18-r} - \frac{1}{r-8}}, & 8 \le r \le 18\\ 0, & r > 18 \end{cases}$$

Dynamical critical scalarization

Dynamical critical descalarization

Explanation from the static solutions

Three static solutions at the same *M*: two stable: (1) Schwarzschild (2) hot SBH

one unstable: (3) cold SBH (CS)

Scalarization: $i \rightarrow c \rightarrow \begin{cases} b, & \text{BBH } (p < p_{*1}) \\ s, & \text{SBH } (p > p_{*1}) \end{cases}$

Descalarization: $i \rightarrow d \rightarrow \begin{cases} d, & \text{SBH } (p < p_{*2}) \\ g, & \text{BBH } (p > p_{*2}) \end{cases}$ (*d*: marginally stable CS/attractor/SBH)

Dynamical **first-order** phase transition

Outline

1. Scalarization of Black Hole

2. Critical Behaviors in Dynamical Scalarization

a. Einstein-Maxwell-Scalar (EMS)

b. EMS-AdS

- c. Extended scalar-tensor-Gauss-Bonnet (eSTGB)
- 3. Summary and Outlook

Summary

- 1. We found new BH **scalarization & descalarization** mechanisms through the accretion of the scalar field
- 2. We uncovered **novel rich dynamical critical behaviors** in the bald/scalarized BH transition
 - Scalarization: type I with an unstable attractor
 - **Descalarization**: type I with an unstable/marginally stable attractor & type II (the model with spontaneous scalarization)
- 3. The discovery of these new dynamical critical behaviors has opened up a fascinating area of research in gravitational dynamics

Outlook Q-ball (2004.03148PRL, 2004.00336EPJC)

Higher-dimensional compact objects: Myers-Perry BH, black ring/string/Saturn (Emparan, hep-th/0110260 PRL, 0708.2181 JHEP, 2002.00963 PLB)

Holographic models:

phase separation in a strongly-coupled, non-Abelian gauge theory (QCD) (1704.05387PRL, 2007.06467JHEP, 0804.0434PRD)

$$S = \frac{1}{2\kappa^2} \int d^5x \sqrt{-g} \left[\mathcal{R} - 2\left(\nabla\phi\right)^2 - 4V(\phi) \right]$$

$$V(\phi) = -6 \cosh\left(\frac{\phi}{\sqrt{3}}\right) + b_4 \phi^4$$
 Supergravity

$$ds^{2} = -A dt^{2} - \frac{2 dt dz}{z^{2}} - 2 B dt dx + S^{2} (G dx^{2} + G^{-1} dy^{2})$$
$$x \in [0, L]$$

The critical dynamics in holographic models? (our work: 2209.12789 JHEP)

Neutron star binary merger (1807.03684 PRL,1810.10967PRD)

- quarks are deconfined (1807.03684 PRL)
- a quark-hadron first-order phase transition would leave in the gravitational-wave signal
- 1. The critical dynamics in NS binary merger?
- 2. How about first-order phase transion in BH binary merger?

Goal

Classification of dynamical first-order phase transition of BHs?

(1) Tachyonic instability: EMS, eSTGB

(2) **Superradiant** instability:

- a. Charge: RN + Q-ball,
- b. Rotating: Kerr + complex self-interaction scalar

(3) Gregory-Laflamme instability: Myers-Perry BH/ Black ring, Holographic

Dynamical first-order phase transition of compact stars?

Thanks for your attention!