On Half-wormhole

Jia Tian (田佳) KITS UCAS

Based on arXiv: 2111.14856, 2205.01288 and oncoming with Cheng Peng, Yingyu Yang and Jianghui Yu

Superselection sectors Wormholes X

Ordinary worm holes (Coleman, Giddings and
Strominger '88'89)

non-local interaction:

$$
S_{WH} = -\frac{1}{2} \sum_{I,J} \int d^{p}x d^{p}y \cdot C_{I}(x) C_{J}(y)
$$

$$
\sim \int [d\alpha] e^{-\frac{1}{2}\alpha_{L}^{2}} C_{I}x \times \frac{1}{2} \int d^{p}x \sum_{I} \alpha_{L} C_{I}(x)
$$

"localized" by introducing random complings α , free para.

Maldarcha, Maoz $^{\prime}$ 04 Wormholes in Ads/CFT Marolf Marfield $^{\prime}$ 20 $= 213$ Ads/CFT: $D\Phi$ a partion function gravitational path
integral with bdy J of chial CFT generalize the dictionary < ZLJJ ··· ZLJW7 ensemble average J_{2} Φ J_i Oh-shell J_1 $\sqrt{\mathbf{r}}$

2D Examples

. Jakiw-Teiteboim CJT) gravity as a matrix integral I ' ¹⁹ Saad , Shenker, Stanford ^I

$$
\bigcap_{\beta} \iff \text{operator in a RM}^{\pi} \text{RM}^{\pi}
$$
\n
$$
\bigcap_{\beta} [dg_{ij}] = \int dH
$$
\n
$$
\bigcap_{\beta} [dg_{ij}] = \int dH
$$
\n
$$
\text{This correspondence may be true for all 2d dident properties}
$$
\n
$$
\bigcap_{\beta} \text{Witten} \bigcap_{\beta} \text{Witten}
$$

- Both perturbative and nonresults match! AN EXACT CORRESPONDENCE!

Factorization Problem

•

.

.

If both Ads / CFT and Ads / ENSEMBLE are CORRECT, then there is the so called factorization problem . Of course Ads/CFT is correct and Ads/ENSEMBLE is just $\ddot{}$ some approximation . The question is how factorization is restored !

Outline

- Factorization in CGS model .
- Factorization in O-SYK model.
- Their relation and generalization .

CGS model 21 Saad, Shenker and · Factorization in Yao

· Marolf & Maxfield's topological surface theory $\begin{pmatrix} \ \ \ \end{pmatrix} \equiv Z$: the bdy condition of a circular bdy. The general gravitational amplitude is $\langle \chi^{h} \rangle = \sum_{M \text{ with } h \text{ with } Q^{S_0} \chi(M) \Rightarrow \# \sum_{\text{unhected } M' \text{ with } M'}$ $\sum x = \sum_{g} \frac{-S_o(2g - 2)}{g} = \lambda$

Some constant for
 M' any connected surface $\langle \vec{z}^{3}\rangle =$

0 0 + 3 0 0 + 0 0 = $\lambda^{3} + 3\lambda^{2} + \lambda = \beta_{3}(\lambda)$ Bell polynomial

The dual ensemble theory: ensemble of theories with H=0 $\langle \frac{1}{L} \rangle = \sum_{d=1}^{\infty} \left(\frac{1}{e} \sum_{i=1}^{k} \frac{1}{e} \right)^{d} \left(\frac{1}{e} \right) = \sum_{d=1}^{\infty} P_{0i\lambda_{\lambda}}(d) \sum_{j=1}^{k} P_{0j}^{j}$ $T_{k}(1)$ = dim \mathcal{Y} . The CGS model: disk-and-cylinder approximation of MM (Coleman-Giddings-Strominger) $\begin{cases}\n \Sigma_1 = \text{Disk} = e^{S_o} = \square \\
 \Sigma_{2,c} = (\gamma L = 1, \quad \Sigma_{k,c} = 0 \\
 \Sigma_{2} = \text{Disk}^2 + \text{Cyl} = e^{2S_o} + 1 = \square + \square\n \end{cases}$

. The Hilbert space of closed universe

Diff-*l*ent basis
\n1)
$$
\bar{Z}
$$
 basis
\n1) \bar{Z} basis
\n1) $\bar{Z}^k = \frac{2}{3} k INB$

2) N basis From $\langle z \rangle = \langle NB|Z \rangle$ we can define one-closed universe state $unc-cused$ universe
 $11 > ~ C$ (\hat{Z} - $Disk$) INBJ $12 > () + 1$ $\frac{1}{37}$ 10 + 11 In general \hat{z} - ρ_{isk} = α + α^+ $ln_7 \sim$ $\left(\alpha^{\dagger}\right)^{h}$ $1 NB 7$

 $3)$ α β α sis

 \hat{Z} ld $z = Z_d$ ld z , the cijenstates.

