Higher-form symmetries and SymTFT in $\mbox{AdS4/CFT3}$

2209.xxxx with M. van Beest, D. Gould and S. Schafer-Nameki

Yi-Nan Wang

Peking University

第三届全国场论与弦论学术研讨会 Aug. 23rd, 2022

通 と く ヨ と く ヨ と

• Symmetry is a central concept in physics

• Notions of (global) symmetries:

(1) Ordinary 0-form global symmetry, e. g. flavor symmetries, spacetime symmetries..

くぼう くほう くほう

• Symmetry is a central concept in physics

• Notions of (global) symmetries:

(1) Ordinary 0-form global symmetry, e. g. flavor symmetries, spacetime symmetries..

(2) Higher-form symmetries

くぼう くほう くほう

• Symmetry is a central concept in physics

• Notions of (global) symmetries:

(1) Ordinary 0-form global symmetry, e. g. flavor symmetries, spacetime symmetries..

- (2) Higher-form symmetries
- (3) Higher-group symmetries
- (4) Non-invertible symmetries
- (5) Sub-system symmetries...

• Lots of recent activities on the subject, applications in high energy and condensed matter physics.

くぼう くうち くうち

Ordinary 0-form global symmetry

- Let us consider QFTs in *d*-dimensional space-time.
- The ordinary 0-form symmetry with group *G*: acts on local operators (0d particles).

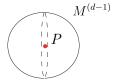
くぼう くほう くほう

Ordinary 0-form global symmetry

- Let us consider QFTs in *d*-dimensional space-time.
- The ordinary 0-form symmetry with group *G*: acts on local operators (0d particles).
- Introduce the topological operator $U(g, M^{(d-1)})$ generating the 0-form symmetry, which corresponds to $g \in G$,

$$U(g_1, M^{(d-1)})U(g_2, M^{(d-1)}) = U(g_1g_2, M^{(d-1)}).$$
(1)

• $U(g, M^{(d-1)})$ can act non-trivially on a 0-dim. operator $V(\mathcal{P})$ whenever $M^{(d-1)}$ and \mathcal{P} are non-trivially linked.



(日本) (日本) (日本)

• Noether's theorem: continuous 0-form global symmetry gives rise to a conserved charge.

・ 同 ト ・ ヨ ト ・ ヨ ト

• Noether's theorem: continuous 0-form global symmetry gives rise to a conserved charge.

• In differential form language,

$$Q(M^{(d-1)}) = \oint_{M^{(d-1)}} j.$$
(2)

• e. g. in EM, the (d-1)-form conserved current j is given by the Maxwell's equation as

$$d * F = j. \tag{3}$$

$$U(g, M^{(d-1)}) = g^{\oint_{M^{(d-1)}} j}, \quad g \in U(1).$$
(4)

-

Higher-form symmetry

- Extend the story to a p-form (p > 0) global symmetry with abelian group G (Gaiotto, Kapustin, Seiberg, Willett 14')
- A *p*-form symmetry is generated by a (d p 1)-dimensional topological operator $U(g, M^{(d-p-1)})$:

$$U(g_1, M^{(d-p-1)})U(g_2, M^{(d-p-1)}) = U(g_1g_2, M^{(d-p-1)}).$$
 (5)

and acts on *p*-dimensional object(operator) $V(\mathcal{C}^{(p)})$.

(本間) (本語) (本語) (二語)

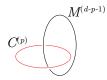
Higher-form symmetry

- Extend the story to a p-form (p > 0) global symmetry with abelian group G (Gaiotto, Kapustin, Seiberg, Willett 14')
- A *p*-form symmetry is generated by a (d p 1)-dimensional topological operator $U(g, M^{(d-p-1)})$:

$$U(g_1, M^{(d-p-1)})U(g_2, M^{(d-p-1)}) = U(g_1g_2, M^{(d-p-1)}).$$
 (5)

and acts on *p*-dimensional object(operator) $V(\mathcal{C}^{(p)})$.

• $U(g, M^{(d-p-1)})$ has non-trivial action on $V(\mathcal{C}^{(p)})$ when $M^{(d-p-1)}$ and $\mathcal{C}^{(p)}$ are non-trivially linked.



• For 1-form symmetry in 3d, both U and V are 1-dim. operators.

3d examples

(1) $U(1)_k$ theory with CS level k

$$S = \frac{k}{4\pi} \int A \wedge dA \tag{6}$$

• The 1-form symmetry $\Gamma^{(1)}=\mathbb{Z}_k^{(1)}$ has the form

$$A \to A + \frac{1}{k}\lambda$$
 (7)

 λ is a properly normalized flat connection ($d\lambda = 0$).

