Testing Quantum Gravity by Entanglements and Decoherence

Yi Wang $(\Xi -)$, Department of Physics The Hong Kong University of Science and Technology

20230407 @ USTC

Plan:

Quantum gravity

- Approaches
- From quantum information

Are cosmological perturbations quantum?

- Generation mechanism
- Decoherence (new: with boundary term)

Observational tests?

- Bell inequalities?
- Quantum noise?
- Null tests?

What's quantum gravity?

Claims from strongest to weakest:

- What is *the* quantum gravity theory?
 - Not only QG but also *new physics*
 - Strings: what is a/the quantum gravity theory?
 - Other possible unifications of QM & GR?
- Check if gravity is quantized (known physics)
 - Seeking for gravitons
- Check gravity has some quantum natures (known physics)
 - Superposition, entanglements & decoherence

- Can matter superposition be affected by gravity?
- Can matter entanglement be caused by gravity?
- Can gravitational superposition affect matter?
- Other ideas?

- Can matter superposition be affected by gravity?

Yes (COW 1975), but does not really quantum gravity

Volume 34, Number 23	PHYSICAL REVIEW LETTERS	9	JUNE 1975
Observa	tion of Gravitationally Induced Quantum	Interference*	
Departm	R. Colella and A. W. Overhauser ent of Physics, Purdue University, West Lafayette,	Indiana 47907	
	and		
Scientific	S. A. Werner Research Staff, Ford Motor Company, Dearborn, (Received 14 April 1975)	Michigan 48121	
We have used of neutrons cau	a neutron interferometer to observe the quantum-n sed by their interaction with Earth's gravitational fi	nechanical phase shift eld.	
	C_1 C_2 C_3 C_2 C_3 C_3 C_2 C_3 C_3 C_4 C_2 C_3 C_4 C_2 C_3 C_4 C_2 C_3 C_4 C_5 C_5 C_6 C_6 C_7 C_7 C_7 C_8 C_8 C_9 C_9 C_7 C_9 C_7 C_9 C_7 C_9 C_7 C_9	-300 -	\sim

- Can matter superposition be affected by gravity?
- Can matter entanglement be caused by gravity?

Bose et al (2017), Marletto & Vderal (2017)

Matter entanglement \Rightarrow quantum gravity:

Qubit 1 --- creation of entanglement with C --- Qubit 2 Then C cannot have only one observable (classical) Proof: If initially state separable: $|Q_1(0)\rangle|Q_2(0)\rangle$ Marletto & Vderal 2017 and if Hamiltonian H_1 acts on $|Q_1(0)\rangle$, H_2 acts on $|Q_2(0)\rangle$, gravity is reflected by time-dependent coefficients in H_1 & H_2 Then the final state $|Q_1(t)\rangle|Q_2(t)\rangle$ is also separatable

More generally:

Challenge: is the constraint part "local"?

Separated systems cannot be entangled by

Local Operations and Classical Communication (LOCC)

See, e.g. R. Horodecki, P. Horodecki, M. Horodecki, K. Horod

Generalizing LOCC to Generalized Probabilistic Theories (GPT)

A no-go theorem on the nature of the gravitational field beyond quantum the Galley, Giacomini, Selby (2020)

Theorem III.1. We consider two non-classical systems A and B, initially in a separable state, and some unknown field G. If, after some time t, entanglement between the systems A and B is observed, then the following statements are incompatible:

- 1. Subsystem independence of A and B;
- 2. A and B interact locally via the mediator G;
- 3. G is classical.

- Can matter superposition be affected by gravity?
- Can matter entanglement be caused by gravity?
- Can gravitational superposition affect matter?

Matter:

- Attracted by one (superposition)? $G_{\mu\nu} \propto T_{\mu\nu}$

- Attracted by the average? $G_{\mu\nu} \propto \langle T_{\mu\nu} \rangle$

(Schrodinger-Newton semi-classical gravity)

- Can matter superposition be affected by gravity?
- Can matter entanglement caused by gravity?
- Can gravitational superposition affect matter?
- Other ideas?

