
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

On Carrollian Conformal Field Theory

Bin Chen

Peking University

第三届全国量子场论和弦理论研讨会, 北京, 23-26, August 2022

Collaborators: Reiko Liu, Hao-wei Sun and Yu-fan Zheng
Based on the papers: 2112.10514 and work in progress



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Galilei vs Carroll
Let us start from the Lorentz boost

x⃗ ′ = x⃗ + (γ − 1)
(β⃗ · x⃗)β⃗
|β⃗|2

+ β⃗γx0

x0′ = γ(x0 + β⃗ · x⃗)

with γ = (1− β⃗2)−1/2.

Limit 1: Introduce t = x0/c, b⃗ = cβ⃗ and consider c → ∞ limit, leading to
the Galilean transformation

t′ = t, x⃗ ′ = x⃗ + b⃗t

There is a notion of absolute time.

Limit 2: Introduce another “time” s = Cx0, b⃗ = −Cβ⃗ and consider
C → ∞ limit, where x⃗, s, b⃗ are fixed, leading to the Carrollian boosts

x⃗ ′ = x⃗, s′ = s − b⃗ · x⃗.

There is a notion of absolute space.
With the translations and the rotations among spacial directions, they
generate the Galilei group and Carroll group respectively.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Galilei vs Carroll
Let us start from the Lorentz boost

x⃗ ′ = x⃗ + (γ − 1)
(β⃗ · x⃗)β⃗
|β⃗|2

+ β⃗γx0

x0′ = γ(x0 + β⃗ · x⃗)

with γ = (1− β⃗2)−1/2.

Limit 1: Introduce t = x0/c, b⃗ = cβ⃗ and consider c → ∞ limit, leading to
the Galilean transformation

t′ = t, x⃗ ′ = x⃗ + b⃗t

There is a notion of absolute time.
Limit 2: Introduce another “time” s = Cx0, b⃗ = −Cβ⃗ and consider
C → ∞ limit, where x⃗, s, b⃗ are fixed, leading to the Carrollian boosts

x⃗ ′ = x⃗, s′ = s − b⃗ · x⃗.

There is a notion of absolute space.
With the translations and the rotations among spacial directions, they
generate the Galilei group and Carroll group respectively.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Carroll group

The Galilei group could be produced by considering the c → ∞ limit of
the Poincaré group.
On the contrary, the Carroll group was found by considering the
C → ∞(c → 0) limit. J. Lévy-Leblond (1965), N.D. Sen Gupta (1966)

Intuitively, under the Carrollian limit, the lightcones collapse.
“since absence of causality as well as arbitrarinesses in the length of time
intervals is especially clear in Alice’s adventures (in particular in the Mad
Tea-Party) this did not seem out of place to associate Lewis Carroll’s
name”(Lévy-Leblond (1965))
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Carrollian particle

To study the motion of a free Carrollian particle, we may start from the
massive particle moving in AdS/dS spacetime and then take the
Carrollian limit. In the end, we find the action

SC =

∫
dτ(−Eṡ + ˙⃗x · p⃗ − e

2
(E2 − M2))

which is invariant under the Carrollian transformation

s′ = s − b⃗ · Rx⃗ + as, x⃗ ′ = Rx⃗ + a⃗,
p⃗ ′ = Rp⃗ − b⃗E, E′ = E.

The free Carrollian particle is at rest and does not move! C. Duval et.al 1402.0657, E.

Bergshoeff et.al. 1405.2264

However, for two-particle system, there is non-trivial dynamics!
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The Red Queen effect: running
without moving, “ultralocal”
... The most curious part of the
thing was, that the trees and the
other things round them never
changed their places at all:
however fast they went, they never
seemed to pass anything.
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Carroll structure

Both the Galilei group and Carroll group are kinematical groups.H. Bacry and J.

Lévy-Leblond (1968)

They don’t need to be understood from the contractions of Poincare
group.
The Carroll group is the automorphisms of the flat Carroll structure
(C, g, ξ):

Cd+1 = R × Rd, g = δijdxidxj, ξ =
∂

∂s .

Note that the metric is degenerate.
The Galilei group is the automorphisms of the flat Newton-Cartan
structure.