3d examples

(1) $U(1)_k$ theory with CS level k

$$S = \frac{k}{4\pi} \int A \wedge dA \tag{6}$$

• The 1-form symmetry $\Gamma^{(1)} = \mathbb{Z}_k^{(1)}$ has the form

$$A \to A + \frac{1}{k}\lambda \tag{7}$$

- λ is a properly normalized flat connection ($d\lambda = 0$).
- The topological generator of the 1-form symmetry:

$$U(e^{2\pi i/k}, M^{(1)}) = \exp\left(i \oint_{M^{(1)}} A\right)$$
(8)

• The charged objects under $\mathbb{Z}_k^{(1)}$ are the same Wilson loop operators

$$W_n(\mathcal{C}) = \exp(in \oint_{\mathcal{C}} A) \tag{9}$$

・ 周 ト ・ ヨ ト ・ ヨ ト

(2) $SU(N)_k$ theory

• The 1-form symmetry $\Gamma^{(1)} = \mathbb{Z}_N^{(1)}$, generated by

$$U(e^{2\pi i n/k}, M^{(1)}) = tr\left[\mathcal{P}\exp\left(in\int_{M^{(1)}}A\right)\right], \ n = \frac{k}{N}.$$
(10)

- $\mathbb{Z}_N^{(1)}$ coincides with the center symmetry \mathbb{Z}_N of SU(N).
- Similar to the higher dimensional SU(N) Yang-Mills theories, Wilson loop charged under the \mathbb{Z}_N center symmetry.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

(3) ABJM theory: $U(N)_k \times U(N)_{-k}$ with bifundamental matter •The 1-form symmetry $\Gamma^{(1)} = \mathbb{Z}_k^{(1)}$ (Bergman, Tachikawa, Zafrir 20')

・ 同 ト ・ ヨ ト ・ ヨ ト

э

(3) ABJM theory: $U(N)_k \times U(N)_{-k}$ with bifundamental matter

- •The 1-form symmetry $\Gamma^{(1)} = \mathbb{Z}_k^{(1)}$ (Bergman, Tachikawa, Zafrir 20')
- For a single $U(N)_k$ factor, regard it as $(SU(N)_k \times U(1)_{Nk})/\mathbb{Z}_N$.

$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline & SU(N)_k & U(1)_{Nk} \\ \hline & \Gamma^{(1)} & \mathbb{Z}_N & \mathbb{Z}_{Nk} \end{array} \xrightarrow{\cdot/\mathbb{Z}_N} \Gamma^{(1)} = \mathbb{Z}_k$$
 (11)

・ 同 ト ・ ヨ ト ・ ヨ ト …

(3) ABJM theory: $U(N)_k \times U(N)_{-k}$ with bifundamental matter

- •The 1-form symmetry $\Gamma^{(1)} = \mathbb{Z}_k^{(1)}$ (Bergman, Tachikawa, Zafrir 20')
- For a single $U(N)_k$ factor, regard it as $(SU(N)_k \times U(1)_{Nk})/\mathbb{Z}_N$.

• Naively $U(N)_k \times U(N)_{-k}$ has $\mathbb{Z}_k \times \mathbb{Z}_k$ 1-form symmetry, but was broken to a diagonal \mathbb{Z}_k by the bifundamental matter (N, \overline{N}) .

4 周 ト 4 戸 ト 4 戸 ト -

(3) ABJM theory: $U(N)_k \times U(N)_{-k}$ with bifundamental matter

- •The 1-form symmetry $\Gamma^{(1)} = \mathbb{Z}_k^{(1)}$ (Bergman, Tachikawa, Zafrir 20')
- For a single $U(N)_k$ factor, regard it as $(SU(N)_k \times U(1)_{Nk})/\mathbb{Z}_N$.

• Naively $U(N)_k \times U(N)_{-k}$ has $\mathbb{Z}_k \times \mathbb{Z}_k$ 1-form symmetry, but was broken to a diagonal \mathbb{Z}_k by the bifundamental matter (N, \overline{N}) .

(4) Gauge the \mathbb{Z}_k 1-form symmetry $\rightarrow (U(N)_k \times U(N)_{-k})/\mathbb{Z}_k$

• Trivial 1-form symmetry

・ 回 ト ・ ヨ ト ・ ヨ ト ・

• For a *p*-form global symmetry, introduce a (p + 1)-form background gauge field C_{p+1} , with field strength F_{p+2} .

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

- For a *p*-form global symmetry, introduce a (p + 1)-form background gauge field C_{p+1} , with field strength F_{p+2} .
- Gauging a *p*-form symmetry: C_{p+1} becomes a dynamical gauge field

- For a *p*-form global symmetry, introduce a (p + 1)-form background gauge field C_{p+1} , with field strength F_{p+2} .
- Gauging a *p*-form symmetry: C_{p+1} becomes a dynamical gauge field
- However, the gauging can be obstructed by 't Hooft anomaly.
- 't Hooft anomaly polynomial A_{d+1} is a (d+1)-form

・ロット (雪) (日) (日) (日)

- For a *p*-form global symmetry, introduce a (p + 1)-form background gauge field C_{p+1} , with field strength F_{p+2} .
- Gauging a *p*-form symmetry: C_{p+1} becomes a dynamical gauge field
- However, the gauging can be obstructed by 't Hooft anomaly.
- 't Hooft anomaly polynomial A_{d+1} is a (d+1)-form
- e. g. 3d ABJ theory $U(N + b)_k \times U(N)_{-k}$ has a $\mathbb{Z}_k^{(1)}$ 1-form symmetry, with background gauge field B_2 .

$$A_{d+1} = -\frac{b}{2k}B_2 \wedge B_2, \qquad (12)$$

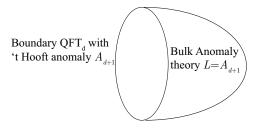
obstruct the gauging of $\mathbb{Z}_k^{(1)}$ 1-form symmetry when $b \nmid k$.

