

Bulk reconstruction: surface growth approach, tensor networks and bit threads

孫佳叡

2023引力与宇宙学专题研讨会 彭桓武高能基础理论研究中心(合肥) 中国科技大学 April 7-9, 2023

with Y.-y. Lin and Y. Sun, C. Yu, J. Zhang, F.-Z. Chen, J.-C. Jin, arXiv: 2010.01907, 2010.03167, 2012.05737, 2105.09176, 2203.03111

Outline

- Bulk reconstruction in the AdS/CFT correspondence
- Surface growth approach
- Bit threads, EoP and Entanglement contour
- PEE and entanglement island
- Conclusions and Discussions

Bulk reconstruction in the AdS/CFT correspondence

The AdS/CFT correspondence and the more general holographic duality provide a novel connection between different theories, one is a higher dimensional gravitational theory, another is a quantum field theory without gravity on the boundary.

The key equation in the AdS/CFT correspondence is

$$Z_{\text{AdS}}[\phi_0(\vec{x})] = Z_{\text{CFT}}[\phi_0(\vec{x})] = \left\langle \exp \int d^4 x O(\vec{x}) \phi_0(\vec{x}) \right\rangle$$

Important properties:

field/operator duality, strong/weak duality.

Important applications:

From the bulk to boundary

--studying the strongly coupled systems from their dual classical gravity;

many successful applications: fluid/gravity duality, AdS/CMT, holographic entanglement entropy, AdS/QCD, holographic complexity, etc. From the boundary to the bulk

bulk matter fields:

using the boundary operators to construct the bulk matter fields. Banks, Douglas, Horowitz, Martinec, th/9808016; Hamilton, Kabat, Lifschytz, and Lowe, th/0606141.

$$\phi(z, x) = \int dx' K(x'|z, x) \phi_0(x').$$

bulk local field ~ boundary nonlocal operators

Question: what's the largest region that can be constructed from a given boundary region?

Entanglement wedge reconstruction Headrick, Hubeny, Lawrence, Rangamani, 2014; Dong, Harlow, Wall, 2016

 $\mathcal{W}_{\mathcal{E}}[\mathcal{A}] := \tilde{D}[\mathcal{R}_{\mathcal{A}}].$

subregion-subregion duality.

From the boundary to the bulk

bulk gravity: more difficult to construct the bulk geometry and the gravitational dynamics from the boundary CFT

--an emergent picture of gravity.

Holographic entanglement entropy

Ryu and Takayanagi 2006

$$S_A = \frac{A_{\gamma_A}}{4G_{d+1}},$$

 A_{γ_A} is the *d* dimensional static minimal surface in AdS with boundary ∂A . To calculate entanglement entropy of CFT from the bulk dual gravity.

Lewkowycz and Maldacena 2013

$$S_{A} = -n\partial_{n} \left[\ln Z[n] - n \ln Z[1] \right]|_{n=1} = \frac{A_{\gamma_{A}}}{4G}$$

Tensor networks

For quantum manybody systems in condensed matter physics, the ground state wave function is effectively described by a series of tensors which comprise into a network.

Considering a *N* particle quantum manybody system in d-dim flat spacetime, its ground state wave function can be expressed as

$$|\Psi\rangle = \sum_{a_1 \cdots a_N} T_{a_1 \cdots a_N} |a_1\rangle \otimes \cdots \otimes |a_N\rangle,$$

coefficients of a *N*-rank tensor

in the tensor network language, tensor *T* can be reduced into a network of tensors *t* with less rank, e.g.,

Vidal, 1106.1082; Orus, 1306.2164

$$T_{a_1 a_2 a_3} = t_{a_1 b} s_{b a_2 c} t_{c a_3}$$

Matrix product state (MPS) for ground state of 1d lattice

Projected entangled pair state (PEPS) for ground state of 2d lattice

Emergence of AdS geometry from MERA tensor networks

Swingle, 0905.1317; 1209.3304; Qi, 1309.6282; Almheiri, Dong, Harlow, 1411.7041; Pastawski, Yoshida, Harlow, Preskill, 1503.06237; Hayden, Nezami, Qi, Thomas, Walter, Yang, 1601.01694; Bhattacharyya, Gao, Hung, Liu, 1606.00621; Gan and Shu, 1705.05750; Ling, Xiao and Wu, 1907.01215