Non-Gaussianity as a Signature of a Quantum Theory of Gravity

Richard Howl, Vlatko Vedral, Devang Naik, Marios Christodoulou, Carlo Rovelli, and Aditya Iyer PRX Quantum **2**, 010325 – Published 17 February 2021

Plan:

Quantum gravity

- Approaches
- From quantum information

Are cosmological perturbations quantum?

- Generation mechanism
- Decoherence (detailed)

Observational tests?

- Bell inequalities?
- Quantum noise?
- Null tests?

Coherent, squeezed and thermal states

- Coherent:
 - Eigenstate of annihilation operator: $a|\alpha\rangle = \alpha |\alpha\rangle$, $|\alpha\rangle = e^{\alpha a^{\dagger} \alpha^{*}a} |0\rangle$
 - Gaussian wave function with minimal uncertainty
 - Oscillatory behavior of $\langle x \rangle$ for a harmonic oscillator (semi-classical)
- Squeezed: - $e^{\frac{1}{2}(za^{\dagger 2} + z^*a^2)}|0\rangle$ - Thermal: $\rho_{\omega}^{\text{th}} = \frac{1}{Z} \sum_{n=0}^{\infty} e^{-\frac{\hbar\omega(n+1/2)}{k_BT}} |n\rangle\langle n|$

The standard cosmological perturbation is "squeezed"

$$\begin{split} S_{\text{pert}}' &= \frac{1}{2} \int d^4 x [(v')^2 - c_s^2(v_{;i})^2 - 2\frac{z'}{z} v v' + (\frac{z'}{z})^2 v^2] \\ \hat{\mathcal{H}}_{\vec{k}} &= \hat{\mathcal{H}}_{\vec{k}}^{(0)} + \hat{\mathcal{H}}_{\vec{k}}^{(I)} = \Omega_{\vec{k}} (a_{\vec{k}}^{\dagger} a_{\vec{k}} + a_{-\vec{k}}^{\dagger} a_{-\vec{k}} + 1) + i \lambda_{\vec{k}} (e^{-2i\varphi_{\vec{k}}} a_{\vec{k}} a_{-\vec{k}} - \text{h.c.} \\ \Omega_{\vec{k}} &= \frac{k}{2} (1 + c_s^2) \\ \lambda_{\vec{k}} &= \left[\left(\frac{k}{2} (1 - c_s^2) \right)^2 + \left(\frac{z'}{z} \right)^2 \right]^{\frac{1}{2}} \\ \varphi_{\vec{k}} &= -\frac{\pi}{2} + \frac{1}{2} \arctan\left(\frac{kz}{2z'} (1 - c_s^2) \right) \end{split}$$

The time evolution operator of a state can be written as

$$\begin{aligned} \mathcal{U}_{\mathcal{H}_{\vec{k}}}(\eta,\eta_0) &= \mathcal{S}[R_{\vec{k}},\Phi_{\vec{k}}]\mathcal{R}[\Theta_{\vec{k}}] & \mathcal{R}[\Theta_{\vec{k}}] = \exp[-i\Theta_{\vec{k}}(a_{\vec{k}}^{\dagger}a_{\vec{k}} + a_{-\vec{k}}^{\dagger}a_{-\vec{k}} + 1)] & \text{Two-mode rotation operator} \\ \mathcal{S}[R_{\vec{k}},\Phi_{\vec{k}}] &= \exp\left[\frac{R_{\vec{k}}}{2}(e^{-2i\Phi_{\vec{k}}}a_{-\vec{k}}a_{\vec{k}} - \text{h.c.})\right] & \text{Two-mode squeeze operator} \\ |SS_{\vec{k}}\rangle &= \mathcal{S}[R_{\vec{k}},\Phi_{\vec{k}}]|0\rangle_{\text{in}} = \sum_{n=0}^{\infty} \frac{1}{\cosh R_{\vec{k}}}(-e^{2i\Phi_{\vec{k}}}\tanh R_{\vec{k}})^n|n,\vec{k};n,-\vec{k}\rangle \end{aligned}$$

$$|n,\vec{k};n,-ec{k}
angle = \sum_{n=0}^{\infty}rac{1}{n!}(a^{\dagger}_{ec{k}}a^{\dagger}_{-ec{k}})^n|0
angle_{in}$$

Albrecht, Ferreira, Joyce, Prokopec, 1993 See also Polarski, Starobinsky, 1995 But can the inflationary fluctuation be

- Semiclassical (coherent)?
- Thermal? (thermal inflation, warm inflation)

And decoherence by interaction?