Both Carroll structure and Newton-Cartan structure can be unified in
Bargmann structure: Newton-Carton as base of Bargmann space, Carroll
as the null hypersurfaceDuval et.al. 0512188,1402.0657

More generally, one may consider the Carroll manifold and New-Cartan
manifold, leading to new kinds of gravity.
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Carrollian physics

The Carrollian boosts appears as the isometry group of
plane-gravitational wave. J. M. Souriau (1973)...

The Carrollian limit controls the dynamics of the gravitational field near a
spacelike singularity (BKL limit) M. Henneaux (1979)...

Carrollian physics at the black hole horizon. L. Donnay and C. Marteau 1903.09654,R. Penna

1812.05643

Carrollian gravity and cosmologyE. Bergshoeff et.al. 1701.06156, ..., de Boer et.al. 2110.02319

Carrollian conformal groups = BMS group C. Duval. et.al. 1402.5894, ...

Flat space holography in 3D Bagchi et.al. (2012), ...

Tensionless limits of strings Bagchi (2013)

Celestial holography L. Donnay et.al. 2202.04702, Bagchi et.al. 2202.08438
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Motivation

We have been studying 2D Galilean/Carrollian conformal bootstrap in
the past few years. BC, P.X. Hao, R. Liu and Z.F. Yu, 2011.11092, 2207.01474, 2203.10490

1. Multiplet structure
2. Galilean conformal blocks for multiplets
3. Harmonic analysis of GCA: GCPW
4. Shadow formalism (ξ ̸= 0)
5. Four-point function in GGFT and BMS free scalar in different ways
6. Spectral density by using Hardy-Littlewood tauberian theorem.

Our original idea was to extend the bootstrap program to higher
dimensional Carrollian conformal field theories (CCFT).
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Motivation

We have been studying 2D Galilean/Carrollian conformal bootstrap in
the past few years. BC, P.X. Hao, R. Liu and Z.F. Yu, 2011.11092, 2207.01474, 2203.10490

1. Multiplet structure
2. Galilean conformal blocks for multiplets
3. Harmonic analysis of GCA: GCPW
4. Shadow formalism (ξ ̸= 0)
5. Four-point function in GGFT and BMS free scalar in different ways
6. Spectral density by using Hardy-Littlewood tauberian theorem.
Our original idea was to extend the bootstrap program to higher
dimensional Carrollian conformal field theories (CCFT).
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Higher dimensional CCFT
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Carrollian conformal algebra (CCA)

One can obtain CCAd by taking the Carrollian limit of the usual d-dim.
conformal algebra. The generators are labeled by {D,Pµ,Kµ,Bi, Jij} with
µ = 0, 1, . . . , d − 1, i, j = 1, . . . , d − 1, where the Carrollian boost
generators Bi come from the rotation generators: Ji0 c→0−→ Bi.

[D,Pµ] = Pµ, [D,Kµ] = −Kµ, [D,Bi] = [D, Jij] = 0,

[Jij,Gk] = δikGj − δjkGi, G ∈ {P,K,B}
[Jij,P0] = [Jij,K0] = 0,

[Jij, Jkl] = δikJjl − δilJjk + δjlJik − δjkJil,

[Bi,Pj] = δijP0, [Bi,Kj] = δijK0, [Bi,Bj] = [Bi,P0] = [Bi,K0] = 0,

[K0,P0] = 0, [K0,Pi] = −2Bi, [Ki,P0] = 2Bi, [Ki,Pj] = 2δijD + 2Jij.
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Stabilizer algebra and highest weight representations

The stabilizer algebra g0 is generated by dilation D, generalized rotations
M = {J,B} and special conformal transformations (SCTs) K

[D,M] = 0, [D,K] ⊂ K, [M,K] ⊂ K

i.e., K is a representation of D and M.
The commutativity of the dilatation and the rotations implies that the
local operators Oa can be diagonalized into the eigenstates of the
dilation , [D,O] = ∆OO, and simultaneously into a representation of the
rotations, [M,Oa] = Ma

bOb.
Highest weight repr.: [K,Oa] = 0.
This is often referred to as the primary condition.
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Multiplet
For d ≥ 3 CCFT, the generalized rotation group, CCA rotation group, is
the Euclidean group ISO(d − 1). It is not semi-simple, and its finite
dimensional representations are generally reducible but indecomposable,
and can be organized as multiplet representations.