 $S_{\rm A} \propto ~$ # of external legs of the tensor networks

Assume at each step, k # of sites will be coarse grained, then considering two operators O_1 and O_2 separated by x, then

 $\log_k \frac{x}{a}$ times of renormalization should be taken for them to

connect, and at each step

$$\langle O(x_m) \rangle = \left| \frac{\partial x_{m-1}}{\partial x_m} \right|^{\Delta} \langle O(x_{m-1}) \rangle = k^{-\Delta} \langle O(x_{m-1}) \rangle$$

then

$$\langle O_1 O_2 \rangle \sim \left(k^{-2\Delta} \right)^{\log_k \frac{x}{a}} = \left(\frac{x}{a} \right)^{-2\Delta} = \exp\left\{ -2\Delta \ln \frac{x}{a} \right\}$$

The entanglement RG is consistent with taking a geodesic, i.e. minimal curve in a AdS3 geometry, or the tensor networks can be viewed a **discrete** version of the AdS3.

The entanglement RG is just a scaling transformation, the corresponding geometry (static case) can be expressed as

$$ds^2 = L^2 \left(\frac{dr^2 + dx^2}{r^2}\right)$$

for a curve $x(\lambda) = x_0 \cos \pi \lambda$ and $r(\lambda) = x_0 \sin \pi \lambda$

which corresponds to the boundary is a circle, the length of the curve is

$$s \sim L \ln \frac{x_0}{a}$$

Note that the # of external legs (bonds) cut by the geodesic is proportional to the length of the geodesic.

Continueous version-cMERA, using path integral method. Haegeman, Osborne, Verschelde and Verstraete, 1102.5524; Miyaji, Numasawa, Shiba, Takayanagi and Watanabe, 1506.01353

MERA-like tensor networks--time slice of AdS3

Milsted, Vidal, 1805.12524; 1812.00529;

Figure 12. (a) The traditional MERA tensor network on the circle, made of disentanglers u (the green squares) and coarse-grainers w (the yellow triangles). (b) The Euclidean MERA tensor network on the circle, made of disentanglers u (the green squares) and coarse-grainers w (the yellow triangles), and coarse-grainers w (the blue solid circles).

The surface growth approach Y-y Lin, JRS, Y Sun, 2010.01907; C Yu, F-Z Chen,Y-y Lin, JRS, Y Sun, 2010.03167

In previous studies on bulk reconstruction, the methods are indirect, is there a direct and explicit way to construct the bulk geometry and matter fields? Besides, it is interesting to find a more refined structure in the subregion-subregion duality, such as how a given region in the entanglement wedge is dual to a boundary region?

The surface growth approach from tensor networks Y-y Lin, JRS, Y Sun, 2010.01907

Motivated by **Huygens' principle of wave propagation**, we proposed a **novel surface growth scheme** to reconstruct the bulk geometry, which can be explicitly realized with the help of the **surface/state correspondence** and the **one shot entanglement distillation** method.

One shot entanglement distillation (OSED)

Bao, Penington, Sorce, Wall, 1812.01171

In quantum information theory, $|\varphi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_{A^c}$,

$$\left|\varphi\right\rangle^{\otimes m} \approx \left(W \otimes V\right) \left[\frac{1}{\sqrt{D}} \sum_{i=0}^{e^{S(A)m-O\left(\sqrt{m}\right)}} \left|i\bar{i}\right\rangle \otimes \sum_{j=0}^{e^{O\left(\sqrt{m}\right)}} \sqrt{p_{j}} \left|j\bar{j}\right\rangle\right],$$

a single holographic state $|\Psi\rangle$ can play the role of $|\varphi\rangle^{\otimes m}$, which has a tensor representation

$$\Psi^{AB} = V^B_{\beta\alpha} W^A_{\bar{\beta}\bar{\alpha}} \phi^{\alpha\bar{\alpha}} \sigma^{\beta\bar{\beta}} = (V \otimes W)(|\phi\rangle \otimes |\sigma\rangle)$$

$$\begin{split} |\phi\rangle &= \sum_{\substack{m=0\\m=0}}^{e^{S-O(\sqrt{S})}} |m\bar{m}\rangle_{\alpha\bar{\alpha}}, \\ |\sigma\rangle &= \sum_{n=0}^{e^{O(\sqrt{S})}} \sqrt{\tilde{p}_{n\Delta}^{avg}} |n\bar{n}\rangle_{\beta\bar{\beta}}. \end{split}$$