• There can also be mixed 't Hooft anomaly, e. g. BF-terms describing mixed 't Hooft anomalies of 0-form and 1-form symmetry

- 4 周 ト 4 日 ト 4 日 ト - 日

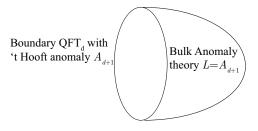
Anomaly theory

• After we gauge global symmetries with 't Hooft anomaly, one can consider a (d + 1)-dimensional anomaly theory coupling to the *d*-dimensional theory on the boundary: (Freed 14')

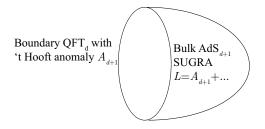


Anomaly theory

• After we gauge global symmetries with 't Hooft anomaly, one can consider a (d + 1)-dimensional anomaly theory coupling to the *d*-dimensional theory on the boundary: (Freed 14')



- The whole system is anomaly free
- The bulk anomaly theory is an invertible field theory (a TQFT with
- 1-dim. Hilbert space), which is the low energy limit of an SPT phase .



- 't Hooft anomaly polynomial $A_{d+1} \leftrightarrow$ SUGRA terms in AdS_{d+1}
- \bullet Background gauge field \mathcal{C}_{p+1} for p-form symmetry \leftrightarrow gauge field in \textit{AdS}_{d+1}
- Different boundary conditions of $C_{p+1} \rightarrow$ different global form of gauge groups in QFT_d . (Witten 98')

• • = • • = •

SymTFT

• "Symmetry field theory" (SymTFT): a generalized version of anomaly theory (Apruzzi, Bonetti, Extebarria, Hosseini, Schafer-Nameki 21')

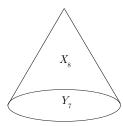
• Encodes the different global structures of QFT (gauge groups, etc..) and 't Hooft anomaly polynomial.

・ロ・・(型・・モー・・)

= nar

SymTFT

- "Symmetry field theory" (SymTFT): a generalized version of anomaly theory (Apruzzi, Bonetti, Extebarria, Hosseini, Schafer-Nameki 21')
- Encodes the different global structures of QFT (gauge groups, etc..) and 't Hooft anomaly polynomial.
- Can be derived from M-theory action in two setups:
- (1) Geometric engineering: M-theory on $\mathbb{R}^{2,1} \times X_8$ (X_8 is non-compact) (2) AdS/CFT: M-theory on $AdS_4 \times Y_7$, dual to M2 branes probing a singular space X_8 . X_8 is a cone over Y_7 . (Y_7 is compact)



同 トイヨト イヨト ヨー のくや

SymTFT from M-theory

- \bullet Consider M-theory on $\mathcal{M}_{11}=\mathcal{M}_4\times \mathit{Y}_7$
- Starting from topological term

$$S_{11d} = 2\pi \int_{\mathcal{M}_{11}} \left[-\frac{1}{6} C_3 \wedge G_4 \wedge G_4 - C_3 \wedge \mathcal{X}_8 \right] \,. \tag{13}$$

 \mathcal{X}_8 is a 8-form constructed with the Pontyagin classes of $\mathcal{TM}_{11}.$

くぼう くほう くほう

SymTFT from M-theory

- \bullet Consider M-theory on $\mathcal{M}_{11}=\mathcal{M}_4\times \mathit{Y}_7$
- Starting from topological term

$$S_{11d} = 2\pi \int_{\mathcal{M}_{11}} \left[-\frac{1}{6} C_3 \wedge G_4 \wedge G_4 - C_3 \wedge \mathcal{X}_8 \right].$$
(13)

 \mathcal{X}_8 is a 8-form constructed with the Pontyagin classes of $T\mathcal{M}_{11}$. • To construct the 4d topological coupling on \mathcal{M}_4 , we consider a gauge

invariant 5-form I_5 , such that

$$I_5 = dI_4$$
, $S_{4d} = 2\pi \int_{\mathcal{M}_4} I_4$. (14)

• I_5 is given by

$$I_{5} = \int_{Y_{7}} I_{12} = \int_{Y_{7}} \left(-\frac{1}{6} G_{4} \wedge G_{4} \wedge G_{4} - G_{4} \wedge \mathcal{X}_{8} \right)$$
(15)

くぼう くうち くうち

-

• From

$$I_{5} = \int_{Y_{7}} I_{12} = \int_{Y_{7}} \left(-\frac{1}{6} G_{4} \wedge G_{4} \wedge G_{4} - G_{4} \wedge \mathcal{X}_{8} \right) , \qquad (16)$$

we can expand

$$G_4 = \sum_{p=0}^{4} \sum_{i=0}^{b^p(Y_7)} g_{4-p}^i \wedge \omega_p^i \,. \tag{17}$$

 $g_{4-p}^i = dc_{3-p}^i$ are field strengths of (3-p)-form U(1) gauge fields c_{3-p}^i , ω_p^i are closed differential *p*-forms of Y_7 .

• Integrate over Y_7 to get I_5 , and then I_4 .

白 ト イヨ ト イヨ ト

• In order to describe discrete *p*-form symmetries, one also needs to include torsional parts of the cohomology group $Tor(H^p(Y_7,\mathbb{Z}))$.