Decoherence of cosmological perturbations:

Horizon exit: Two-mode squeezed state has large $\langle N \rangle$, but not yet classical

Interaction: Decoherence. Consider wave function of ζ

$$\langle \mathcal{E}, \xi | \Psi(\tau) \rangle = \exp\left(\int_{\mathbf{k}, \mathbf{k}', \mathbf{q}} \mathcal{F}_{\mathbf{k}, \mathbf{k}', \mathbf{q}} \mathcal{E}_{\mathbf{k}} \mathcal{E}_{\mathbf{k}'} \xi_{\mathbf{q}} \right) \Psi_G(\mathcal{E}, \xi)$$
System
Environment
$$\mathcal{F}_{\mathbf{k}, \mathbf{k}', \mathbf{q}} \approx i \int_{\tau_i}^{\tau} \frac{d\tau'}{H\tau'} \tilde{H}_{\mathbf{k}, \mathbf{k}', \mathbf{q}}^{\text{int}}(\tau') \frac{u_k(\tau') u_{k'}(\tau') u_q(\tau')}{u_k(\tau) u_{k'}(\tau) u_q(\tau)} + \mathcal{O}\left((\tilde{H}^{\text{int}})^2 \right)$$

$$\rho_{R}(\xi,\tilde{\xi}) = \Psi_{G}^{(\xi)}(\xi) \left[\Psi_{G}^{(\xi)}(\tilde{\xi}) \right]^{*} \langle \exp(X) \rangle_{\mathcal{E}}$$

$$\langle \cdots \rangle_{\mathcal{E}} \equiv \int D\mathcal{E} \left| \Psi_{G}^{(\mathcal{E})} \right|^{2} (\cdots) \qquad X \equiv \int_{\mathbf{k},\mathbf{k}',\mathbf{q}} \mathcal{E}_{\mathbf{k}} \mathcal{E}_{\mathbf{k}'} \left(\xi_{\mathbf{q}} \mathcal{F}_{\mathbf{k},\mathbf{k}',\mathbf{q}} + \tilde{\xi}_{\mathbf{q}} \mathcal{F}_{\mathbf{k},\mathbf{k}',\mathbf{q}}^{*} \right)$$

$$D(\xi,\tilde{\xi}) \equiv \left| \frac{\rho_{R}(\xi,\tilde{\xi})}{\sqrt{\rho_{R}(\xi,\xi)\rho_{R}(\tilde{\xi},\tilde{\xi})}} \right| \qquad \text{Nelson, 1601.03734}$$

$$\text{Liu, Sou, YW, 1608.07909}$$

Decoherence of cosmological perturbations:

Horizon exit: Two-mode squeezed state has large $\langle N \rangle$, but not yet classical

Interaction: Decoherence. Consider wave function of ζ

[Importance of the "wave function" of perturbations:

It's the fundamental object,

applications: locality, analyticity, bootstrap, decoherence, ...]

Decoherence of cosmological perturbations:

Horizon exit: Two-mode squeezed state has large $\langle N \rangle$, but not yet classical

Interaction: Decoherence. Consider wave function of ζ

We noted: this boundary term is more important:

$$\mathcal{L}_{\rm bd} = \partial_t \left(-2a^3 H M_p^2 e^{3\zeta} \right)$$

Order ε^{-2} faster decoherence!