Example: vector representation Oµ of CCA4

[Jij,Ok] = δikOj − δjkOi, [Bi,Oj] = δijO0, [Jij,O0] = [Bi,O0] = 0.

Here

J = −iJ12, J± =
1√
2
(∓J23 + iJ31), B± =

1√
2
(iB1 ± B2)
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Tensor representation

Figure: The rank-2 tensor representation of CCA. It is decomposed into a
10-dimensional representation and a 6-dimensional representation
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The multiplet representations for d > 2 case have much more complicated
structures since there is a non-trivial ISO(d − 1) part, leading to net
representations rather than just chain-like ones in logCFT or 2d CCFT.

Figure: All the four net representations are legal although the middle level of
the representations are different.

Nevertheless, the finite dimensional representation of the CCA rotations
are all multiplet representations with every sub-sector being irreducible
representation of SO(d − 1), due to a theorem by Jakobsen (2011).
Notations: the number in the bracket indicates the irr. representation
w.r.t. SO(d − 1), the arrows stand for the actions of the generators Bi.
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The multiplet representations for d > 2 case have much more complicated
structures since there is a non-trivial ISO(d − 1) part, leading to net
representations rather than just chain-like ones in logCFT or 2d CCFT.

Figure: All the four net representations are legal although the middle level of
the representations are different.

Nevertheless, the finite dimensional representation of the CCA rotations
are all multiplet representations with every sub-sector being irreducible
representation of SO(d − 1), due to a theorem by Jakobsen (2011).
Notations: the number in the bracket indicates the irr. representation
w.r.t. SO(d − 1), the arrows stand for the actions of the generators Bi.
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Chain representations

The possible chain representations must take the following patterns:
rank 2

(j) → (j + 1),

(j) → (j), j ̸= 0,

(j) → (j − 1).

rank 3 or higher

(0) → (1) → (0),

· · · → (j) → (j + 1) → (j + 2) → · · · ,
· · · → (j) → (j − 1) → (j − 2) → · · · ,

where the patterns works for all possible values of j ∈ {0} ∪ Z+/2.
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Correlators of singlets
In principle, the 2-pt and 3-pt functions of the operators in CCFT can be
determined by using the Ward identities. However, due to complicated
structure in representations, it is hard to discuss the most general case.
We discussed the correlators of the operators in chain representations
carefully. BC, Reiko Liu and Yu-fan Zheng, 2112.10514

For a singlet in CCFT4, there is

⟨O1(t1, x⃗1)O2(t2, x⃗2)⟩ = c1
1

r∆1+∆2
+ c2δ(3)(⃗x12)

1

t∆1+∆2−3
,

▶ If c1 ̸= 0, c2 = 0, the Ward identities of Ki will force ∆1 = ∆2, and
the resulting 2-pt function coincides with the scalar 2-pt function in
CFT3.

▶ If c1 = 0, c2 ̸= 0, it can be understood in an concrete model: the
Carrollian free scalar with the action Bagchi et.al. 2019

S =

∫
d3x⃗dtϕ∂2

t ϕ.

Close relation between 3D Carrollian CFT and celestial holography!
L. Donnay et.al. 2202.04702, Bagchi et.al. 2202.08438...



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Correlators of singlets
In principle, the 2-pt and 3-pt functions of the operators in CCFT can be
determined by using the Ward identities. However, due to complicated
structure in representations, it is hard to discuss the most general case.
We discussed the correlators of the operators in chain representations
carefully. BC, Reiko Liu and Yu-fan Zheng, 2112.10514

For a singlet in CCFT4, there is

⟨O1(t1, x⃗1)O2(t2, x⃗2)⟩ = c1
1

r∆1+∆2
+ c2δ(3)(⃗x12)

1

t∆1+∆2−3
,

▶ If c1 ̸= 0, c2 = 0, the Ward identities of Ki will force ∆1 = ∆2, and
the resulting 2-pt function coincides with the scalar 2-pt function in
CFT3.

▶ If c1 = 0, c2 ̸= 0, it can be understood in an concrete model: the
Carrollian free scalar with the action Bagchi et.al. 2019

S =

∫
d3x⃗dtϕ∂2

t ϕ.

