Localization of Fermions in Higher-Dimensional Spacetime

刘玉孝(兰州大学)

2023引力与宇宙学"专题研讨会 彭桓武高能基础理论研究中心(合肥)

2023.04.08

対玉孝

Localization of Fermions in Higher-Dimensional Spacetime

伺 と く ヨ と く ヨ と

中国科学:物理学力学天文学 SCIENCE CHINA Physics, Mechanics & Astronomy

中国科学、曹昌等。

2日代日入新社員9日

00

主编: 谢心澄 院士

- 英文版: Science China Physics, Mechanics & Astronomy
- •Editor's Focus栏曰: 瞄准PRL录用水平, 快审快发
- ・JCR Q1区, 中科院文献情报中心期刊分区表物理大类1区Top期刊
- 接受后实时在线预出版,优秀成果限时免费阅读
- 国内外公众媒体多渠道新闻宣传和精准推送

中文版: 中国科学: 物理学 力学 天文学

- •中文核心期刊,并被ESCI, Scopus国际数据库收录
- •2021年度中国百种杰出学术期刊
- 特色专题出版,已组织专题(辑)70余期

扫描二维码 关注期刊最新动态

Sponsored by 😭 中國科学院

Published by 《中国科学》杂志礼

Springer

Physics, Mechanics & Astronomy

イロト イポト イヨト イヨト Localization of Fermions in Higher-Dimensional Spacetime

- 1. Introduction and motivation
- 2. Clifford algebra $\mathbb{C}\ell(2n+1,1)$
- 3. Decomposition of fermion in (2n+2)-dimensions
- 4. Localization of fermion in 6D spacetime
- 5. Summary

Exta dimensions and braneworld models

- Compact extra dimensions—Kaluza-Klein (KK) theory
- Infinite flat extra dimensions—Domain wall
- Infinite warped extra dimensions—Thin brane
- Infinite warped extra dimensions—Thick brane

対玉孝

Compact extra dimensions—KK theory

Kaluza-Klein (KK) theory (1920) [Kaluza et al. 1921, Klein, 1926]

Figure: Picture of KK theory with topology $M_4 \times S^1$

- The motivation is to unity Maxwell's electromagnetism theory and Einstein's general relativity.
- It contains a compact extra dimension.
- Reduction of 5D fermion does not result in a 4D chiral theory.
- KK theory only allows 4D neutral particles in the Standard Model.

Infinite flat extra dimension—Domain wall

Domain wall (DW) scenario [Akama, Rubakov, Shaposhnikov, 1983]

$$ds^2 = \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dy^2$$

- Our 4D world is a DW embedded in 5D flat space-time.
- Generated by a scalar field: $\phi(y) = v_0 \tanh(ky)$.
- Fermions can be localized on DW by Yukawa coupling $\eta\phi\bar{\Psi}\Psi$.

[Y.-X. Liu, Y. Zhong, and K. Yang, Progress in Physics 37 (2017) 41.]

• Newton's law can not be recovered on DW.

刘玉孝

Localization of Fermions in Higher-Dimensional Spacetime

Infinite warped extra dimensions—Thin brane

Thin brane scenario [Randall and Sundrum (RS), 1999]

$$ds^2 = e^{-2k|y|} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dy^2$$

The energy density: $ho(y) \propto \sigma \delta(y)$

• Our 4D world is a brane embedded in a 5D spacetime.

対玉孝

• Newton's law can be recovered on brane

$$U(r)=G_N\frac{m_1m_2}{r}\left(1+\frac{1}{k^2r^2}\right).$$

• The brane has no inner structure.

Thick brane scenario

Combined the Randall-Sundrum-2 model and the domain wall model, a thick brane has thickness and inner structure.

- It includes infinite but warped extra dimensions.
- The brane is generated by one or more scalar fields.
- Newton's law can be recovered on the brane.