Surface growth scheme--a special case

.....

the final surface growth picture corresponding to the OSED tensor network

$$|\Psi\rangle^{k\text{th}} = V_M^{'k\text{th}} \prod_{i=1}^{N/2^{k-1}} \prod_{a=1}^k W_i^{'a\text{th}} |\phi\rangle_i^{a\text{th}} |\sigma\rangle_i^{a\text{th}}$$

the final surface growth picture can be identified with the MERAlike tensor network as

the RT surface in the MERA-like tensor network, and the expression of W tensor is

the MERA-like tensor network is a kind of discretization of our surface growth picture, in which each euclidean e can be considered as a cell of the bulk spacetime, i.e. the source in the Huygens's picture

$$z = 2^{v},$$
 $ds^{2} = L^{2} \left[(\ln 2)^{2} \cdot dv^{2} + (2^{-v})^{2} \cdot dx^{2} \right]$

More general surface growth scheme

$$\begin{split} \Psi_{V} &= W_{\bar{\beta}\bar{\alpha}}^{\Gamma} V_{\beta\alpha}^{\bar{\Gamma}} \phi^{\alpha\bar{\alpha}} \sigma^{\beta\bar{\beta}} = W_{\bar{\beta}\bar{\alpha}}^{\Gamma} (V |\phi\rangle |\sigma\rangle)^{\bar{\Gamma}\bar{\alpha}\bar{\beta}}, \\ \Psi &= \left(W^{1\text{st}} \right)^{N} W_{\bar{\beta}\bar{\alpha}}^{\Gamma} (V |\phi\rangle |\sigma\rangle)^{\bar{\Gamma}\bar{\alpha}\bar{\beta}}. \end{split}$$

Direct growth of bulk minimal surfaces

C Yu, F-Z Chen,Y-y Lin, **JRS**, Y Sun, 2010.03167

The surface growth scheme can also be directly checked by the growth of the bulk minimal surfaces layer by layer.

Pure AdS3 case

$$ds^{2} = d\rho^{2} + L^{2} \left(-\cosh^{2} \frac{\rho}{L} dt^{2} + \sinh^{2} \frac{\rho}{L} d\phi^{2} \right),$$

EoM of bulk minimal curve (geodesics) is

$$\phi = \pm \arctan\left(\frac{\sinh^2 \tilde{\rho}}{\sinh \tilde{\rho}_*} + \cosh \tilde{\rho} \sqrt{\frac{\sinh^2 \tilde{\rho}}{\sinh^2 \tilde{\rho}_*} - 1}\right)$$

$$\mp \arctan\left(\sinh \tilde{\rho}_*\right) + \phi_0,$$

for given angular size of the subsystem, different radial cutoff corresponds to different turning position.

homogenous subregions, with each subregion has angle $\phi = \pi/25$, the growing steps are 300.

inhomogenous subregions, with growing steps 300.

BTZ black hole case

$$ds^{2} = -\frac{r^{2}}{L^{2}}f(r)dt^{2} + \frac{L^{2}}{r^{2}f(r)}dr^{2} + r^{2}d\phi^{2},$$

EoM of bulk geodesics is

$$\pm (\phi - \phi_0) = -\frac{L}{r_h} \ln \left(\sqrt{1 - \frac{r_h^2}{r^2}} - \sqrt{\frac{r_h^2}{r_*^2} - \frac{r_h^2}{r^2}} \right) + \frac{L}{r_h} \ln \sqrt{1 - \frac{r_h^2}{r_*^2}},$$

where $r_* < r_1 < r_2$ and $\phi(r_1) < \phi_0 < \phi(r_2)$. Also, for given angular size of the subsystem, different radial cutoff corresponds to different turning position.

4 2 > 0 -2 -4 -4 -2 2 0 4 х

homogenous subregions, with each subregion has angle $\phi = \pi/25$, cutoff surface is rc=5, the growing steps are 360. minimal surfaces wich do not surround the black hole horizon, entanglement plateaux phenomenon.

homogenous subregions, with each subregion has angle $\phi = \pi/25$, cutoff surface is rc=20, the growing steps are 360.

inhomogenous subregions, whole subsystem with angle $\phi = 2\pi/5$, with growing steps 358.