Close relation between 3D Carrollian CFT and celestial holography!
L. Donnay et.al. 2202.04702, Bagchi et.al. 2202.08438...



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Correlators of chain representations I: trivial one

Generic structure of 2-pt correlators:⟨
O(m1,q1)

1 (x1)O(m2,q2)
2 (x2)

⟩
= f m1,m2

q1,q2
(x12)

In the following discussion on correlators, we focus on the one with only
spatial dependence.

For the trivial case that O1,O2 ∈ (1) → (0),

Level 3: f m1,m2

2,2 =
C Im1,m2

1,1

|⃗x12|2∆
,

Level 2: f 0,m2

1,2 = 0, f m1,0
2,1 = 0,

Level 1: f 0,0
1,1 = 0,

O1 ∈
(1)

↓
(0)

O2 ∈
(1)

↓
(0)

with ∆1 = ∆2 = ∆.
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Correlators of chain representations I: trivial one

Generic structure of 2-pt correlators:⟨
O(m1,q1)

1 (x1)O(m2,q2)
2 (x2)

⟩
= f m1,m2

q1,q2
(x12)

In the following discussion on correlators, we focus on the one with only
spatial dependence.
For the trivial case that O1,O2 ∈ (1) → (0),

Level 3: f m1,m2

2,2 =
C Im1,m2

1,1

|⃗x12|2∆
,

Level 2: f 0,m2

1,2 = 0, f m1,0
2,1 = 0,

Level 1: f 0,0
1,1 = 0,

O1 ∈
(1)

↓
(0)

O2 ∈
(1)

↓
(0)

with ∆1 = ∆2 = ∆.
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Correlators of chain representations I: the simplest
nontrivial case

For the simplest nontrivial case,

O1 ∈ (1) → (0), O2 ∈ (0) → (1).

Level 3: f m1,0
2,2 =

C t12/|⃗x12| Im1
1,0

|⃗x12|2∆
,

Level 2: f 0,0
1,2 =

C
|⃗x12|2∆

, f m1,m2

2,1 =
C Im1,m2

1,1

|⃗x12|2∆
,

Level 1: f 0,m2

1,1 = 0.

O1 ∈
(1)

↓
(0)

O2 ∈
(0)

↓
(1)

with ∆1 = ∆2 = ∆.

Here I m1,m2

j1,j2 is the 2-point tensor structure.
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Longer chains

There are three kinds of long chains:

(0) → (1) → (0),

· · · → (j) → (j + 1) → (j + 2) → · · · ,
· · · → (j) → (j − 1) → (j − 2) → · · · .

Nontrivial 2-pt correlators:
▶ Case 1: Two operators whose representations are of entirely inverse

pattern;
▶ Case 2: Two operators whose representations are at least partially

inverse in the sense that the representation of one operator have the
inverse pattern to the leading sub-sector of the representations of
the other operator.
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Remarks on correlators
▶ Due to the multiplet structure of the representations, the correlators

present multi-level structures. At each level, there are more than one
2-pt coefficients. Even if considering the basis change and
renormalization of the operators, not all 2-pt coefficients can be
fixed by the Ward identities;

▶ In spite of the multi-level structure, the structure of the 2-pt
correlators at each level in CCFT is quite similar with the one in
CFT. It consists of a scaling factor |⃗x12|−(∆1+∆2) representing the
scaling behavior, a tensor structure I(⃗x) representing the behavior
under spacial rotations {Jij} and a factor being of powers of
t12/|⃗x12| representing the behavior under the Carrollian boosts {Bi}

f (CCFT)
2-pt ∝ (t12/|⃗x12|)n I

|⃗x12|(∆1+∆2)
, with ∆1 = ∆2.

▶ Not all the correlators have time-dependence. The non-trivial
correlators with time dependence appear only for the representations
of certain structure.
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fixed by the Ward identities;

▶ In spite of the multi-level structure, the structure of the 2-pt
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▶ As the representations are reducible, there is short of selection rule
on the representations. This means that the 2-pt correlators of the
operators in different representations could be nonvanishing.

▶ We explored the 2-pt correlators of net representations and the 3-pt
correlators of chain representations. It turns out that the constraints
from the Ward identities are quite loose, and we had to compute
them case by case.
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▶ As the representations are reducible, there is short of selection rule
on the representations. This means that the 2-pt correlators of the
operators in different representations could be nonvanishing.