・ 同 ト ・ ヨ ト ・ ヨ ト

• In order to describe discrete *p*-form symmetries, one also needs to include torsional parts of the cohomology group $Tor(H^p(Y_7, \mathbb{Z}))$.

ullet We expand $\mathit{G}_4 \in \mathit{H}^4(\mathcal{M}_{11},\mathbb{Z})$ as

$$G_{4} = \sum_{p=0}^{4} \sum_{i=0}^{b^{p}(Y_{7})} F_{4-p}^{i} \smile v_{p}^{i} + \sum_{p=0}^{4} \sum_{\alpha} B_{4-p}^{\alpha} \smile t_{p}^{\alpha}.$$
 (18)

(1) Fⁱ_{4-p} ~ gⁱ_{4-p}, vⁱ_p ~ ωⁱ_p are free generators of H^p(Y₇, ℤ).
 (2) B^α_{4-p} are (4 - p)-form discrete gauge fields, and t^α_p are generators of Tor(H^p(Y₇, ℤ)).

• In order to describe discrete *p*-form symmetries, one also needs to include torsional parts of the cohomology group $Tor(H^p(Y_7, \mathbb{Z}))$.

ullet We expand $\mathit{G}_4 \in \mathit{H}^4(\mathcal{M}_{11},\mathbb{Z})$ as

$$G_{4} = \sum_{p=0}^{4} \sum_{i=0}^{b^{p}(Y_{7})} F_{4-p}^{i} \smile v_{p}^{i} + \sum_{p=0}^{4} \sum_{\alpha} B_{4-p}^{\alpha} \smile t_{p}^{\alpha}.$$
 (18)

(1) Fⁱ_{4-p} ~ gⁱ_{4-p}, vⁱ_p ~ ωⁱ_p are free generators of H^p(Y₇, ℤ).
 (2) B^α_{4-p} are (4 - p)-form discrete gauge fields, and t^α_p are generators of Tor(H^p(Y₇, ℤ)).

• To write down the topological action using differential forms, use the formulation of differential cohomology

• Uplift G₄ to differential cohomology class

$$\breve{G}_{4} = \sum_{p=0}^{4} \sum_{i=0}^{b^{p}(Y_{7})} \breve{F}_{4-p}^{i} \star \breve{v}_{p}^{i} + \sum_{p=0}^{4} \sum_{\alpha} \breve{B}_{4-p}^{\alpha} \star \breve{t}_{p}^{\alpha},$$
(19)

イロト イポト イヨト イヨト

э

• Uplift G_4 to differential cohomology class

$$\breve{G}_{4} = \sum_{p=0}^{4} \sum_{i=0}^{b^{p}(Y_{7})} \breve{F}_{4-p}^{i} \star \breve{v}_{p}^{i} + \sum_{p=0}^{4} \sum_{\alpha} \breve{B}_{4-p}^{\alpha} \star \breve{t}_{p}^{\alpha},$$
(19)

• Plug into the uplift of topological action

$$\frac{S_{\text{top}}}{2\pi} = \int_{\mathcal{M}_{11}} \breve{I}_{12} \pmod{1} \tag{20}$$

$$\int_{\mathcal{M}_{11}} \breve{I}_{12} = \int_{\mathcal{M}_{11}} -\frac{1}{6} \breve{G}_4 \star \breve{G}_4 \star \breve{G}_4 - \breve{G}_4 \star \breve{X}_8 \,, \tag{21}$$

Here the integration is the "secondary invariant", which is defined in $\mathbb{R}/\mathbb{Z}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Using the following assumptions
(1) In the AdS4/CFT3 setups where G₄ background flux is over AdS₄, we can take Fⁱ₀ = 0
(2) Y₇ is connected, oriented and spin, H⁰(Y₇, ℤ) = ℤ, H¹(Y₇, ℤ) = H³(Y₇, ℤ) = 0

白 ト イヨ ト イヨ ト

• Using the following assumptions

(1) In the AdS4/CFT3 setups where G_4 background flux is over AdS_4 , we can take $F_0^i = 0$

(2) Y_7 is connected, oriented and spin, $H^0(Y_7, \mathbb{Z}) = \mathbb{Z}$, $H^1(Y_7, \mathbb{Z}) = H^3(Y_7, \mathbb{Z}) = 0$

• The SymTFT action is simplified to

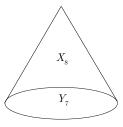
$$\frac{S_{\text{top}}}{2\pi} = -\left[\frac{1}{2}\int_{Y_{7}}\breve{v}_{2}^{i}\star\breve{v}_{2}^{j}\star\breve{t}_{4}^{\alpha}\right]\int_{\mathcal{M}_{4}}\breve{F}_{2}^{i}\star\breve{F}_{2}^{j}\star\breve{b}^{\alpha} - \left[\int_{Y_{7}}\breve{v}_{2}^{i}\star\breve{t}_{2}^{\beta}\star\breve{t}_{4}^{\alpha}\right]\int_{\mathcal{M}_{4}}\breve{b}^{\alpha}\star\breve{B}_{2}^{\beta}\star\breve{F}_{2}^{i} \\
-\left[\frac{1}{2}\int_{Y_{7}}\breve{t}_{4}^{\alpha}\star\breve{t}_{4}^{\beta}\right]\int_{\mathcal{M}_{4}}\breve{F}_{4}\star\breve{b}^{\alpha}\star\breve{b}^{\beta} - \left[\frac{1}{2}\int_{Y_{7}}\breve{t}_{2}^{\alpha}\star\breve{t}_{2}^{\beta}\star\breve{t}_{4}^{\gamma}\right]\int_{\mathcal{M}_{4}}\breve{b}^{\gamma}\star\breve{B}_{2}^{\alpha}\star\breve{B}_{2}^{\beta}.$$
(22)

Here $\breve{b}^{\alpha} \equiv \breve{B}_{0}^{\alpha} \in \mathbb{Z}$ represents the torsional background G_{4} flux.

