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Introduction: SW-curves and their quantizations

Quantum field theories with 8 supercharges take a special place in
study of the non-perturbative phenomena in the IR physics. In
particular, the low energy physics in such theories, including one-loop
perturbation and non-perturbative instanton corrections, can be
determined by a holomorphic function known as the prepotential.

In the seminal work back to 90’s, Seiberg and Witten showed that the
prepotential in 4d N = 2 super-Yang-Mills can be determined via an
algebraic curve, nowadays called Seiberg-Witten curve,

Y(x) +
Λ2N

Y(x)
= W(x ; ui ) ,

where the SW-curve of 4d N = 2 pure SU(N) is illustrated, and
W(x ; ui ) is a polynomial of degree N in x , whose coefficients depend
on ui , the vevs of Coulomb branch operators in the theory.
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On the other hand, Nekrasov and Okounkov developed a powerful
method to directly compute the prepotentials F of the theories, via
the Nekrasov instanton partition function under Ωϵ1,2-background,

Z4d
inst.(ϵ1,2; q) =

∞∑
k=0

qk
∮
M̃k (ϵ1,2)

1 , and F = ϵ1ϵ2 logZ4d
inst.

It can be shown that the SW-curves is exactly the saddle point eq. of
the instanton integral by taking ϵ1,2 → 0. In this picture, the variable
Y(x) is realized as the vev of an (surface) operator Ŷ,

Y(x) ≡
〈
Ŷ(x)

〉
.

The Y-operator is a generating function of the chiral rings of the 4d
theories. As in previous example, the so-called “i-Weyl” reflection
Y → Λ2N Y−1 generates the A1 character of the pure SU(N) theory.
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In fact, Nekrasov and Shatashvili showed that the saddle point
analysis can be carried out by taking ϵ2 → 0, while keeping ϵ1 ≡ ℏ
(NS-limit). The saddle point eq. in this procedure now defines,
instead of an algebraic curve, a difference equation,

Y(x) +
Λ2N

Y(x + ℏ)
= W(x ; ui , ℏ) .

In the NS-limit, operator Y can be interpreted as inserting a
codimensional two defect into the theory. More specifically,

Ψ(x) ≡ lim
ϵ2→0

Z4d/2d
inst. (x)

Z4d
inst.

, and Y(x) =
Ψ(x − ℏ)
Ψ(x)

,

where Z6d/4d
inst. (x) is the Nekrasov partition function in precence of the

codim two defect, and x now is regarded as the mass of the defect.

Jin Chen (Xiamen University) On Elliptic Quantum Curves August 25, 2022 5 / 32



In this picture, the difference eq. can be recast as(
Ŷ + Λ2N Ŷ−1

)
·Ψ(x) = W(x ; ui , ℏ) ·Ψ(x) ,

where Ŷ ≡ e−ℏ∂x is understood as a shift operator satisfying
non-trivial commutation relation with x .

The function W(x ; ui , ℏ) now is still a polynomial in x , called the
fundamental q-charactor of A1. It can be once again generated by the
q-deformed i-Weyl reflectoin of operator Y. In general ⟨Y(x)⟩ contain
poles in x , but W(x ; ui , ℏ) is free of poles.

The above illustrative example can be generalized to generic theories:
The SW-curve is quantized to a Hamiltonian operator Ĥ(Ŷ , x), acting
on a codim two defect Ψ(x), and generate a codim four defect W(x),

H(Ŷ , x) ≡ Ĥ(Ŷ , x)−W(x) , H(Ŷ , x) ·Ψ(x) = 0 .
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)
·Ψ(x) = W(x ; ui , ℏ) ·Ψ(x) ,

where Ŷ ≡ e−ℏ∂x is understood as a shift operator satisfying
non-trivial commutation relation with x .

The function W(x ; ui , ℏ) now is still a polynomial in x , called the
fundamental q-charactor of A1. It can be once again generated by the
q-deformed i-Weyl reflectoin of operator Y. In general ⟨Y(x)⟩ contain
poles in x , but W(x ; ui , ℏ) is free of poles.

The above illustrative example can be generalized to generic theories:
The SW-curve is quantized to a Hamiltonian operator Ĥ(Ŷ , x), acting
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Remarkably, the algebraic SW-curves are closely related to classical
(algebraic) integrable systems. The SW-curves H(y(x), x) can be
identified as the spectral curves of the integrable systems. Their
quantum version H(Ŷ , x) can be understood as the quantization of
the associated integrable systems.