▶ We explored the 2-pt correlators of net representations and the 3-pt
correlators of chain representations. It turns out that the constraints
from the Ward identities are quite loose, and we had to compute
them case by case.
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Construction of Carrollian
field theories
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Constructions of Carrollian field theories

The study of Carrollian field theories got revived in the past few years.
There are two existing ways
▶ Hamiltonian formalism M. Henneaux et.al.

▶ Taking Carrollian limit of the usual QFT Duval et.al., Bagchi et.al.

We propose a novel way to construct Carrollian (conformal) field theories,
starting from the Bargmann field theories. We have successfully
reproduced all Carrollian field theories in the literatures. BC. H.W. Sun and Y.F. Zheng,

in progress
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Constructions of Carrollian field theories

The study of Carrollian field theories got revived in the past few years.
There are two existing ways
▶ Hamiltonian formalism M. Henneaux et.al.

▶ Taking Carrollian limit of the usual QFT Duval et.al., Bagchi et.al.

We propose a novel way to construct Carrollian (conformal) field theories,
starting from the Bargmann field theories. We have successfully
reproduced all Carrollian field theories in the literatures. BC. H.W. Sun and Y.F. Zheng,

in progress
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Bargmann symmetry
A Bargmann manifold has three ingredients, (B,G, ξ), where B is a
(d + 1)-dimensional manifold with metric G of Lorentz signature and a
vertical vector ξ, a nowhere vanishing null vector.

In the flat case, we can
write the structure using the coordinates (u, x⃗, v) as:

B = R× Rd−1 × R, G = 2dudv + δijdxidxj, ξ = ∂u,

where u, v are the lightcone coordinates. The Bargmann group is the
isometries of the flat Bargmann structure, which is a subgroup of
Poincaré group

Barg(d, 1) = ISO(d, 1)/{J 0
d+1, 1/

√
2
(
J i

0 − J i
d+1

)
}

that keep the null vector ξ invariant. The Bargmann generators are
{Pα, Ji

j,BB
i }, where BB

i is the Bargmann boost. The actions on point
(u, x⃗, v) in the manifold are shown in the following Table

generator vector field finite transformation

pα ∂α xα + xα0
mi

j xi∂j − xj∂ i (u,Mx⃗, v)

bB
i v∂i − xi∂u

(
u − ν⃗ · x⃗ − 1

2 ν⃗
2v, x⃗ + ν⃗v, v

)
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Carrollian symmetry from Bargmann symmetry

Restricting the Bargmann group on the null hyper-surface v = 0, we can
immediately see the Bargmann structure reduce to Carroll structure
(C, g, ξ) with the coordinates (t = u, x⃗), the degenerated metric

gµν = Gµν = δi
µδ

j
νδij

while ξµ being the timelike vector, and the Carroll group is subgroup of
Bargmann group Carr(d) = Barg(d, 1)/{Pv}.

This motivates us to construct Carrollian field theories by restricting
Bargmann field theories on the null hyper-surface.
However, trivially restricting Bargmann fields with configuration
Φ(u, x⃗, v) = Φ(u, x⃗)δ(v) on v = 0 causes many difficulty from the Dirac
delta function. The trick is to introduce an uniformly distributed function
over small interval of v.
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Restricting the Bargmann group on the null hyper-surface v = 0, we can
immediately see the Bargmann structure reduce to Carroll structure
(C, g, ξ) with the coordinates (t = u, x⃗), the degenerated metric

gµν = Gµν = δi
µδ

j
νδij

while ξµ being the timelike vector, and the Carroll group is subgroup of
Bargmann group Carr(d) = Barg(d, 1)/{Pv}.
This motivates us to construct Carrollian field theories by restricting
Bargmann field theories on the null hyper-surface.
However, trivially restricting Bargmann fields with configuration
Φ(u, x⃗, v) = Φ(u, x⃗)δ(v) on v = 0 causes many difficulty from the Dirac
delta function. The trick is to introduce an uniformly distributed function
over small interval of v.
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Bargmann scalar field theories

The building blocks of Bargmann field theories are geometric invariants
Gαβ and ξα. For a free scalar Φ, the Bargman invariant action could be

SB
E =

1

2

∫
dd+1x ξαξβ∂αΦ∂βΦ, SB

M = −1

2

∫
dd+1x Gαβ∂αΦ∂βΦ.