周 ト イ ヨ ト イ ヨ ト

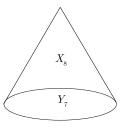
• How to compute the numbers in " \int_{Y_7} "?

• In this talk, we take Y_7 to be the link Sasaki-Einstein sevenfold of a complex fourfold singularity X_8 .



э

- How to compute the numbers in " \int_{Y_7} "?
- In this talk, we take Y_7 to be the link Sasaki-Einstein sevenfold of a complex fourfold singularity X_8 .



- Consider a resolution \widetilde{X}_8 of X_8
- We can identify

(1) Each \breve{v}_{p}^{i} with a non-compact (8 - p)-cycle D_{8-p}^{i} in \widetilde{X}_{8} (2) Each \breve{t}_{p}^{α} with a compact torsional (8 - p)-cycle Z_{8-p}^{α} in \widetilde{X}_{8} , with torsion degree I_{α}

- Hence we have
- (1) $\breve{v}_2^i \rightarrow a$ non-compact divisor D_i
- (2) $\check{t}_2^{\alpha} \rightarrow$ a compact divisor Z_6^{α}
- (3) $\breve{t}_4^{lpha}
 ightarrow$ a compact 4-cycle Z_4^{lpha}

3

• Hence we have (1) $\breve{v}_2^i \rightarrow a$ non-compact divisor D_i (2) $\breve{t}_2^{\alpha} \rightarrow a$ compact divisor Z_6^{α} (3) $\breve{t}_4^{\alpha} \rightarrow a$ compact 4-cycle Z_4^{α}

$$\frac{1}{2} \int_{Y_{7}} \breve{v}_{2}^{i} \star \breve{v}_{2}^{j} \star \breve{t}_{4}^{\alpha} = \left[\frac{1}{2I_{\alpha}} D_{i} \cdot D_{j} \cdot Z_{4}^{\alpha} \right] \pmod{1}$$

$$\frac{1}{2} \int_{Y_{7}} \breve{v}_{2}^{i} \star \breve{t}_{2}^{\beta} \star \breve{t}_{4}^{\alpha} = \left[\frac{1}{2I_{\alpha}I_{\beta}} D_{i} \cdot Z_{6}^{\beta} \cdot Z_{4}^{\alpha} \right] \pmod{1}$$

$$\frac{1}{2} \int_{Y_{7}} \breve{t}_{4}^{\alpha} \star \breve{t}_{4}^{\beta} = \left[\frac{1}{2I_{\alpha}I_{\beta}} Z_{4}^{\alpha} \cdot Z_{4}^{\beta} \right] \pmod{1}$$

$$\frac{1}{2} \int_{Y_{7}} \breve{t}_{2}^{\alpha} \star \breve{t}_{2}^{\beta} \star \breve{t}_{4}^{\gamma} = \left[\frac{1}{2I_{\alpha}I_{\beta}I_{\gamma}} Z_{6}^{\alpha} \cdot Z_{6}^{\beta} \cdot Z_{4}^{\gamma} \right] \pmod{1}$$
(23)

($I_{lpha}, I_{eta}, I_{\gamma}$ are torsion degrees of the corresponding torsional cycles)

・ 周 ト ・ ヨ ト ・ ヨ ト

-

• To compute Z_6^{α} and Z_4^{α} , using a Smith normal decomposition computation in the usual geometric engineering setup.

・ロト ・ 一下・ ・ ヨト・

= nar

• To compute Z_6^{α} and Z_4^{α} , using a Smith normal decomposition computation in the usual geometric engineering setup.

- Z_6^{α} is a linear combination of compact divisors $C_a \subset \widetilde{X}_8$.
- Consider M-theory on \widetilde{X}_8 , each C_a gives rise to a U(1) gauge field A_a from the decomposition

$$C_3 = \sum_a A_a \wedge \omega_2^a \,, \tag{24}$$

 ω_2^a is the Poincaré dual (1,1)-form of C_a .

くぼう くまう くまう

-

• To compute Z_6^{α} and Z_4^{α} , using a Smith normal decomposition computation in the usual geometric engineering setup.

- Z_6^{α} is a linear combination of compact divisors $C_a \subset \widetilde{X}_8$.
- Consider M-theory on \widetilde{X}_8 , each C_a gives rise to a U(1) gauge field A_a from the decomposition

$$C_3 = \sum_{a} A_a \wedge \omega_2^a \,, \tag{24}$$

- ω_2^a is the Poincaré dual (1,1)-form of C_a .
- Electrically charged objects are M2-branes wrapping 2-cycles \mathcal{N}_i , whose $U(1)_a$ -charge is $q_{i,a} = C_a \cdot \mathcal{N}_i$.
- The discrete 1-form symmetry in the setup can be computed by the Smith normal form of $q_{i,a}$.

• We decompose the charge matrix

$$q = UDV, \qquad (25)$$

U and V are square matrices, and D is the Smith normal form

	(I_1)	0		0)
<i>D</i> =	0	I_2		0
	:	÷	·	÷
	0	0	0	l _r
	:	÷	÷	÷
	0	0		0)

• Each non-zero element $I_{\alpha} > 1$ corresponds to a torsional compact divisor $Z_6^{\alpha} = \sum_a V_{a\alpha} C_a$, with torsion degree I_{α} .