Motivation for higher dimensions

Localization of graviton and other fields

- The standard model particles (zero modes of various bulk matter and gauge fields) should be Localized on the brane.
- For Randall-Sundrum-like brane models, graviton and a free massless scalar field can be localized on the brane.
- Localization condition for a free vector field is ¹ # of extra dimensions > # of infinite extra dimensions. Thus, a free vector field can not be localized on the brane in AdS₅.
- It is not possible to simultaneously localize graviton, free scalar and vector fields in a 5D Randall-Sundrum-like brane model.

We should consider six or higher-dimensional spacetime.

¹L. F. Freitas, G.Alencar, and R. Landim, JHEP 02 , 035 (2019), arXiv:1809.0719万[hep-th]: → < = → = → へへへ

Difficulty for fermion localization

Difficulty for fermion localization in higher dimensions

- In 5D brane models, the Yukawa coupling allows for localization of a fermion field on the brane. There are a lot of related works ².
- In higher dimensional brane models, a free fermion can not be localized on the brane. While the Yukawa coupling results in that the left-handed and right-handed massive KK modes are not decoupled, and hence the fermion can not be localized.
- This leads to the difficulty in obtaining a 4D free fermion theory.

対玉孝

²arXiv: 1707.08541 [hep-th]

The usual ways for fermion localization

 $\bullet\,$ Suppose that the 4D spinor comes from a 4D Weyl spinor 3

$$\Psi^{(8)}=\left(egin{array}{c} \Psi^{(4)} \ 0 \end{array}
ight),$$

which assumes that the underlying theory is chiral. It cannot explain the origin of chirality.

• Localization mechanism is not introduced, and the extra dimension parts of each component of the spinor is the same⁴:

$$\Psi^{(8)}\left(x^{\mathcal{M}}\right) = \psi^{(8)}\left(x^{\mu}\right) \alpha(r) \sum e^{il\theta}.$$

For conformal flat spacetime, fermions cannot be localized in this way. And under this assumption, the difference between left and right chiralities is ignored.

³[Nucl. Phys. B 767 (2007) 54, hep-th/0608074; JHEP 04 (2007) 097, hep-th/0701010] ⁴[Phys. Lett. B 496 (2000), hep-th/0006203]

- A new localization mechanism is introduced to ensure the Lorentz symmetry and the decoupling of higher-dimensional left-handed and right-handed fermions.
- The fermion zero mode can be Localized on the brane, and hence a 4D effective action of free spinor fields can be obtained.
- In order to explain the chirality of fermions, it is better to get a 4D effective chirality theory by reducing from a fundamental theory.

対玉孝

- 1. Introduction and motivation
- 2. Clifford algebra $\mathbb{C}\ell(2n+1,1)$
- 3. Decomposition of fermion in (2n+2)-dimensions
- 4. Localization of fermion in 6D spacetime
- 5. Summary

Given a (2n + 2)-dimensional complex space \mathbb{C}^N , the (2n + 2)-dimensional Clifford algebra $\mathbb{C}\ell(2n + 1, 1)$ generated by Dirac matrices Γ_A $(A = 0, 1, 2, \cdots, 2n + 1)$ is defined by

$$\{\Gamma_A, \Gamma_B\} = 2\eta_{AB}I_{2n+2}.$$
 (1)

The above definition can be generalized to the scenario of a curved spacetime

対玉孝

$$\left\{E_{M}^{A}\Gamma_{A}, E_{N}^{B}\Gamma_{B}\right\} = 2g_{MN}I_{2n+2}$$
⁽²⁾

with

$$g_{MN} = E_M^{\ A} E_N^{\ B} \eta_{AB}. \tag{3}$$

Construct $\mathbb{C}\ell(2n+1,1)$ generators Γ_A from $\mathbb{C}\ell(2n-1,1)$ ⁵: Weyl representation $\Gamma_A^{(1)}$ or $\Gamma_A^{(2)}$:

