Bulk reconstruction: surface growth
approach, tensor networks and bit
threads
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Bulk reconstruction in the AdS/CFT correspondence

The AdS/CFT correspondence and the more general holographic
duality provide a novel connection between different theories,
one is a higher dimensional gravitational theory, another is a
guantum field theory without gravity on the boundary.

The key equation in the AdS/CFT correspondence is
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Important properties:
field/operator duality,
strong/weak duality.



Important applications:

From the bulk to boundary
--studying the strongly coupled systems from their dual classical
gravity;

many successful applications:
fluid/gravity duality,

AdS/CMT,

holographic entanglement entropy,
AdS/QCD,

holographic complexity,

etc.



From the boundary to the bulk

bulk matter fields:

using the boundary operators to construct the bulk matter fields.
Banks, Douglas, Horowitz, Martinec, th/9808016;
Hamilton, Kabat, Lifschytz, and Lowe, th/0606141.

bex) = [ dr K1z 2o
bulk local field ~ boundary nonlocal operators

: what's the largest region that can be
constructed from a given boundary region?

Entanglement wedge reconstruction

Headrick, Hubeny, Lawrence, Rangamani, 2014;
Dong, Harlow, Wall, 2016

—

Wel|A] := D[R 4] .

subregion-subregion duality.




From the boundary to the bulk

bulk gravity: more difficult to construct the bulk geometry and the
gravitational dynamics from the boundary CFT

--an emergent picture of gravity.



Holographic entanglement entropy

Ryu and Takayanagi 2006
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Tensor networks

For quantum manybody systems in condensed matter physics, the
ground state wave function is effectively described by a series of
tensors which comprise into a network.

Considering a N particle quantum manybody system in d-dim flat
spacetime, its ground state wave function can be expressed as
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coefficients of a N-rank tensor

in the tensor network language, tensor T can be reduced into a

network of tensors t with less rank, e.g.,

Vidal, 1106.1082; 7 _ )
Orus, 1306.2164 aara; — LapSbaclea,



Matrix product state (MPS) for ground state of 1d lattice

| o

Projected entangled pair state (PEPS) for ground state of 2d lattice




Emergence of AdS geometry from MERA tensor networks
Swingle, 0905.1317; 1209.3304;

Qi, 1309.6282;

Almheiri, Dong, Harlow, 1411.7041;

Pastawski, Yoshida, Harlow, Preskill, 1503.06237;

Hayden, Nezami, Qi, Thomas, Walter, Yang, 1601.01694;

Bhattacharyya, Gao, Hung, Liu, 1606.00621;

Gan and Shu, 1705.05750;

Ling, Xiao and Wu, 1907.01215
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S, ¢ # of external legs of the tensor networks



Assume at each step, k # of sites will be coarse grained, then
considering two operators O, and (O, separated by x, then

X
logk — times of renormalization should be taken for them to
a

connect, and at each step

then
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The entanglement RG is consistent with taking a geodesic, i.e.
minimal curve in a AdS3 geometry, or the tensor networks can be
viewed a discrete version of the AdS3.



The entanglement RG is just a scaling transformation, the
corresponding geometry (static case) can be expressed as

2 2
72 2£dr +2dx j

v

foracurve x(4)=x,coszl and r(4)=x,sinzd

which corresponds to the boundary is a circle, the length of the
curve is

X
s~Lln=2
a

Note that the # of external legs (bonds) cut by the geodesic is
proportional to the length of the geodesic.

Continueous version-cMERA, using path integral method.
Haegeman, Osborne, Verschelde and Verstraete, 1102.5524;

Miyaji, Numasawa, Shiba, Takayanagi and Watanabe, 1506.01353



MERA-like tensor networks--time slice of AdS3
Milsted, Vidal, 1805.12524; 1812.00529;

Figure 12. (a) The traditional MERA tensor network on the circle, made of disentanglers u
(the green squares) and coarse-grainers w (the yellow triangles). (b) The Euclidean MERA tensor
network on the circle, made of disentanglers u (the green squares) and coarse-grainers w (the yellow
triangles), and eclideons e (the blue solid circles).