Surface growth, bit threads, Entanglement of purification Y-y Lin, JRS, Y Sun, 2012.05737

Bit thread

Freedman, Headrick, 1604.00354; Cui, Hayden, He, Headrick, Stoica, 1808.05234

Bit thread are unoriented bulk curves that end on the boundary and are subject to the rule that the thread density is less than a constant *C*, say, 1 everywhere. (like the propagator)

$$\nabla \cdot \vec{v} = 0,$$

$$\rho(\vec{v}) \equiv |\vec{v}| \le 1.$$

$$\int_{A} \vec{v} = \int_{A} \sqrt{h} \hat{n} \cdot \vec{v},$$

Riemannian max flow-min cut theorem

$$\max_{v} \int_{A} v = C \min_{m \sim A} \operatorname{area}(m).$$

The thread configuration which has the maximal flow is said to lock *A*.

$$S(A) = \operatorname{Flux}_{\operatorname{locking}}(A).$$

Bit thread locking theorem

For a *d*-dim Riemannian manifold with boundary *M*, dividing *M* into adjacent nonoverlapping subregions *Ai* (*i*=1,...,*n*)

1. There exists a multiflow that locks all the elementary regions *Ai*.

2. There exists a multiflow that can lock all the elementary regions and any single composite region simultaneously.

3. There exists a multiflow that can lock all the elementary regions and all noncrossing composite regions simultaneously.

Locking thread configuration corresponds to OSED tensor networks

Locking thread configuration corresponds to OSED tensor networks--*multiflows*

 $\hat{n} \cdot \vec{v}_{ij}|_{\gamma_k} = 0 \quad (\text{for } k \neq i, j)$

 $\rho(V) = \sum_{i < i} |\vec{v}_{ij}| \le 1,$

The total flux of bit threads through surface γ_i is

$$N(i) = \sum_{j,k} F(i)_{jk}.$$

a more general surface growth case

Bit thread and EoP

Dividing a quantum system into two parts, a quantity used to describe correlations between A_1 and A_2 is called the entanglement of purification (EoP) $E_P(A_1 : A_2)$

Let $|\psi\rangle \in H_{A_1A_1'} \otimes H_{A_2A_2'}$ be a purification of the density matrix

$$\rho_{A_1A_2} = \mathrm{Tr}_{A_1'A_2'} |\psi\rangle \langle \psi|$$

The EoP is defined as

$$E_P(A_1:A_2) = \min_{|\psi\rangle_{A_1A_1'A_2A_2'}} S(A_1A_1'),$$

A holographic dual of EoP is Takayanagi, Umemoto, 2018

The holographic EoP can be natually regarded as a surface growth process.

From the surface growth and the generalized RT formula

$$\operatorname{Area}(\sigma) = S(XA_1),$$

then

$$E_P(A_1:A_2) = \min_{|\psi\rangle_{A_1A_1'A_2A_2'}} S(A_1A_1') = \min S(XA_1),$$

which gives $E_P(A_1:A_2) = \min \operatorname{Area}(\sigma) \equiv \operatorname{Area}(\Gamma_{A_1:A_2}),$

 $\rho(\tilde{\mathbf{v}}_{\mathbf{23}}) = \rho(\vec{v}_{\bar{A}X\sigma A_2}),$

previous descriptions in

$$S(2) + S(3) - S(1) = 2F(2)_{23}$$

Bit threads and partial entanglement contour

Y-y Lin, **JRS**, J Zhang, 2105.09176

Entanglement contour Chen, Vidal, 1406.1471

a function $f_A(x)$ trying to describe the fine structure the entanglement entropy

$$S(A) = \int_{A} f_A(x) \, dx$$

Technically, it's more tractable to analyze the **partial** entanglement entropy (PEE) $s_A(A_i)$ of some subsystem of A