$$\begin{split} \Gamma_{\mu}^{(1)} &= \sigma_{1} \otimes \gamma_{\mu}, \Gamma_{2n+1}^{(1)} = -i\sigma_{1} \otimes \gamma_{2n+1}, \Gamma_{2n+2}^{(1)} = -i\sigma_{2} \otimes \mathbf{1}_{2^{n}}, \Gamma_{2n+3}^{(1)} = \sigma_{3} \otimes \mathbf{1}_{2^{n}} \\ \Gamma_{\mu}^{(2)} &= \sigma_{2} \otimes \gamma_{\mu}, \Gamma_{2n+1}^{(2)} = -i\sigma_{2} \otimes \gamma_{2n+1}, \Gamma_{2n+2}^{(2)} = -i\sigma_{1} \otimes \mathbf{1}_{2^{n}}, \Gamma_{2n+3}^{(2)} = \sigma_{3} \otimes \mathbf{1}_{2^{n}} \\ \mathsf{Pauli representation } \Gamma_{A}^{(3)} : \end{split}$$

$$\begin{split} \Gamma^{(3)}_{\mu} &= \sigma_3 \otimes \gamma_{\mu}, \ \Gamma^{(3)}_{2n+1} = -i\sigma_1 \otimes \mathbf{1}_{2^n}, \ \Gamma^{(3)}_{2n+2} = -i\sigma_2 \otimes \mathbf{1}_{2^n}, \ \Gamma^{(3)}_{2n+3} = \sigma_3 \otimes \gamma_{2n+1} \\ \text{Dirac representation } \Gamma^{(0)}_A: \end{split}$$

$$\Gamma_{\mu}^{(0)} = \mathbf{1}_{2} \otimes \gamma_{\mu}, \ \Gamma_{2n+1}^{(0)} = -i\sigma_{1} \otimes \gamma_{2n+1}, \ \Gamma_{2n+2}^{(0)} = -i\sigma_{2} \otimes \gamma_{2n+1}, \ \Gamma_{2n+3}^{(0)} = \sigma_{3} \otimes \gamma_{2n+1}$$

⁵P. Budinich, Found. Phys. 32 (2002) 1347 (ロン・(ラン・モンンモンン) 対王孝 Localization of Fermions in Higher-Dimensional Spacetime These representations correspond the following spinor embeddings

 $\psi_D \simeq \psi_P \hookrightarrow \psi_P \oplus \psi_P \simeq \psi_W \oplus \psi_W = \Psi_D \simeq \psi_D \oplus \psi_D$

which means that

- a 2ⁿ component Dirac spinor is isomorphic to a 2ⁿ component Pauli spinor,
- the direct sum of two such Pauli spinors is equivalent to that of two Weyl spinors,
- a Dirac spinor with 2ⁿ⁺¹ components may be then considered as a doublet of 2ⁿ component Dirac, Weyl or Pauli spinors.

対玉孝

・吊り ・ヨト ・ヨト

2. Clifford algebra $\mathbb{C}\ell(2n+1,1)$

Relationship between these representations:

The Gamma matrices satisfy the similar transformation

$$U_j \Gamma_A^{\{0\}} U_j^{-1} = \Gamma_A^{\{j\}}, \quad (A = 1, 2, \cdots, 2n + 2, j = 1, 2, 3)$$

The transformation between the corresponding spinors

 $U_j \Psi^{\{0\}} = \Psi^{\{j\}}.$

Same form for Dirac equation

$$\left(\Gamma_M^{\{j\}}D^M - m\right)\Psi^{\{j\}} = 0$$

This means that different 4D spinors may comes from the same fundamental theory in higher dimensional spacetime.

・ 同 ト ・ ヨ ト ・ ヨ ト

- 1. Introduction and motivation
- 2. Clifford algebra $\mathbb{C}\ell(2n+1,1)$
- 3. Decomposition of fermion in (2n+2)-dimensions
- 4. Localization of fermion in 6D spacetime
- 5. Summary

3. Decomposition of fermion in (2n+2)-dimensions

Introduce tensor coupling mechanism ⁶:

$$\bar{\Psi}\Gamma^{M}\Gamma^{N}\Gamma^{P}\cdots T_{MNP\cdots}\Psi.$$
(4)

If we choose weyl representations, then left and right chiralities coupling for even order tensors; left and right chiralities decoupling for odd order tensors.

