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1. Introduction

Exta dimensions and braneworld models

Compact extra dimensions—Kaluza-Klein (KK) theory

Infinite flat extra dimensions—Domain wall

Infinite warped extra dimensions—Thin brane

Infinite warped extra dimensions—Thick brane
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Compact extra dimensions—KK theory

Kaluza-Klein (KK) theory (1920) [Kaluza et al. 1921, Klein, 1926]

Figure: Picture of KK theory with topology M4 × S1

The motivation is to unity Maxwell’s electromagnetism theory
and Einstein’s general relativity.

It contains a compact extra dimension.

Reduction of 5D fermion does not result in a 4D chiral theory.

KK theory only allows 4D neutral particles in the Standard
Model.

444������ Localization of Fermions in Higher-Dimensional Spacetime



Infinite flat extra dimension—Domain wall

Domain wall (DW) scenario [Akama, Rubakov, Shaposhnikov, 1983]

ds2 = ηµνdx
µdxν + dy2

Our 4D world is a DW embedded in 5D flat space-time.

Generated by a scalar field: φ(y) = v0 tanh(ky).

Fermions can be localized on DW by Yukawa coupling ηφΨ̄Ψ.

[Y.-X. Liu, Y. Zhong, and K. Yang, Progress in Physics 37 (2017) 41.]

Newton’s law can not be recovered on DW.
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Infinite warped extra dimensions—Thin brane

Thin brane scenario [Randall and Sundrum (RS), 1999]

ds2 = e−2k|y | ηµν dx
µdxν + dy2

The energy density: ρ(y) ∝ σδ(y)

y

Warp factor ã2 A

y

Energy density Ρ

Our 4D world is a brane embedded in a 5D spacetime.

Newton’s law can be recovered on brane

U(r) = GN
m1m2

r

(
1 + 1

k2r2

)
.

The brane has no inner structure.
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Infinite warped extra dimensions—Thick brane

Thick brane scenario
Combined the Randall-Sundrum-2 model and the domain wall

model, a thick brane has thickness and inner structure.

ds2 = e2A(y) ĝµν(x) dxµdxν + dy2

y

Warp factor ã2 A

y

Energy density Ρ

It includes infinite but warped extra dimensions.

The brane is generated by one or more scalar fields.

Newton’s law can be recovered on the brane.
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Motivation for higher dimensions

Localization of graviton and other fields

The standard model particles (zero modes of various bulk
matter and gauge fields) should be Localized on the brane.

For Randall-Sundrum-like brane models, graviton and a free
massless scalar field can be localized on the brane.

Localization condition for a free vector field is 1

# of extra dimensoins > # of infinite extra dimensions.
Thus, a free vector field can not be localized on the brane in
AdS5.

It is not possible to simultaneously localize graviton, free
scalar and vector fields in a 5D Randall-Sundrum-like brane
model.
We should consider six or higher-dimensional spacetime.

1
L. F. Freitas, G.Alencar, and R. Landim, JHEP 02 , 035 (2019), arXiv:1809.07197 [hep-th]
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Difficulty for fermion localization

Difficulty for fermion localization in higher dimensions

In 5D brane models, the Yukawa coupling allows for
localization of a fermion field on the brane. There are a lot of
related works 2.

In higher dimensional brane models, a free fermion can not be
localized on the brane. While the Yukawa coupling results in
that the left-handed and right-handed massive KK modes are
not decoupled, and hence the fermion can not be localized.

This leads to the difficulty in obtaining a 4D free fermion
theory.

2arXiv: 1707.08541 [hep-th]
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The usual ways for fermion localization

Suppose that the 4D spinor comes from a 4D Weyl spinor 3

Ψ(8) =

(
Ψ(4)

0

)
,

which assumes that the underlying theory is chiral. It cannot
explain the origin of chirality.

Localization mechanism is not introduced, and the extra
dimension parts of each component of the spinor is the same4:

Ψ(8)
(
xM
)

= ψ(8) (xµ)α(r)
∑

e ilθ.