The surface growth approach v.y Lin, irs, v sun, 2010.01907:
C Yu, F-Z Chen,Y-y Lin, JRS, Y Sun, 2010.03167

In previous studies on bulk reconstruction, the methods are
indirect, is there a direct and explicit way to construct the bulk
geometry and matter fields? Besides, it is interesting to find a
more refined structure in the subregion-subregion duality, such as
how a given region in the entanglement wedge is dual to a
boundary region?




The surface growth approach from tensor networks
Y-y Lin, JRS, Y Sun, 2010.01907

Motivated by Huygens' principle of wave propagation, we
proposed a novel surface growth scheme to reconstruct the bulk
geometry, which can be explicitly realized with the help of the
surface/state correspondence and the one shot entanglement
distillation method.




One shot entanglement distillation (OSED)
Bao, Penington, Sorce, Wall, 1812.01171

In quantum information theory, |¢) € Ha @ Hae,
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a single holographic state |¥) can
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Surface growth scheme--a special case

O@@ .......



the final surface growth picture corresponding to the OSED tensor
network
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the final surface growth picture can be identified with the MERA-
like tensor network as

N/2k—1
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the RT surface in the MERA-like tensor network, and the expression

of W tensor is
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the MERA-like tensor network is a kind of discretization of our
surface growth picture, in which each euclidean e can be
considered as a cell of the bulk spacetime, i.e. the source in the
Huygens's picture

Ax,
v, © i
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More general surface growth scheme




Direct growth of bulk minimal surfaces
C Yu, F-Z Chen,Y-y Lin, JRS, Y Sun, 2010.03167

The surface growth scheme can also be directly checked by the
growth of the bulk minimal surfaces layer by layer.

Pure AdS3 case

ds® = d.pQ s (— cosh? %dtg + sinh? %d@g) :

EoM of bulk minimal curve (geodesics) is

. 1D~ e 1.9 ~
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for given angular size of the subsystem, different radial cutoff
corresponds to different turning position.



homogenous subregions, with
each subregion has angle
¢=n/25,the growing steps are
300.

inhomogenous subregions,
with growing steps 300.



BTZ black hole case

where 7. <r; <72 and o(r1) < do < o(r2). Also, for given angular
size of the subsystem, different radial cutoff corresponds to
different turning position.
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homogenous subregions, with
each subregion has angle
¢=r/25, cutoff surface is rc=5,
the growing steps are 360.

minimal surfaces wich do not
surround the black hole
horizon, entanglement
plateaux phenomenon.
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homogenous subregions, with
each subregion has angle
¢=r/25, cutoff surface is rc=20,
the growing steps are 360.

inhomogenous subregions,
whole subsystem with angle

¢=2x/5, with growing steps
358.



Surface growth, bit threads, Entanglement of purification
Y-y Lin, JRS, Y Sun, 2012.05737

Bit thread
Freedman, Headrick, 1604.00354; Cui, Hayden, He, Headrick, Stoica, 1808.05234

Bit thread are unoriented bulk curves that end on the boundary
and are subject to the rule that the thread density is less than a
constant C, say, 1 everywhere. (like the propagator)

V.7 =0,

p(0) = |v] < 1.

[E=/\/Eﬁ-ﬁ,
JA JA

Riemannian max flow-min cut theorem

max/ v = C min area(m).
A

v m~A



The thread configuration which has the maximal flow is said to
lock A.

S(A) — Fluxlocking (A)

Bit thread locking theorem

For a d-dim Riemannian manifold with boundary M, dividing M
into adjacent nonoverlapping subregions Ai (i=1,...,n)

1. There exists a multiflow that locks all the elementary regions
Ai.

2. There exists a multiflow that can lock all the elementary
regions and any single composite region simultaneously.

3. There exists a multiflow that can lock all the elementary
regions and all noncrossing composite regions simultaneously.