周 ト イヨ ト イヨ ト ニヨ

- For compact 4-cycles Z_4^{α} , compute using the Smith normal decomposition of the intersection matrix between 4-cycles.
- The torsion degree I_{α} corresponds to a "(-1)-form" symmetry.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

(1) ABJ(M) theories: $AdS_4 \times S^7 / \mathbb{Z}_k$, dual to N M2-branes probing $X_8 = \mathbb{C}^4 / \mathbb{Z}_k$ (with torsional G_4 flux).

(2) $Y^{p,k}$ theories: $\operatorname{AdS}_4 \times Y^{p,k}(\mathbb{CP}^2)$, dual to N M2-branes probing a toric fourfold singularity X_8 (with torsional G_4 flux).

(周) (こ) (こ) (こ)

• Gravity side: M-theory on $AdS_4 \times S^7/\mathbb{Z}_k$, with N units of G_4 background flux and b units of torsional flux

・ 同 ト ・ ヨ ト ・ ヨ ト

э

• Gravity side: M-theory on $AdS_4 \times S^7 / \mathbb{Z}_k$, with N units of G_4 background flux and b units of torsional flux

• CFT side: the worldvolume theory of N M2-branes probing $\mathbb{C}^4/\mathbb{Z}_k$ singularities, with *b* fractional M2-branes at the singularity: 3d $\mathcal{N} = 6$ $(U(N + b)_k \times U(N)_{-k})/\mathbb{Z}_{m'}$ (Aharony, Bergman, Jafferis, Maldacena 08', Aharony, Bergman, Jafferis 08')

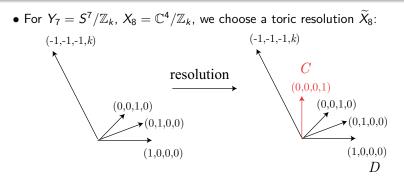
• Gravity side: M-theory on $AdS_4 \times S^7/\mathbb{Z}_k$, with N units of G_4 background flux and b units of torsional flux

• CFT side: the worldvolume theory of N M2-branes probing $\mathbb{C}^4/\mathbb{Z}_k$ singularities, with *b* fractional M2-branes at the singularity: 3d $\mathcal{N} = 6$ $(U(N + b)_k \times U(N)_{-k})/\mathbb{Z}_{m'}$ (Aharony, Bergman, Jafferis, Maldacena 08', Aharony, Bergman, Jafferis 08')

• Compute from string/M-theory:

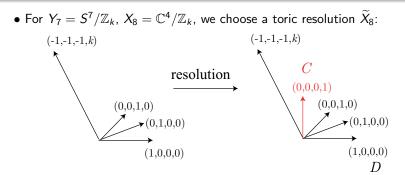
(1) 't Hooft anomaly *BB* for 1-form symmetry from SymTFT(2) topological BF term: mixed 't Hooft anomaly of 0-form and 1-form symmetries

▲ロ ▶ ▲ 同 ▶ ▲ 目 ▶ ▲ 目 ▶ ● ● ● ● ● ●



글 🖌 🔺 글 🛌

э



(1) Z₆ = C: compact 6-cycle, torsion degree k
(2) Z₄ = C · D: compact 4-cycle, torsion degree k
SymTFT action:

$$\frac{S_{\text{top}}}{2\pi} = -\left[\frac{Z^{6} \cdot Z^{6} \cdot Z^{4}}{2k^{3}}\right]_{\text{mod } 1} \int_{\text{AdS}_{4}} \breve{B}_{2} \star \breve{B}_{2} \star \breve{b}$$

$$= -\frac{b}{2k} \int_{\text{AdS}_{4}} \breve{B}_{2} \star \breve{B}_{2} \pmod{1}.$$
(27)
$$\underbrace{\text{Yi-Nan Wang}}_{\text{Yi-Nan Wang}} \qquad \text{Higher-form symmetries and SymTFT in AdS4/CFT3} \qquad 25/34$$

• 't Hooft anomaly for $\mathbb{Z}_k^{(1)}$ 1-form symmetry in the $U(N+b)_k \times U(N)_{-k}$ theory:

$$\frac{S_{\rm top}}{2\pi} = -\frac{b}{2k} \int_{\rm AdS_4} B_2 \smile B_2 \tag{28}$$

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ● ● ● ●

• 't Hooft anomaly for $\mathbb{Z}_k^{(1)}$ 1-form symmetry in the $U(N+b)_k \times U(N)_{-k}$ theory:

$$\frac{S_{\rm top}}{2\pi} = -\frac{b}{2k} \int_{\rm AdS_4} B_2 \smile B_2 \tag{28}$$

• Suppose that $\mathbb{Z}_k^{(1)} = \mathbb{Z}_{mm'}^{(1)}$, and we want to gauge the $\mathbb{Z}_{m'}$ subgroup of 1-form symmetry.

•
$$\mathbb{Z}_{mm'}^{(1)} \to \mathbb{Z}_m^{(1)}$$

(日本) (日本) (日本) 日

• 't Hooft anomaly for $\mathbb{Z}_k^{(1)}$ 1-form symmetry in the $U(N+b)_k \times U(N)_{-k}$ theory:

$$\frac{S_{\rm top}}{2\pi} = -\frac{b}{2k} \int_{\rm AdS_4} B_2 \smile B_2 \tag{28}$$

• Suppose that $\mathbb{Z}_{k}^{(1)} = \mathbb{Z}_{mm'}^{(1)}$, and we want to gauge the $\mathbb{Z}_{m'}$ subgroup of 1-form symmetry.