For conformal flat spacetime, fermions cannot be localized in
this way. And under this assumption, the difference between
left and right chiralities is ignored.

3
[Nucl. Phys. B 767 (2007) 54, hep-th/0608074; JHEP 04 (2007) 097, hep-th/0701010]

4
[Phys. Lett. B 496 (2000), hep-th/0006203]
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What we would like to do?

A new localization mechanism is introduced to ensure the
Lorentz symmetry and the decoupling of higher-dimensional
left-handed and right-handed fermions.

The fermion zero mode can be Localized on the brane, and
hence a 4D effective action of free spinor fields can be
obtained.

In order to explain the chirality of fermions, it is better to get
a 4D effective chirality theory by reducing from a fundamental
theory.
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2. Clifford algebra C`(2n + 1, 1)

Given a (2n + 2)-dimensional complex space CN , the
(2n + 2)-dimensional Clifford algebra C`(2n + 1, 1) generated by
Dirac matrices ΓA (A = 0, 1, 2, · · · , 2n + 1) is defined by

{ΓA, ΓB} = 2ηAB I2n+2. (1)

The above definition can be generalized to the scenario of a curved
spacetime {

E A
M ΓA,E

B
N ΓB

}
= 2gMN I2n+2 (2)

with
gMN = E A

M E B
N ηAB . (3)
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2. Clifford algebra C`(2n + 1, 1)

Construct C`(2n + 1, 1) generators ΓA from C`(2n − 1, 1) 5:

Weyl representation Γ
(1)
A or Γ

(2)
A :

Γ(1)
µ = σ1 ⊗ γµ, Γ

(1)
2n+1 = −iσ1 ⊗ γ2n+1, Γ

(1)
2n+2 = −iσ2 ⊗ 12n , Γ

(1)
2n+3 = σ3 ⊗ 12n

Γ(2)
µ = σ2 ⊗ γµ, Γ

(2)
2n+1 = −iσ2 ⊗ γ2n+1, Γ

(2)
2n+2 = −iσ1 ⊗ 12n , Γ

(2)
2n+3 = σ3 ⊗ 12n

Pauli representation Γ
(3)
A :

Γ(3)
µ = σ3 ⊗ γµ, Γ

(3)
2n+1 = −iσ1 ⊗ 12n , Γ

(3)
2n+2 = −iσ2 ⊗ 12n , Γ

(3)
2n+3 = σ3 ⊗ γ2n+1

Dirac representation Γ
(0)
A :

Γ(0)
µ = 12⊗γµ, Γ

(0)
2n+1 = −iσ1⊗γ2n+1, Γ

(0)
2n+2 = −iσ2⊗γ2n+1, Γ

(0)
2n+3 = σ3⊗γ2n+1

5P. Budinich, Found. Phys. 32 (2002) 1347
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2. Clifford algebra C`(2n + 1, 1)

These representations correspond the following spinor embeddings

ψD ' ψP ↪→ ψP ⊕ ψP ' ψW ⊕ ψW = ΨD ' ψD ⊕ ψD

which means that

a 2n component Dirac spinor is isomorphic to a 2n component
Pauli spinor,

the direct sum of two such Pauli spinors is equivalent to that
of two Weyl spinors,

a Dirac spinor with 2n+1 components may be then considered
as a doublet of 2n component Dirac, Weyl or Pauli spinors.
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2. Clifford algebra C`(2n + 1, 1)

Relationship between these representations:

The Gamma matrices satisfy the similar transformation

UjΓ
{0}
A U−1j = Γ

{j}
A , (A = 1, 2, · · · , 2n + 2, j = 1, 2, 3)

The transformation between the corresponding spinors

UjΨ
{0} = Ψ{j}.

Same form for Dirac equation(
Γ
{j}
M DM −m

)
Ψ{j} = 0

This means that different 4D spinors may comes from the same
fundamental theory in higher dimensional spacetime.
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3. Decomposition of fermion in (2n+2)-dimensions

Introduce tensor coupling mechanism 6:

Ψ̄ΓMΓNΓP · · ·TMNP···Ψ. (4)

If we choose weyl representations, then
left and right chiralities coupling for even order tensors;
left and right chiralities decoupling for odd order tensors.