Locking thread configuration corresponds to OSED tensor
networks
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Locking thread configuration corresponds to OSED tensor
networks--multiflows




The total flux of bit threads through surface 7; is



Bit thread and EoP

Dividing a quantum system into two parts, a quantity used to
describe correlations between 4 and 4, is called the
entanglement of purification (EoP) E,(4,: 4,)

let |w)eH,, ®H,, bea purification

of the density matrix
4, A,
pA1A2 - TrAl'Az' W><W‘
Al A2 . .
The EoP is defined as

Ep(A1:Ay) = min S(AA)),

|Uf>A1A’1A2A’2



A holographic dual of EoP is Takayanagi, Umemoto, 2018

Ep(A|:Ay) = Area(I'y,.4,). area of EWCS
4,

A4,

The holographic EoP can be natually regarded as a surface
growth process.



From the surface growth and the generalized RT formula
Area(o) = S(XA,),
then EP(AI .Az) e min S(AIA!]) = min S(XAI),

‘W>A1A’1 ApA

which gives Ep(A;:A;) = minArea(c) = Area(I'y, .4,),



EoP from surface growth mmm) OSED tensor network
mmm) new bit thread description of EoP

4 4,

p(Vi2) = P(T_/"AXAI)a which is different from

i _ _ previous descriptions in
p(vl3) — p(UAYO‘Al) - p(vAlo'Az)’ Wthh {723 =0 ) since

P(V23) = p(Vixsa, ) S(2) +8(3) = S(1) = 2F(2),3



Bit threads and partial entanglement contour
Y-y Lin, JRS, J Zhang, 2105.09176

Entanglement contour chen, vidal, 1406.1471
a function f,(x) trying to describe the fine structure the
entanglement entropy

ZLfA(fE)de

Technically, it's more tractable to analyze the partial
entanglement entropy (PEE) SA ) of some subsystem of 4

z/fA



Conditions required to satisfy

L.

(e

NS o>

Additivity: decomposing A; as A} and A%, by definition we should have
sa(Ai) = sa (A]) + 54 (A7)
Invariance under local unitary transformations: s4 (A;) should be

invariant under any local unitary transformations inside A; or A..

Symmetry: for any symmetry transformation 7" under which
TA = A" and TAi = Ai", we have SA (At) — SA (A;)

Normalization: S (A) = sa (4i)|4, -

. Positivity: sa (A4;) > 0.

Upper bound: s4 (A4;) < S (A).
Symmetry under the permutation: the PEE can be expressed as

a form with permutation
SA (Ag) =P (AE,AC) =P (AC,AE) — S(Ai)c (AE)

where (A4;). represents the complement of A;.



However, the bove requirements are not sufficient to uniquely
determine the PEE in general.

PEE proposal Kudler-Flam, MacCormack, Ryu, 1902.04654; Q Wen, 1902.06905,
1803.05552

S A (AQ) —

Do —

(S12 + Sa3 — S1 — S3)

In addition, since the HEE can be alternativelly described by the
bit threads, it would be interesting to see how bit threads can
describe the PEE.

Prelimilary study
Kudler-Flam, MacCormack, Ryu, 1902.04654

fa(z) = |v(z)]

We will use the multiflow and the locking bit thread
configurations to further investigate the PEE.



PEE as component flow flux

Dividing subregion A into A; and A,,
then PEE gives

S(A): SA(A1)+SA(A2)

which is just like the summation of
total bit thread flux.

From properties of multiflow 4'3?5\

V-0 =0 A A

ﬁAk 17@3 =0 (fOl‘ k#@,j)

F(A1)1c — F(’Yl)h; — F('}’12)1c - F(Ac)1c

=)

F(A2)2c — F(72)2c — F(f)/12)2c - F(AC)2C
= F(A1). + F(A2)y. = S(A) mp SA(Ai):F(Ai)' =F.=F