As a special case of first-order tensors, the action is

$$S = \int d^{2n+2}x \sqrt{-g} \left[\bar{\Psi} \Gamma^M D_M \Psi + \varepsilon \bar{\Psi} \Gamma^M \xi_M \Psi \right].$$
 (5)

The Dirac equation is

$$\left[\Gamma^{M}(\partial_{M}+\Omega_{M})+\varepsilon\Gamma^{M}\xi_{M}(z)\right]\Psi(x^{N})=0.$$
 (6)

⁶J.-J. Wan and Y.-X. Liu, arXiv: 2303.06278 [hep-th]› ∢♂› ∢≧› ∢≧› ≧ ∽

Localization of Fermions in Higher-Dimensional Spacetime

Operators on the left and right chiralities

Define two operators on the left and right chiralities:

刘玉孝

$$\hat{D}_{L}^{(2^{n+1})} = P_{R} \Gamma^{A} E_{A}^{M} (\partial_{M} + \varepsilon \xi_{M} + G_{M}), \tag{7a}$$

$$\hat{D}_{R}^{(2^{n+1})} = P_{L} \Gamma^{A} E_{A}^{M} (\partial_{M} + \varepsilon \xi_{M} + G_{M}).$$
(7b)

For weyl representations

$$P_{L} = \frac{I_{2^{n+1}} + \Gamma_{2n+3}}{2} = \begin{pmatrix} I_{2^{n}} & 0\\ 0 & 0_{2^{n}} \end{pmatrix},$$

$$P_{R} = \frac{I_{2^{n+1}} - \Gamma_{2n+3}}{2} = \begin{pmatrix} 0_{2^{n}} & 0\\ 0 & I_{2^{n}} \end{pmatrix}.$$
(8a)
(8b)

Action for right and left chiral parts

The bulk action can be independently decomposed into the left and right chiral parts

$$S = S_L + S_R, \tag{9}$$

where

$$S_{L} = \int d^{2n} x \sqrt{-g} \left[\bar{\Psi}_{1}^{(2^{n})} \hat{D}_{L}^{(2^{n})} \Psi_{1}^{(2^{n})} \right], \qquad (10a)$$

$$S_{R} = \int d^{2n}x \sqrt{-g} \left[\bar{\Psi}_{2}^{(2^{n})} \hat{D}_{R}^{(2^{n})} \Psi_{2}^{(2^{n})} \right].$$
(10b)

The equations of motion are also independent

$$\hat{D}_{L}^{(2^{n+1})}\Psi_{L}^{(2^{n+1})} = \hat{D}_{L}^{(2^{n+1})} \begin{pmatrix} \Psi_{1}^{(2^{n})} \\ 0 \end{pmatrix} = 0 \Rightarrow \hat{D}_{L}^{(2^{n})}\Psi_{1}^{(2^{n})} = 0, \quad (11a)$$

$$\hat{D}_{R}^{(2^{n+1})}\Psi_{R}^{(2^{n+1})} = \hat{D}_{R}^{(2^{n+1})} \begin{pmatrix} 0\\ \psi_{2}^{(2^{n})} \end{pmatrix} = 0 \Rightarrow \hat{D}_{R}^{(2^{n})}\Psi_{2}^{(2^{n})} = 0.$$
(11b)

- 1. Introduction and motivation
- 2. Clifford algebra $\mathbb{C}\ell(2n+1,1)$
- 3. Decomposition of fermion in (2n+2)-dimensions
- 4. Localization of fermion in 6D spacetime
- 5. Summary

The localization mechanism

The vector ξ_M in the localization mechanism can be constructed from partial derivatives of a scalar function:

$$\varepsilon \bar{\Psi} \Gamma^M \xi_M \Psi = \varepsilon \bar{\Psi} \Gamma^M \partial_M F(\phi, R, R^{\mu\nu} R_{\mu\nu}, \cdots) \Psi.$$
(12)

The effects of geometry and the coupling term on fermion localization can be equivalent described by four effective potentials, and can be analyzed independently.