The subscript M is for magnetic sector and E for electric sector,
corresponding to magnetic/electric Carrollian field theories. M. Henneaux and P.

Salgado-Rebolledo, 2109.06708



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Electric sector

SB
E =

1

2

∫
dd+1x ξαξβ∂αΦ∂βΦ.

Expand Φ near v = 0, we have

Φ(u, x⃗, v) = ϕ(u, x⃗) + vχ(u, x⃗) +O(v2).

Inserting this in the action, and noticing ξα = (1, 0⃗, 0), we have

SB
E = −1

2

∫
dd+1x ∂uΦ∂uΦ = −1

2

∫
dd+1x ∂uϕ∂uϕ+2v∂uχ∂uϕ+O(v2),

and thus we have the Carrollian action

SC
E = lim

ϵ→0
SB

E,ϵ = −1

2

∫
ddx ∂0ϕ∂0ϕ.

Actually, it is not only Carrollian invariant, but even Carrollian conformal
invariant. From

⟨ϕ(x)ϕ(y)⟩ = i|t|
2
δ(d−1)(⃗x),

we see that ϕ is a primary operator when d > 2.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Electric sector

SB
E =

1

2

∫
dd+1x ξαξβ∂αΦ∂βΦ.

Expand Φ near v = 0, we have

Φ(u, x⃗, v) = ϕ(u, x⃗) + vχ(u, x⃗) +O(v2).

Inserting this in the action, and noticing ξα = (1, 0⃗, 0), we have

SB
E = −1

2

∫
dd+1x ∂uΦ∂uΦ = −1

2

∫
dd+1x ∂uϕ∂uϕ+2v∂uχ∂uϕ+O(v2),

and thus we have the Carrollian action

SC
E = lim

ϵ→0
SB

E,ϵ = −1

2

∫
ddx ∂0ϕ∂0ϕ.

Actually, it is not only Carrollian invariant, but even Carrollian conformal
invariant. From

⟨ϕ(x)ϕ(y)⟩ = i|t|
2
δ(d−1)(⃗x),
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Magnetic sector

SB
M = −1

2

∫
dd+1x Gαβ∂αΦ∂βΦ.

Insert the expansion of Φ, we get:

SB
M = −1

2

∫
dd+1x 2∂uΦ∂vΦ+∂iΦ∂iΦ = −1

2

∫
dd+1x 2χ∂uϕ+∂iϕ∂iϕ+O(v).

Thus we reproduce the action of magnetic Carrollian scalar theoryM. Henneaux

and P. Salgado-Rebolledo, 2109.06708.

SC
M = −1

2

∫
ddx 2χ∂0ϕ+ ∂iϕ∂iϕ

The fundamental fields in this theory are ϕ and χ.
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The above action is Carrollian conformal invariant as well. The scalar ϕ
is still a primary fields, and the field χ appears as part of staggered
module of ϕ’s conformal family.

Figure: The staggered structure of fields ϕ, ∂µϕ and χ.

⟨ϕ(⃗x1, t1)ϕ(⃗x2, t2)⟩ = 0

⟨ϕ(⃗x1, t1)χ(⃗x2, t2)⟩ = − i sign(t)
2

δ(d−1)(⃗x)

⟨χ(⃗x1, t1)χ(⃗x2, t2)⟩ =
i|t|
2
∂⃗2δ(d−1)(⃗x)

where t = t1 − t2 and x⃗ = x⃗1 − x⃗2. They indeed satisfy the Ward
identities of CCA.
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The similar construction can be applied to other field theories:BC, H.W. Sun and

Y.F. Zheng, work in progress

1. Carrollian p-form field theories, including electromagnetic theory
2. Carrollian Yang-Mills theory
3. Carrollian scalar QED
4. · · · · · ·
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Summary

1. We tried to study the higher dimensional (d ≥ 3) Carrollian conformal
invariant theories in a systematic way. As the conformal algebra is not
semi-simple, the finite dimensional h.w.r. present some novel features:
multiplet structure, staggered module, chain-like and even net-like
representations.
▶ We classified all the chain representations
▶ We discussed the 2-pt and 3-pt correlators of chain operators
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