- $\mathbb{Z}_{mm'}^{(1)} \to \mathbb{Z}_m^{(1)}$
- After the gauging, B_2 has a periodicity \mathbb{Z}_m .
- For a spin manifold AdS₄, $\int_{AdS_4} B_2 \smile B_2$ is even.

周 トイラトイラト ニラ

• 't Hooft anomaly for $\mathbb{Z}_k^{(1)}$ 1-form symmetry in the $U(N+b)_k \times U(N)_{-k}$ theory:

$$\frac{S_{\rm top}}{2\pi} = -\frac{b}{2k} \int_{\rm AdS_4} B_2 \smile B_2 \tag{28}$$

• Suppose that $\mathbb{Z}_k^{(1)} = \mathbb{Z}_{mm'}^{(1)}$, and we want to gauge the $\mathbb{Z}_{m'}$ subgroup of 1-form symmetry.

- $\mathbb{Z}_{mm'}^{(1)} \to \mathbb{Z}_m^{(1)}$
- After the gauging, B_2 has a periodicity \mathbb{Z}_m .
- For a spin manifold AdS₄, $\int_{AdS_4} B_2 \smile B_2$ is even.
- For the absence of anomaly after the gauging:

$$\frac{S_{\text{top}}}{2\pi} \in \mathbb{Z} \longrightarrow \frac{b}{2k} \times (2m^2) = \frac{bm^2}{k} = \frac{bk}{(m')^2} \in \mathbb{Z}.$$
 (29)

周 とうきょうきょうきょう

• $bk/(m')^2 \in \mathbb{Z}$: constrains the possible global form of $(U(N+b)_k \times U(N)_{-k})/\mathbb{Z}_{m'}$.

• For example, consider k = 4, $U(N + b)_4 \times U(N)_{-4}$ with $\mathbb{Z}_4^{(1)}$ 1-form symmetry

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ■ ● ● ● ●

• $bk/(m')^2 \in \mathbb{Z}$: constrains the possible global form of $(U(N+b)_k \times U(N)_{-k})/\mathbb{Z}_{m'}$.

• For example, consider k = 4, $U(N + b)_4 \times U(N)_{-4}$ with $\mathbb{Z}_4^{(1)}$ 1-form symmetry

(1) If we only want to gauge $\mathbb{Z}_2\subset\mathbb{Z}_4^{(1)},$ the discrete flux b can be chosen with any value

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

- $bk/(m')^2 \in \mathbb{Z}$: constrains the possible global form of $(U(N+b)_k \times U(N)_{-k})/\mathbb{Z}_{m'}$.
- For example, consider k = 4, $U(N + b)_4 \times U(N)_{-4}$ with $\mathbb{Z}_4^{(1)}$ 1-form symmetry

(1) If we only want to gauge $\mathbb{Z}_2 \subset \mathbb{Z}_4^{(1)}$, the discrete flux b can be chosen with any value

(2) If we want to gauge the full $\mathbb{Z}_4^{(1)}$, then $b = 0 \pmod{4}$.

- First derivation from geometry!
- Consistent with field theory argument (Tachikawa, Zafrir 19').

• BF-coupling term for ABJ(M) theories from IIA derivation (Bergman, Tachikawa, Zafrir 20'):

$$S_{\rm IIA} = \frac{1}{2\pi} \int_{\rm AdS_4} B_{\rm NS} \wedge d(kA_{\rm D4} + NA_{\rm D0}). \tag{30}$$

• IIA on $AdS_4 \times \mathbb{CP}^3$, with N units of F_6 flux over \mathbb{CP}^3 and k units of F_2 flux over $\mathbb{CP}^1 \subset \mathbb{CP}^3$.

-

• BF-coupling term for ABJ(M) theories from IIA derivation (Bergman, Tachikawa, Zafrir 20'):

$$S_{\rm IIA} = \frac{1}{2\pi} \int_{\rm AdS_4} B_{\rm NS} \wedge d(kA_{\rm D4} + NA_{\rm D0}). \tag{30}$$

• IIA on $AdS_4 \times \mathbb{CP}^3$, with N units of F_6 flux over \mathbb{CP}^3 and k units of F_2 flux over $\mathbb{CP}^1 \subset \mathbb{CP}^3$.

• In our M-theory analysis:

$$S_{\mathsf{BF}} = 2\pi \int_{\mathsf{AdS}_4} B_2 \wedge d(kB_1 + NA_1). \tag{31}$$

(1) $B_2 \wedge kB_1$ term: from the non-commutativity of G_4 and G_7 flux. (2) $B_2 \wedge NA_1$ term: from gauging U(1) isometry of Y_7 (equivariant cohomology)

・回り イラト イラト

$$S_{\mathsf{BF}} = 2\pi \int_{\mathsf{AdS}_4} B_2 \wedge d(kB_1 + NA_1).$$
(32)

- Let us consider the cases of $b = 0 \rightarrow (U(N)_k \times U(N)_{-k})/\mathbb{Z}_{m'}$, BB-term vanishes.
- Different boundary conditions for A_1 , B_1 , B_2 in SUGRA \rightarrow different 0-form and 1-form symmetries for the boundary CFT.