Proposal of factorization Note that $\langle \alpha | \hat{Z}^2 | \alpha \rangle = \bar{Z}_{\alpha}^2 = \langle \alpha | \hat{Z} | \alpha \rangle^2$ and $\langle \alpha | \hat{Z}^2 | \alpha \rangle = \langle \alpha^2 | \hat{Z}^2 \rangle = \langle \alpha^2 | 0 \rangle \langle 0 | \hat{Z}^2 \rangle + \langle \alpha^2 | 1 \rangle \langle 1 | \hat{Z}^2 \rangle + \langle \alpha^2 | 2 \rangle \langle 1 | \hat{Z}^2 \rangle$ $2 \left(\alpha \left| \frac{1}{2} |\alpha \right|^{2} = (\langle \alpha^{2} |0 \rangle \langle 0| \frac{1}{2} \rangle + \langle \alpha^{2} |1 \rangle \langle 1| \frac{1}{2} \rangle)^{2} \right)$ O MM $\Rightarrow \int dddin \int_{0}^{\infty} \frac{1}{\int d\lambda} \int_{0}^{\infty} \frac{1}{\lambda} \int_{0}^{\infty} \frac$

$O-SYK$ tactorization in

. I- SYK model $H = \sum J_{i_{1}\cdots i_{q}} \psi^{i_{1}} \psi^{i_{2}} \psi^{i_{3}} \cdot \psi^{i_{2}} = \sum J_{A} \psi^{A}$ $A = \hat{i} \cdot \hat{i} \cdot \hat{k}$ $\langle \overline{J}_A \rangle = 0$, $\langle \overline{J}_A \overline{J}_B \rangle = \delta_{AB} \frac{(q-1)!}{n!}$ $\oint \underline{F} = \int DG \, D\,\overline{2} \quad \overline{C}^{LN}$ $I = -\frac{1}{2} \log \det (\partial_z - \overline{1}) + \frac{1}{2} \int_{0}^{\beta} d\tau_i d\tau_k (\,\overline{2}G - \frac{1}{2}G^2)$ $C_{T}(\tau_{1}\tau_{2})=\frac{1}{N}\sum_{i=1}^{N}\Psi_{i}(\tau_{i})\Psi_{i}(\tau_{2})$ $Z_{L}(\beta + i T) Z_{R}(\beta - i T) = \int DGDZ e^{-\mathcal{N}ICG_{LL},G_{RR},G_{LR}}$ Spectrul form factor $G_{11} = G_{RR}$ $G_{LR} = O$ 3 clisconner teel Ino saddle schutions $G_{LL} = G_{RR} = 0$ $G_{LR} \neq 0$ (i)g Saad, Shehker & Stanfud) Connected (wormhele)

(2) check $\int dG \rho^{NL(G,\Sigma)} e^{-N\log \Sigma}$ is peaked at $\Sigma = 0$ \Rightarrow \exists λ λ \approx Φ $(0, \overline{J}_A, \overline{J}_A)$ half-warmhole $exits'$ $(Linked)$ (3) combine and check is good in $Z_{L}Z_{R}\approx 2^{2}7+\Psi(\omega)$ the sense of the error < $(Z_{L}Z_{R} - Z_{Z}^{2} - \overline{\Psi}^{(\nu) })^{2} > c$ 247 $700 = 0$ In summary: $\int_{\mathbb{R}^3}$ = $2\leq z^2$ $+$ $\langle z^2 \rangle$ $\overline{\phi}(\omega)$ $2R$ $\overline{}$ 乙し

 Q_1 : Can we find (the single half-WH) Yes ! $($ '21 Cheng Peng, $J\bar{I} \otimes Y$ ryu Yang) But to find non-trivial result me require $<$ J_A > = H . We find the new $G_{\text{h\!}} = \frac{1}{N} \sum_{i \leq j} \Psi_i \Psi_j$ and $\Phi_h \equiv \Theta(\Sigma_h)$ Ja , 4) such that $\mathcal{I} \approx \, <\!\!z\!\!> + \, \Theta$ (0, J_{A,} 4) Q_2 : Is the half-WH always given by Φ (0)? N_o ! When $\sqrt{J_A}$ \neq O , we have to add new contributions to ZLZR which correspond to ^a saddle point with $\int G_{LR}$ = 0 Ghept O

• Other results

•

•

- 0- SYK with JA satisfying other distribution
- . Brownian-SYK
- Modified Brownian SYK

. The upshot Z or ZLZR a self-averging saddle + non-self - avenging " Saddle JA satisfying other dist
K
whian-SYK
self-averging saddle +
hoh-self-arerging "saddle
to restore factorization of
heed all the information " to restore factorization we do not need all the information .

The shortcoming • Heavily rely on introducing the proper $G \Sigma$ cuhc the trick of inserting ^a suitable " L " but in general we do not know how to do .

•

• A new proposal contouring) The key idea is to generalize the analysis of CGS model

A simple Statistical model
\nLet us consider a function
$$
Y(X_i)
$$
 of a large number N
\nindependent Gaussian random variables X_i .
\nEach X_i can be thought of as a boundary operator, so this
\nkind of model can be thought of as the CGS model with
\nspecies (`a) Saad, shenke x Yao)
\nThen we have the following decompos; tion:
\n
$$
Y^h = \sum_{k \in \overline{Y}h_i} \Gamma_k = \Gamma_k : the k-universe set w
$$

•

In particular Γ_o is the self-currying sector $\langle \gamma^h \rangle$ and l'h_to are the non-self-averging sectors.