In fact, It is possible to establish similar difference equations with
both ϵ1,2 parameters present, known as double quantum SW-curves.
The q-character is further deformed as the qq-character in the
context. But we do not pursue this direction in the talk.

The hierarchy of the quantization of the SW-curves are summarized:

Ω-background SW geometry Integrable system

(ϵ1, ϵ2) = (0, 0) character classical

(ϵ1, ϵ2) = (ℏ, 0) q-character quantum

(ϵ1, ϵ2) ̸= (0, 0) qq-character double quantum
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quantum version H(Ŷ , x) can be understood as the quantization of
the associated integrable systems.

In fact, It is possible to establish similar difference equations with
both ϵ1,2 parameters present, known as double quantum SW-curves.
The q-character is further deformed as the qq-character in the
context. But we do not pursue this direction in the talk.

The hierarchy of the quantization of the SW-curves are summarized:

Ω-background SW geometry Integrable system

(ϵ1, ϵ2) = (0, 0) character classical

(ϵ1, ϵ2) = (ℏ, 0) q-character quantum

(ϵ1, ϵ2) ̸= (0, 0) qq-character double quantum

Jin Chen (Xiamen University) On Elliptic Quantum Curves August 25, 2022 7 / 32



Remarkably, the algebraic SW-curves are closely related to classical
(algebraic) integrable systems. The SW-curves H(y(x), x) can be
identified as the spectral curves of the integrable systems. Their
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Along this line, one can study the SW-curves in 5d and 6d SCFTs,
which are realized as saddle point eqs. for instanton PFs on R4 × S1

for 5d, or R4 × T 2 for 6d. In this setup, the SW-curves uplift from
algebraic to trigonometric in 5d and elliptic in 6d.

Correspondingly, the quantized curves define (relativistic) quantum
trigonometirc/elliptic integrable systems,

H(Ŷ , x) ≡ Ĥ(Ŷ , x)−W(x) , H(Ŷ , x) ·Ψ(x) = 0

Now Ψ(x) is determined by a 5d/3d or 6d/4d coupled system, and
W(x) is once again the codim four defect, the Wilson loop/surface
defect in 5d/6d respectively.

The hierarchy of the SW-curves in 4d/5d/6d are summarized:

Gauge theory Geometric realization Integrable system

R4 IIA-theory on CY3 rational

R4 × S1 M-theory on CY3 trigonometirc

R4 × T 2 F-theory on CY3 elliptic
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Recipe: to establish the quantum curves in 6d SCFTs

We focus on 6d SCFTs on R4 × T 2 admitting brane constructions.
Therefore the ADHM constructions on their instanton string moduli
sp. described by 2d N = (0, 4) GLSMs.

The 6d instanton string PFs along the worldsheet T 2 are computed
via the elliptic genera of 2d GLSMs,

Z6d
inst. =

∞∑
k=0

k∑
kα

∏
α

qkαα Z(α)
k ,

with Z(α)
k = Tr

(
(−1)FQHLQ̄HR e−2ϵ−Jl e−2ϵ+(Jr−JI )

∏
l

e−mlFl
∏
i

e−aiGi

)

=

∮ [
dϕ⃗(α)

]
Zvec.(ϕ⃗

(α), a⃗, ϵ1,2) · Zmat.(ϕ⃗
(α), a⃗, m⃗, ϵ1,2) ,

The PFs can be recast in path integral formalism, and in the NS-limit,

Z6d
inst. =

∫
Dρα[ϕ] exp

1

ϵ2

∫ dϕdϕ′
∑
α,β

ραGαβ(ϕ, ϕ
′)ρβ +

∫
dϕ
∑
α

ρα logQα(ϕ, a⃗, m⃗)


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For ϵ2 → 0, the saddle point eqs.,∫
dϕGαβ · ρβ[ϕ] + logQα = 0 , or Qα(x) ·

(
e
∫
dϕGαβ ·ρβ [ϕ]

)
(x) = 1

dominate the path integral. The saddle point eqs. implies two things:

First, a careful analysis shows that the functionals e
∫
dϕGαβ ·ρβ [ϕ] are

encoded by PFs in presence of various codim two defects, Yα(x), that
are properly introduced.