Sou, Tran, YW, 2207.04435

A note about the boundary term:

- Fast-varying phase
- Will not change:

$$\int_{\mathcal{M}} d^4x \sqrt{-g} \left[\frac{M_p^2}{2} R_{\text{ADM}} + \mathcal{L}_{\phi} \right]$$
$$= \int_{\mathcal{M}} d^4x \sqrt{-g} \left[\frac{M_p^2}{2} R + \mathcal{L}_{\phi} \right] + S_{\text{GHY}}$$
$$= \int dt \ d^3x \ \partial_t \left(-2a^3 H M_p^2 e^{3\zeta} \right) + \dots$$

Correlation functions $\langle \zeta^n \rangle = \langle \overline{T}e^{i\int H_{int}d\tau} \zeta^n T e^{-i\int H_{int}d\tau} \rangle$ Isocurvature fluctuations

- But will change:

 $\langle \dot{\zeta}^n \rangle$ Do not commute on the boundary,

But vanishing for inflation [Bounce? Ultra-slow-roll?]

Decoherence rate

As decoration of wave function

 $\delta\phi$ is more quantum than ζ

Sou, Tran, YW, 2207.04435

Gravity-induced decoherence – Quantum gravity effect!

Sou, Tran, YW, 2207.04435

Decoherence induced by gravity

- Indicator of quantum gravity
- Comparison: Schrodinger-Newton gravity $G_{\mu\nu} = 8\pi G \langle T_{\mu\nu} \rangle$

See Galley, Giacomini, Selby (2020) for other classical gravity models

- But can decoherence rate be observable?

Generalizations:

- Isocurvature
- Gravitational waves
- Quantum creation of the universe

Plan:

Quantum gravity

- Approaches
- From quantum information

Are cosmological perturbations quantum?

- Generation mechanism
- Decoherence (detailed)

Observational tests?

- Bell inequalities?
- Quantum noise?
- Null tests?

What's the difference between quantum / classical?

1. Bell inequality? Violation of

 $|\langle AB\rangle + \langle AB'\rangle + \langle A'B\rangle - \langle A'B'\rangle| \le 2$

Difficulty: non-communicate observables are rare

Maldacena 1508.01082

See also Kanno & Soda, 1705.06199

What's the difference between quantum / classical?

- 1. Bell inequality?
- 2. Quantum noise?

$$\begin{split} S &= \frac{1}{16\pi G} \int d^4 x \sqrt{-g} R - M_0 \int dt \sqrt{-\dot{X}^2} - m_0 \int dt \sqrt{-\dot{Y}^2} \\ S_\omega &= \int dt \left(\frac{1}{2} m (\dot{q}^2 - \omega^2 q^2) + \frac{1}{2} m_0 \dot{\xi}^2 - g \dot{q} \dot{\xi} \xi \right) \\ \ddot{\xi} &= \frac{1}{2} \left(\ddot{h} + \ddot{N}_\Psi - \frac{m_0 G}{c^5} \frac{d^5}{dt^5} \xi^2 \right) \xi \\ \end{split}$$
 Parikh, Wilczek, Zahariade, 2005.07211
Kanno, Soda, Tokuda, 2007.09838

Squeezing \Rightarrow Large quantum noise

Can quantum noise be reformulated to fit the general framework

of cosmic perturbations?

Is it a matter of operator ordering?

- Linear perturbations: equivalent (Chen, Namjoo, YW 2015)
- Nonlinear level?

What's the difference between quantum / classical?

- 1. Bell inequality?
- 2. Quantum noise?
- 3. Position uncertainty of dark matter particles?
 - Without decoherence:

$$s(t) = \sqrt{\frac{s_0^4 + (\hbar t/m)^2}{s_0^2}} \qquad s_{\min}(t) = \sqrt{\frac{2\hbar t}{m}} \qquad (10^{11} \text{GeV} \Leftrightarrow 1\text{m})$$

Decoherence: m < 10⁷kg
 (Lindblad equation)
 Neppoleon, Iyer, Vedral, YW, 2110.13438
 See also Allali, Hertzberg 2012.12903 for ALPS

What's the difference between quantum / classical?

- 1. Bell inequality?
- 2. Quantum noise?
- 3. Position uncertainty of dark matter particles?
- 4. What about we see nothing null test

Decoherence, if happened gravitationally

also indicates quantum gravity!

Conclusion:

- Squeezed state & decoherence
- Test quantum gravity? A null test may also be a test.