Island prescription of Hawking radiation
Penington, 1905.08255; Almheiri, Engelhardt, Marolf, and Maxfield, 1905.08762;
Almheiri, Hartman, Maldacena, Shaghoulian and Tajdini, 2006.06872

kS
Entropy of
; Hawking's
?audtg:;:ﬁ calculatigon T
Thermodynamic entropy
/~ of the black hole
Expected
from unitarity
u .
tPage Time
L . Area of horizon
Bekenstein's generalized entropy Sgen = TYe + Soutside:
N
, , , Area(X)
Fine-grained entropy § = miny | eXty | ——=—F Scemic(Zx)
N

Faulkner, Lewkowycz and Maldacena, 2013; Engelhardt and Wall, 2015



Three viewpoints for gravity+radiation, 2d gravity example
Almheiri, Mahajan, Maldacena and Zhao 2019

AdS3 boundary

......................... °
CFT, QM  CFT,
Igr‘a.v[g§3)9¢] 1 ICFT[QE?;X} Planck brane
AdSsy
2d-Gravity 3d-Gravity QM
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2y — ) 2y — 5
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AdS/BCFT description for entanglement island
Chen, Myer, Neuenfeld, Reyes, Sandor, 2006.04851, 2010.00018;
Suzuki and Takayanagi, 2202.08462

CFT AdS/BCFT / M
bdy

M —

AdS

d+1

AdS/CFT
\\ / / Braneworld holography

CrT

Holographic triality of AdS/BCFT setup.

It's interesting to use bit threads to study this model.



In the AdS/BCFT correspondence, the von Neumann entropy is
calculated by

Area (I'r)

S (R) = min Ext
4GE{£+1)

I'r,I

]. Ol'r =0RUOI,

where region / can be used to describe the island.




Using the relations between fluxes and entropy

Frpp+ Fpi+ Fpp + Frj = S(ﬁ?f) = S(R)
Fog+ Frr+ Fpif = S(R)
FRRJFFEJJFF}%}‘:S(I?)
Fri+Fp, + F7=S(1)
FREJFFEEJFFH:S(E)
Fri+ Fj+ Fiy+ Fi = S (R
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PEE aspects of entanglement island
Island rule of PEE for subregion containing the entire boundary

H_\\\ A
- - B
R=A R ﬂ 4 /
A=RUB 2
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SA(ﬁ):F(EHR)JrF(ﬁHI)EF(E’HRUI)
SA(B):F(fHE’.)JrF(f{—}I)EF(fHRUI)
In AdS3 case:
Js2 ]2 —dt? + dz? + da?
- :
2 , _ 2 vy 2
(ty —to)" + (1 — x2)" + (21 — 29) —I—lzcosh{—i
2:‘;’12’2 L
Bo= =10 9=cesl z =1Isini}
F=fi—Bn—==-83—6)
G={t=022=1cosll,2—=5)
== = =1 5=
tanH::— :
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- doa c [
S (J)  COR L S
4G§g+1) 6 = csinf

then from SA (ﬁ) ; (S (R) + S (ﬁ) — S (f))

s (B) = 1(S(R)+ ()—S(ﬁ)).

~ : . : 1 s
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Insight into black hole inoformation problem

1 P

2

—
— —~

R R R R

A BCFT setup boundary perspective) that models a two-sided 2d
black hole (in green) coupled to a pair of symmetrical auxiliary
radiation systems (in grey). The RT surface calculating the true
entanglement entropy of R can anchor on the ETW brane (in
green, which simulates a black hole) to form an island.



Conclusions and Discussions

*The surface growth approach provides an efficient way to build
the bulk geometry in the entanglement wedge far away from the
boundary.

*It connects the generalized OSED and the surface/state
correspondence and indicates that that the process of growing a
new extremal surface is actually a kind of classical encoding
operation on the entanglement within the previous extremal
surfaces.

*By combining the surface growth approach and the bit threads,
we give a new and more reasonable bit thread description for the
holographic EoP.



*Many interesting problems to be studied, such as

extending this scheme to cMERA,

relation between surface growth and TTbar deformation,
does bit thread has the physical correspondence, say, a gauge
field?

extending the surface growth and bit threads AdS/BCFT setup
into black hole cases
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