$$s_A(A_i) \equiv \int_{A_i} f_A(x) \, dx$$

Conditions required to satisfy

1. Additivity: decomposing A_i as A_i^1 and A_i^2 , by definition we should have

$$s_A(A_i) = s_A(A_i^1) + s_A(A_i^2)$$

- 2. Invariance under local unitary transformations: $s_A(A_i)$ should be invariant under any local unitary transformations inside A_i or A_c .
- 3. Symmetry: for any symmetry transformation T under which TA = A' and $TA_i = A_i'$, we have $s_A(A_i) = s_{A'}(A_i')$.
- 4. Normalization: $S(A) = s_A(A_i)|_{A_i \to A}$.
- 5. Positivity: $s_A(A_i) \ge 0$.
- 6. Upper bound: $s_A(A_i) \leq S(A)$.
- 7. Symmetry under the permutation: the PEE can be expressed as a form with permutation

$$s_A(A_i) = P(A_i, A_c) = P(A_c, A_i) = s_{(A_i)_c}(A_c)$$

where $(A_i)_c$ represents the complement of A_i .

However, the bove requirements are not sufficient to uniquely determine the PEE in general.

PEE proposal Kudler-Flam, MacCormack, Ryu, 1902.04654; Q Wen, 1902.06905, 1803.05552

$$s_A(A_2) = \frac{1}{2} \left(S_{12} + S_{23} - S_1 - S_3 \right)$$

In addition, since the HEE can be alternativelly described by the bit threads, it would be interesting to see how bit threads can describe the PEE.

Prelimilary study Kudler-Flam, MacCormack, Ryu, 1902.04654

$$f_{A}\left(x\right) = \left|v\left(x\right)\right|$$

We will use the multiflow and the locking bit thread configurations to further investigate the PEE.

PEE as component flow flux

Dividing subregion A into A_1 and A_2 , then PEE gives

 $S(A) = s_A(A_1) + s_A(A_2)$

which is just like the summation of total bit thread flux.

From properties of multiflow

$$\nabla \cdot \vec{v}_{ij} = 0$$

$$\hat{n}_{A_k} \cdot \vec{v}_{ij} = 0 \quad (\text{for } k \neq i, j)$$

$$F(A_1)_{1c} = F(\gamma_1)_{1c} = F(\gamma_{12})_{1c} = F(A_c)_{1c}$$

$$F(A_2)_{2c} = F(\gamma_2)_{2c} = F(\gamma_{12})_{2c} = F(A_c)_{2c}$$

$$F(A_1)_{1c} + F(A_2)_{2c} = S(A) \implies s_A(A_i) = F(A_i)_{ic} \coloneqq F_{ic} = P_{ic}$$

Island prescription of Hawking radiation

Penington, 1905.08255; Almheiri, Engelhardt, Marolf, and Maxfield, 1905.08762; Almheiri, Hartman, Maldacena, Shaghoulian and Tajdini, 2006.06872

Faulkner, Lewkowycz and Maldacena, 2013; Engelhardt and Wall, 2015

Three viewpoints for gravity+radiation, 2d gravity example Almheiri, Mahajan, Maldacena and Zhao 2019

AdS/BCFT description for entanglement island

Chen, Myer, Neuenfeld, Reyes, Sandor, 2006.04851, 2010.00018; Suzuki and Takayanagi, 2202.08462

Holographic triality of AdS/BCFT setup.

It's interesting to use bit threads to study this model.

In the AdS/BCFT correspondence, the von Neumann entropy is calculated by

$$\boldsymbol{S}(\boldsymbol{R}) = \min_{\Gamma_{R},I} \operatorname{Ext} \left[\frac{\operatorname{Area}(\Gamma_{R})}{4G_{N}^{(d+1)}} \right], \quad \partial \Gamma_{R} = \partial R \cup \partial I,$$

where region I can be used to describe the island.

Using the relations between fluxes and entropy

$$\begin{aligned} F_{R\tilde{R}} + F_{R\tilde{I}} + F_{\tilde{R}I} + F_{I\tilde{I}} &= S\left(\tilde{R}\tilde{I}\right) = S\left(R\right) \\ F_{R\tilde{R}} + F_{RI} + F_{R\tilde{I}} &= S\left(R\right) \\ F_{R\tilde{R}} + F_{\tilde{R}I} + F_{\tilde{R}\tilde{I}} &= S\left(\tilde{R}\right) \\ F_{RI} + F_{\tilde{R}I} + F_{I\tilde{I}} &= S\left(I\right) \\ F_{R\tilde{I}} + F_{\tilde{R}\tilde{I}} + F_{I\tilde{I}} &= S\left(\tilde{I}\right) \\ F_{RI} + F_{R\tilde{I}} + F_{R\tilde{I}} + F_{R\tilde{I}} &= S\left(R\tilde{R}\right) \end{aligned}$$

$$F_{R\tilde{R}} = \frac{1}{2} \left(S\left(\tilde{R}\right) + S\left(R\right) - S\left(R\tilde{R}\right) \right),$$

$$F_{RI} = \frac{1}{2} \left(S\left(R\right) + S\left(I\right) - S\left(R\right) \right),$$