The ^Q : In the large ^N limit , which secturs will survive ?

A example

$$
Y = \sum_{i} e^{\beta X_{i}}
$$
 $\langle X_{i} \rangle = M$ $\langle X_{i}^{2} \rangle - \langle X_{i} \rangle^{2} = t^{2}$

The result depends on the parameter
$$
\beta t
$$
:
\n π βt \ll l \sim γ γ \sim γ γ \sim γ \sim γ \sim γ \sim γ γ \sim γ γ \sim γ γ \sim γ γ

(2)
$$
(5t \gg 1)
$$
. $\gamma \approx \int_{\beta^{2}t^{2}+\beta t}$, $noh-self-avegghf$

\nfor γ^{2}

\n(3) $6t \ll 1$ $\gamma^{2} \approx \langle \gamma^{2} \rangle$

\n(4) $2 \int_{\beta}^{2} t^{2} \gg \log N$

\n(5) $\frac{1}{2} \int_{\beta}^{2} t^{2} \log t$

$$
(3) \quad 1 << 2\beta t^2 << \log N \qquad \gamma^2 \approx \int_{\beta t^2 + \beta t}^{\beta t} \qquad (4) \quad 2\beta t^2 \approx \log N \qquad \gamma^2 \approx \int_{\gamma}^{\gamma^2} \gamma^2 t^2 \gamma \gamma t^2 + \int_{\beta t^2 + \beta t}^{\beta t} \gamma^2 t^2 \gamma t^2 + \int_{\beta t^2 + \beta t}^{\beta t} \gamma^2 t^2 \gamma t^2 + \int_{\beta t^2 + \beta t}^{\beta t} \gamma^2 t^2 \gamma^2 t^2 + \int_{\beta t^2 + \beta t}^{\beta t} \gamma^2 t^2 \gamma^2 t^2 + \int_{\beta t^2 + \beta t}^{\beta t} \gamma^2 t^2 \gamma^2 t^2 + \int_{\beta t^2 + \beta t}^{\beta t} \gamma^2 t^2 \gamma^2 t^2 + \int_{\beta t^2 + \beta t}^{\beta t} \gamma^2 t^2 \gamma^2 t^2 + \int_{\beta t^2 + \beta t}^{\beta t} \gamma^2 t^2 \gamma^2 t^2 + \int_{\beta t^2 + \beta t}^{\beta t} \gamma^2 t^2 \gamma^2 t^2 + \int_{\beta t^2 + \beta t}^{\beta t} \gamma^2 t^2 \gamma^2 t^2 + \int_{\beta t^2 + \beta t}^{\beta t} \gamma^2 t^2 \gamma^2 t^2 + \int_{\beta t^2 + \beta t}^{\beta t} \gamma^2 t^2 \gamma^2 t^2 + \int_{\beta t^2 + \beta t}^{\beta t} \gamma^2 t^2 \gamma^2 t^2 + \int_{\beta t^2 + \beta t}^{\beta t} \gamma^2 t^2 \gamma^2 t^2 + \int_{\beta t^2 + \beta t}^{\beta t} \gamma^2 t^2 \gamma^2 t^2 + \int_{\beta t^2 + \beta t}^{\beta t^2 + \beta t} \gamma^2 t^2 \gamma^2 t^2 + \int_{\beta t^2 + \beta t}^{\beta t^2 + \beta t} \gamma^2 t^2 \gamma^2 t^2 + \int_{\beta t^2 + \beta t}^{\beta t^2 + \beta t} \gamma^2 t^2 \gamma^2 t^2 + \int_{\beta t^2 + \beta t}^{\beta t^2 + \beta t} \gamma^2 t^2 \gamma^2 t^2 + \int_{
$$

1 . When $t^{2}/t^{2} \ll N^{4}$, Y $\overline{\mathcal{M}}$ is self-averging and WH can be ignored

- $\overline{2}$. Only when $t^2/\mu^2 \gg N^*$. WH will be important . ' When only few hun-self-averging sectors survive, we may identify them as " half -wormhole saddles "
- $3.$ Some times when $t \cdot \mu \sim 00$. all the sectors are important . It means that to restare factorization we need all the details of the couplings . $\left| \right|$ may not have a bulk dual .

Revisit 0-sYK model. - ω When $H=0$ $\mathcal{I}^2 \approx \int_0^1 t \int_{m q \chi_0}^1$ indeed only two sectors are left over and $l_{n s_\chi} = \overline{\Phi}(\omega)$ Q When $H \neq 0$ Z^2 a > k Ω $25\sqrt{N}$ that's uh_{\uparrow} the trick and the proposal Φ w fail. . New hWlt proposed for I-SYK: I'max hWH for RMT : similar to the statistical model •

Thanks for attention!