As a special case of first-order tensors, the action is

S =

∫
d2n+2x

√
−g
[
Ψ̄ΓMDMΨ + εΨ̄ΓMξMΨ

]
. (5)

The Dirac equation is[
ΓM(∂M + ΩM) + εΓMξM(z)

]
Ψ(xN) = 0. (6)

6J.-J. Wan and Y.-X. Liu, arXiv: 2303.06278 [hep-th]
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Operators on the left and right chiralities

Define two operators on the left and right chiralities:

D̂
(2n+1)
L = PRΓAEM

A (∂M + εξM + GM), (7a)

D̂
(2n+1)
R = PLΓAEM

A (∂M + εξM + GM). (7b)

For weyl representations

PL =
I2n+1 + Γ2n+3

2
=

(
I2n 0
0 02n

)
, (8a)

PR =
I2n+1 − Γ2n+3

2
=

(
02n 0
0 I2n

)
. (8b)
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Action for right and left chiral parts

The bulk action can be independently decomposed into the
left and right chiral parts

S = SL + SR , (9)

where

SL =

∫
d2nx

√
−g
[
Ψ̄

(2n)
1 D̂

(2n)
L Ψ

(2n)
1

]
, (10a)

SR =

∫
d2nx

√
−g
[
Ψ̄

(2n)
2 D̂

(2n)
R Ψ

(2n)
2

]
. (10b)

The equations of motion are also independent

D̂
(2n+1)
L Ψ

(2n+1)
L = D̂

(2n+1)
L

(
Ψ

(2n)
1

0

)
= 0⇒ D̂

(2n)
L Ψ

(2n)
1 = 0, (11a)

D̂
(2n+1)
R Ψ

(2n+1)
R = D̂

(2n+1)
R

(
0

Ψ
(2n)
2

)
= 0⇒ D̂

(2n)
R Ψ

(2n)
2 = 0. (11b)
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4. Localization of fermion in 6D spacetime

The localization mechanism

The vector ξM in the localization mechanism can be
constructed from partial derivatives of a scalar function:

εΨ̄ΓMξMΨ = εΨ̄ΓM∂MF (φ,R,RµνRµν , · · · )Ψ. (12)

The effects of geometry and the coupling term on fermion
localization can be equivalent described by four effective
potentials, and can be analyzed independently.
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4. Localization of fermion in 6D spacetime

Separate variables

Consider the following 6D line element

ds2 = a24(x5, x6)ηµνdx
µdxν + a25(x5, x6)dx25 + a26(x5, x6)dx26 .

(13)

We separate the 4-dimensional and the extra-dimensional parts of
the spinor

Ψ
(4)
1 = ψ

(4)
1 (xµ) φ1(x5, x6), (14a)

Ψ
(4)
2 = ψ

(4)
2 (xµ) φ2(x5, x6). (14b)
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4. Localization of fermion in 6D spacetime

Decomposition of the 6D Dirac spinor
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The localization condition

The action can be decomposed as

SL,R =

∫
dx5dx6α̃4

∫
d4x ψ̄

(ι)
1,2γ

a∂aψ
(ι)
1,2

+

∫
dx5dx6α̃5

(
∂5φ1
φ1

+ εξ5 + G5

)∫
d4x ψ̄

(ι)
1,2γ

5ψ
(ι)
1,2

∓
∫

dx5dx6α̃6

(
∂6ϕ1

ϕ1
+ εξ5 + G6

)∫
d4x ψ̄

(ι)
1,2ψ

(ι)
1,2. (15)

where

α̃4,5,6 =
√
−g
[
φ∗1(x5, x6)φ1(x5, x6)

]
a−14,5,6(x5, x6). (16)

Comparing with the kinetic energy term in 4D effective theory, we
obtain the localization condition∫

dx5dx6α̃4 = 1. (17)
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Example 1: M4 ×R1 × S1

Background spacetime

A model containing a compact dimension and a non-compact
dimension with topology M4 ×R1 × S1, where M4 is a 4D
Minkowski manifold and R1 × S1 is a transverse manifold.