対玉孝

Separate variables

Consider the following 6D line element

$$ds^{2} = a_{4}^{2}(x^{5}, x^{6})\eta_{\mu\nu}dx^{\mu}dx^{\nu} + a_{5}^{2}(x^{5}, x^{6})dx_{5}^{2} + a_{6}^{2}(x^{5}, x^{6})dx_{6}^{2}.$$
(13)

We separate the 4-dimensional and the extra-dimensional parts of the spinor

対玉孝

$$\Psi_1^{(4)} = \psi_1^{(4)}(x^{\mu}) \phi_1(x^5, x^6), \tag{14a}$$

$$\Psi_2^{(4)} = \psi_2^{(4)}(x^{\mu}) \phi_2(x^5, x^6). \tag{14b}$$

4. Localization of fermion in 6D spacetime

刘玉孝 Localization of Fermions in Higher-Dimensional Spacetime

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The localization condition

The action can be decomposed as

$$S_{L,R} = \int dx^5 dx^6 \tilde{\alpha}_4 \int d^4 x \ \bar{\psi}_{1,2}^{(\iota)} \gamma^a \partial_a \psi_{1,2}^{(\iota)}$$

+ $\int dx^5 dx^6 \tilde{\alpha}_5 \left(\frac{\partial_5 \phi_1}{\phi_1} + \varepsilon \xi_5 + G_5 \right) \int d^4 x \ \bar{\psi}_{1,2}^{(\iota)} \gamma^5 \psi_{1,2}^{(\iota)}$
= $\int dx^5 dx^6 \tilde{\alpha}_6 \left(\frac{\partial_6 \varphi_1}{\varphi_1} + \varepsilon \xi_5 + G_6 \right) \int d^4 x \ \bar{\psi}_{1,2}^{(\iota)} \psi_{1,2}^{(\iota)}.$ (15)

where

$$\tilde{\alpha}_{4,5,6} = \sqrt{-g} \left[\phi_1^*(x^5, x^6) \phi_1(x^5, x^6) \right] a_{4,5,6}^{-1}(x^5, x^6).$$
(16)

Comparing with the kinetic energy term in 4D effective theory, we obtain the localization condition

$$\int dx^5 dx^6 \tilde{\alpha}_4 = 1. \tag{17}$$

Background spacetime

A model containing a compact dimension and a non-compact dimension with topology $\mathcal{M}_4 \times \mathcal{R}_1 \times \mathcal{S}_1$, where \mathcal{M}_4 is a 4D Minkowski manifold and $\mathcal{R}_1 \times \mathcal{S}_1$ is a transverse manifold.

対玉孝

The metric can be written as

$$ds^{2} = a^{2}(z)(\eta_{\mu\nu}dx^{\mu}dx^{\nu} + dz^{2} + d\Theta^{2}).$$
(18)

Asymptotically AdS spacetime

If this spacetime is generated by a background dynamic field, the action can be written as

$$S = \frac{M^4}{2} \int d^6 x \sqrt{-g} \left(R - \Lambda + \mathcal{L}_m \right)$$
(19)

with \mathcal{L}_m the Lagrangian of the background scalar field ϕ

$$\mathcal{L}_{m} = -\frac{1}{2}g^{MN}\partial_{M}\phi\partial_{N}\phi - V(\phi).$$
⁽²⁰⁾

For asymptotically AdS spacetime, the asymptotic behavior of the background scalar field can be described by three cases:

case I:
$$|\phi(z)| \rightarrow \infty$$
 and $\frac{|\phi(z)|}{\log |z|} \rightarrow 0$ (21a)
case II: $\phi(z) \rightarrow v_{\pm}$ (21b)
case III: $\phi(z) \rightarrow 0$ (21c)