・ ロ ト ・ 何 ト ・ 三 ト ・ 三 ト - -

≡ nar

$$S_{\mathsf{BF}} = 2\pi \int_{\mathsf{AdS}_4} B_2 \wedge d(kB_1 + NA_1). \tag{32}$$

- Let us consider the cases of $b = 0 \rightarrow (U(N)_k \times U(N)_{-k})/\mathbb{Z}_{m'}$, BB-term vanishes.
- Different boundary conditions for A_1 , B_1 , B_2 in SUGRA \rightarrow different 0-form and 1-form symmetries for the boundary CFT.
- Possibilities constrained by the $S_{\rm BF}$

(1) $U(N)_k \times U(N)_{-k}$: Neumann condition for B_1 , Dirichlet for A_1 , B_2 .

• B_1 free to fluctuate $ightarrow B_2 \in \mathbb{Z}_k$

$$B_1 \to U(1)^{(0)} , \ B_2 \to \mathbb{Z}_k^{(1)}$$
 (33)

・ 同 ト ・ ヨ ト ・ ヨ ト …

= nav

$$S_{\mathsf{BF}} = 2\pi \int_{\mathsf{AdS}_4} B_2 \wedge d(kB_1 + NA_1). \tag{32}$$

- Let us consider the cases of $b = 0 \to (U(N)_k \times U(N)_{-k})/\mathbb{Z}_{m'}$, BB-term vanishes.
- Different boundary conditions for A_1 , B_1 , B_2 in SUGRA \rightarrow different 0-form and 1-form symmetries for the boundary CFT.
- Possibilities constrained by the $S_{\rm BF}$

(1) $U(N)_k \times U(N)_{-k}$: Neumann condition for B_1 , Dirichlet for A_1 , B_2 .

• B_1 free to fluctuate $\rightarrow B_2 \in \mathbb{Z}_k$

$$B_1 \to U(1)^{(0)} , \ B_2 \to \mathbb{Z}_k^{(1)}$$
 (33)

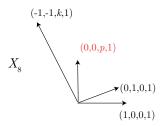
(2) $(U(N)_k \times U(N)_{-k})/\mathbb{Z}_k$: Neumann condition for B_2 , Dirichlet for A_1 , B_1 .

- B_2 free to fluctuate $\rightarrow kB_1 + NA_1 = 0$
- 0-form symmetry: $U(1) imes \mathbb{Z}_{gcd(N,k)}$, no 1-form symmetry

≡ nar

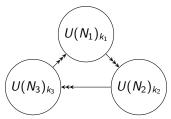
• Gravity side: M-theory on $AdS_4 \times Y^{p,k}(\mathbb{CP}^2)$, with N units of G_4 background flux and torsional flux

• CFT side: the worldvolume theory of N M2-branes probing a toric CY4 singularity X_8 , with fractional M2-branes at the singularity (Benini, Closset, Cremonesi 09', 11')



不是下 不是下。

• 3d $\mathcal{N} = 2$ quiver gauge theory: (Benini, Closset, Cremonesi 11')



n₀, n₁ ∈ Z parametrizes the discrete flux, in the three windows
-k ≤ n₀ ≤ 0, 0 ≤ 3n₁ - n₀ ≤ 3p - k
0 ≤ n₀ ≤ k, 0 ≤ 3n₁ - n₀ ≤ 3p - k
k ≤ n₀ ≤ 2k, 0 ≤ 3n₁ - n₀ ≤ 3p - k

The field theories are

- However, it is known that the field theory suffers from a parity anomaly (certain magnetic monopoles have non-integral U(1) charge)
- Remedy: adding off-diagonal Chern-Simons term Λ_{ij} (i, j = 1, 2, 3)

$$\delta S = \sum_{ij} \frac{\Lambda_{ij}}{4\pi} \int tr(A_i) \wedge tr(dA_j)$$
(34)

▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ● ● ● ●

- However, it is known that the field theory suffers from a parity anomaly (certain magnetic monopoles have non-integral U(1) charge)
- Remedy: adding off-diagonal Chern-Simons term Λ_{ij} (i, j = 1, 2, 3)

$$\delta S = \sum_{ij} \frac{\Lambda_{ij}}{4\pi} \int tr(A_i) \wedge tr(dA_j)$$
(34)

- No explanation from string theory
- Using our SymTFT computation, constrain the possible Λ_{ij} , by comparing with the expected 1-form symmetry from geometry!

◆ロ ▶ ◆ 同 ▶ ◆ 目 ▶ ◆ 目 ▶ ● ● ● ● ● ● ● ● ●

• BF term in the $Y^{p,k}(\mathbb{CP}^2)$ theories from M-theory

$$S = \frac{1}{2\pi} \int B_2 \wedge d \left(NA_1 + \gcd(p, k)B_1 + \Omega_{n_0, n_1}^{p, k} c_1 \right) , \qquad (35)$$

(1) A₁ term: from gauging isometry of Y^{p,k}(CP²)
 (2) B₁ term: from non-commutativity of G₄ and G₇ flux
 (3) c₁ term: from SymTFT

• Different global form of gauge groups, 1-form symmetries ...

4月 5 4 3 5 4 3 5 5

- \bullet We developed the SymTFT methods for AdS4/CFT3, from M-theory top-down approach
- For ABJM theories, reproduces correct field theory results from geometry (1-form symmetry, 1-form 't Hooft anomaly *BB*, mixed 't Hooft anomaly *BF*)
- For $Y^{p,k}$ theories, put additional constraints on CFT3. Derived the topological action (BF, BB terms ...) and constrain the possible global form of CFT3.
- Thanks!