The metric can be written as

ds2 = a2(z)(ηµνdx
µdxν + dz2 + dΘ2). (18)
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Example 1: M4 ×R1 × S1

Asymptotically AdS spacetime
If this spacetime is generated by a background dynamic field,

the action can be written as

S =
M4

2

∫
d6x
√
−g (R − Λ + Lm) (19)

with Lm the Lagrangian of the background scalar field φ

Lm = −1

2
gMN∂Mφ∂Nφ− V (φ). (20)

For asymptotically AdS spacetime, the asymptotic behavior of the
background scalar field can be described by three cases:

case I: |φ(z)| → ∞ and
|φ(z)|
log|z |

→ 0 (21a)

case II: φ(z) → v± (21b)

case III: φ(z) → 0 (21c)
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Example 1: M4 ×R1 × S1

The extra dimensional parts of these four 2-component spinor
fields satisfy the following equations

m1
2φ11 = −∂5∂5φ11 + V11φ11, (22a)

m1
2φ12 = −∂5∂5φ12 + V12φ12, (22b)

m2
2φ21 = −∂5∂5φ21 + V21φ21, (22c)

m2
2φ22 = −∂5∂5φ22 + V22φ22. (22d)

If F = 0, then

V11 = V22 = V12 = V21 = 0,

which means gravity does not distinguish the right and left
chiralities, and spinor fields cannot be localized by minimal
coupling with gravity in this geometry.

If F = φn, the localization condition is
n > 1 for φ(z → ±∞)→∞,
n < 0 for φ(z → ±∞)→ 0.
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Example 2: M4 ×R2

Background spacetime

A model containing two non-compact dimension with
topology M4 ×R2, where R2 is a transverse manifold.

We assume that the spacetime is conformally flat, the metric
can be written as

ds2 = a24(r)(ηµνdx
µdxν + dr2 + r2dθ2). (23)
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Example 2: M4 ×R2

The extra dimensional parts of these four 2-component spinor
fields satisfy the following equation

m1
2φ11 = −∂5∂5φ11 + V11φ11, (24a)

m1
2φ12 = −∂5∂5φ12 + V12φ12, (24b)

m2
2φ21 = −∂5∂5φ21 + V21φ21, (24c)

m2
2φ22 = −∂5∂5φ22 + V22φ22, (24d)

where the effective potentials in the F = 0 case are

V11(r) = V22(r) =
l6(l6 − 1)

r2
, (25a)

V12(r) = V21(r) =
l6(l6 + 1)

r2
. (25b)

This means gravity distinguish the right and left chiralities.
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Comparison of two topologies of extra dimensions

Similarities

1 If spacetime is conformally flat, a minimal coupling to gravity
without other interactions can not localize fermions.

2 If the bulk is conformally AdS, a derivative coupling
mechanism (such as εΨ̄ΓM∂Mφ

nΨ) is effective for localization
of fermions.

Differences

1 The topology R1 × S1 does not distinguish left- and
right-handed fermions.

2 The topology R2 distinguishes left- and right-handed
fermions.
The 4D chiral theory may be restored with suitable coupling
function F (φ).
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5. Summary

1 In a conformally flat extra-dimensional spacetime, fermions
cannot be localized through minimal coupling with gravity.

2 Therefore, we propose using a coupling mechanism with

Ψ̄ΓMΓNΓP · · ·TMNP···Ψ

to preserve Lorentz symmetry and decouple the components
of higher-dimensional spinors to obtain a 4D effective free
field theory.

3 For the manifold with a topology of M4 ×R2, the minimal
coupling between fermions and gravity will distinguish left and
right chiralities, and the fermion may be localized on the
brane with the tensor coupling.

Thank you!
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