Example 1: $\mathcal{M}_4 \times \mathcal{R}_1 \times \mathcal{S}_1$

The extra dimensional parts of these four 2-component spinor fields satisfy the following equations

$$m_1^2 \phi_{11} = -\partial_5 \partial_5 \phi_{11} + V_{11} \phi_{11}, \qquad (22a)$$

$$m_1^2 \phi_{12} = -\partial_5 \partial_5 \phi_{12} + V_{12} \phi_{12},$$
 (22b)

$$m_2^2 \phi_{21} = -\partial_5 \partial_5 \phi_{21} + V_{21} \phi_{21}, \qquad (22c)$$

$$m_2^2 \phi_{22} = -\partial_5 \partial_5 \phi_{22} + V_{22} \phi_{22}. \tag{22d}$$

If F = 0, then

$$V_{11} = V_{22} = V_{12} = V_{21} = 0,$$

which means gravity does not distinguish the right and left chiralities, and spinor fields cannot be localized by minimal coupling with gravity in this geometry.

If
$$F = \phi^n$$
, the localization condition is
 $n > 1$ for $\phi(z \to \pm \infty) \to \infty$,
 $n < 0$ for $\phi(z \to \pm \infty) \to 0$.

Background spacetime

A model containing two non-compact dimension with topology $\mathcal{M}_4 \times \mathcal{R}_2$, where \mathcal{R}_2 is a transverse manifold.

We assume that the spacetime is conformally flat, the metric can be written as

対玉孝

$$ds^{2} = a_{4}^{2}(r)(\eta_{\mu\nu}dx^{\mu}dx^{\nu} + dr^{2} + r^{2}d\theta^{2}).$$
(23)

The extra dimensional parts of these four 2-component spinor fields satisfy the following equation

$$m_1^2 \phi_{11} = -\partial_5 \partial_5 \phi_{11} + V_{11} \phi_{11}, \qquad (24a)$$

$$m_1^2 \phi_{12} = -\partial_5 \partial_5 \phi_{12} + V_{12} \phi_{12},$$
 (24b)

$$m_2^2 \phi_{21} = -\partial_5 \partial_5 \phi_{21} + V_{21} \phi_{21}, \qquad (24c)$$

$$m_2^2 \phi_{22} = -\partial_5 \partial_5 \phi_{22} + V_{22} \phi_{22}, \qquad (24d)$$

where the effective potentials in the F = 0 case are

$$V_{11}(r) = V_{22}(r) = \frac{l_6(l_6 - 1)}{r^2},$$

$$V_{12}(r) = V_{21}(r) = \frac{l_6(l_6 + 1)}{r^2}.$$
(25a)

This means gravity distinguish the right and left chiralities.

Similarities

- If spacetime is conformally flat, a minimal coupling to gravity without other interactions can not localize fermions.
- **②** If the bulk is conformally AdS, a derivative coupling mechanism (such as $\varepsilon \overline{\Psi} \Gamma^M \partial_M \phi^n \Psi$) is effective for localization of fermions.

Differences

- The topology $\mathcal{R}_1 \times \mathcal{S}_1$ does not distinguish left- and right-handed fermions.
- **②** The topology \mathcal{R}_2 distinguishes left- and right-handed fermions.

The 4D chiral theory may be restored with suitable coupling function $F(\phi)$.

伺下 イヨト イヨト

5. Summary

- In a conformally flat extra-dimensional spacetime, fermions cannot be localized through minimal coupling with gravity.
- **2** Therefore, we propose using a coupling mechanism with $\bar{\Psi}\Gamma^M\Gamma^P\cdots T_{MNP\dots}\Psi$

to preserve Lorentz symmetry and decouple the components of higher-dimensional spinors to obtain a 4D effective free field theory.

For the manifold with a topology of M₄ × R₂, the minimal coupling between fermions and gravity will distinguish left and right chiralities, and the fermion may be localized on the brane with the tensor coupling.

Thank you!

刘玉孝