PEE aspects of entanglement island

Island rule of PEE for subregion containing the entire boundary

$$s_{A}\left(\tilde{R}\right) = F\left(\tilde{R} \leftrightarrow R\right) + F\left(\tilde{R} \leftrightarrow I\right) \equiv F\left(\tilde{R} \leftrightarrow R \cup I\right)$$
$$s_{A}\left(B\right) = F\left(\tilde{I} \leftrightarrow R\right) + F\left(\tilde{I} \leftrightarrow I\right) \equiv F\left(\tilde{I} \leftrightarrow R \cup I\right)$$

In AdS3 case:

$$ds^2 = L^2 \frac{-dt^2 + dz^2 + dx^2}{z^2},$$

$$\frac{(t_1 - t_2)^2 + (x_1 - x_2)^2 + (z_1 - z_2)^2}{2z_1 z_2} + 1 = \cosh \frac{d}{L}$$

$$E = (t = 0, x = l \cos \theta, z = l \sin \theta)$$

$$F = (t = 0, x = -l, z = \varepsilon)$$

$$G = (t = 0, x = l \cos \theta, z = \varepsilon)$$

$$O = (t = 0, x = 0, z = \varepsilon)$$

$$\tan \theta = \frac{z}{x} = \frac{1}{\sinh \frac{\rho_*}{L}}$$

$$\boldsymbol{S}(\boldsymbol{R}) = S\left(\tilde{R}\tilde{I}\right) = \frac{d_{EF}}{4G_N^{(d+1)}} = \frac{c}{6}\ln\frac{2l}{\varepsilon} + \frac{c}{6}\ln\frac{(1+\cos\theta)}{\sin\theta}.$$

$$S\left(\tilde{I}\right) = \frac{d_{OA}}{4G_N^{(d+1)}} = \frac{c}{6}\ln\frac{l}{\varepsilon\sin\theta},$$

$$S\left(\tilde{R}\right) = \frac{d_{OF}}{4G_N^{(d+1)}} = \frac{c}{3}\ln\frac{l}{\varepsilon},$$

then from

$$s_{A}\left(\tilde{R}\right) = \frac{1}{2}\left(S\left(R\right) + S\left(\tilde{R}\right) - S\left(\tilde{I}\right)\right)$$
$$s_{A}\left(B\right) = \frac{1}{2}\left(S\left(R\right) + S\left(\tilde{I}\right) - S\left(\tilde{R}\right)\right).$$
$$s_{A}\left(\tilde{R}\right) = \frac{c}{6}\ln\frac{2l}{\varepsilon} + \frac{c}{12}\ln\frac{1 + \cos\theta}{2}$$
$$s_{A}\left(B\right) = \frac{c}{12}\ln\frac{2\left(1 + \cos\theta\right)}{\sin^{2}\theta}.$$

Insight into black hole inoformation problem

A BCFT setup boundary perspective) that models a two-sided 2d black hole (in green) coupled to a pair of symmetrical auxiliary radiation systems (in grey). The RT surface calculating the true entanglement entropy of R can anchor on the ETW brane (in green, which simulates a black hole) to form an island.

Conclusions and Discussions

*The surface growth approach provides an efficient way to build the bulk geometry in the entanglement wedge far away from the boundary.

*It connects the generalized OSED and the surface/state correspondence and indicates that that the process of growing a new extremal surface is actually a kind of classical encoding operation on the entanglement within the previous extremal surfaces.

*By combining the surface growth approach and the bit threads, we give a new and more reasonable bit thread description for the holographic EoP. *Many interesting problems to be studied, such as

extending this scheme to cMERA,

relation between surface growth and TTbar deformation,

does bit thread has the physical correspondence, say, a gauge field?

extending the surface growth and bit threads AdS/BCFT setup into black hole cases

• • • • • •

http://spa. sysu. edu. cn/