Secondly, the saddle point eqs. assign the q-deformed i-Weyl
reflections on Yα, from which, one can build up various q-characters
Wα(x) (as codim four Wilson surface defect) that is free of poles in x ,

Wα(x) =
∑

g∈iWeylq

g · Yα(x) .

It gives the quantum Seiberg-Witten curves of the 6d SCFTs.
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Ingredient 1: codimension two defects

There are various 1/2 BPS codim two defects. We focus on the
defects introduced via higgsing meson operators in 6d, or baryons in
5d dual perspective.

For a higgsible 6d SCFT Tn, one can assign vevs to mesons M = QQ̃,

⟨M⟩ = const. ,

The vev triggers a RG flow, along which part of the gauge multiplets
acquire masses. In the end one gets new SCFT Tm with lower rank m.

Now we turn on a spacetime dependent vev to M, (s = 1 in this talk)

⟨M⟩ = zs ,

Such vev introduces a “vortex configuration” located at the z-plane,
meanwhile triggers a RG flow. Now we thus end up with the SCFT
Tm in presence of the codim two defect via the immobilized “vortex”.
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An illustrative cartoon for 6d SCFT of SU(3) + 6F to SU(2) + 4F
(with defect)

6 D8’s

NS5 NS5

D6’s

4 D8’s

NS5 NS5

D6’s

4 D8’s

NS5 NS5

D6’s
D4

4 D8’s

NS5 NS5

D6’s
D4

The additional D4 brane gives rise to extra string modes in the 2d
worldsheet GLSMs,

Z6d/4d
α (x) =

∮ [
dϕ⃗
]
Zvec. · Zmat. · Z 4d

α (x) ,

with Z4d
α (x) ∼

k∏
i=1

θ1(ϕi + x + ϵ+)

θ1(ϕi + x + ϵ−)
,

from which, we can specify the functional e
∫
dϕGαβ ·ρβ [ϕ] in terms of

Yα, and compute Yα(x) = limϵ2→0
Z6d/4d

α (x−ℏ)
Z6d/4d

α (x)
by instanton orders.
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Ingredient 2: codimension four defects (Wilson surfaces)

The ADHM construction for instanton strings can be generalized to
include additional charged surface defect whose quantization gives
rise to the BPS Wilson surface wrapping on the torus.

The Wilson surface defect admits brane constructions via introducing
a heavy probe string along the T 2 worldsheet. In this picture, the
Wilson surface can be realized by a “double higgsing” from 2 codim
two defects.

An illustrative example of Sk ,

4 D8’s

NS5 NS5

D6’s
D4’s

4 D8’s

NS5 NS5

D6’s
D4

D2

4 D8’s

NS5 NS5

D6’s

D2

4 D8’s

NS5 NS5

D6’s D4’
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The corresponding brane configuration is given by

IIA x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

NS5 × × × × × ×
D6 × × × × × × ×

D2 × × ×

D4 × × × × ×

D4′ × × × × ×

4 D8’s

NS5 NS5

D6’s
D4’s

4 D8’s

NS5 NS5

D6’s
D4

D2

4 D8’s

NS5 NS5

D6’s

D2

4 D8’s

NS5 NS5

D6’s D4’
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The picture would be more clear, when compactifying the 6d SCFTs
onto S1 to obtain 5d KK theories which may further flow to 5d SYMs
in deep IR.

The heave probed string reduce to a heavy quark localized at the
origin of R4. It experiences a Lorentz force proportional to gauge
profiles of instanton particles, reduced from instanton strings.

It is equivalent to insert a Wilson line defect in the instanton PFs,

Z6d/2d(x) = Z5d/1d
KK (x) ∼

∫
· · · Dχe···+

∫
dt χ†(∂t−iAt+Φ−x)χ .

After integrating out the heave quark ψ, Z5d/1d
KK (x) can be

understood as a generating function of Wilson loops in various Reps.,

Z5d/1d
KK (x) =

∑
α

Wαb
[α](x) ,

where Wα = TrRnP exp
∫
dt (At + iΦ) is the Wilson loop in Reps. Rn,

and b[α](x) are bases expanding Z5d/1d(x).
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A remark on the codim four defects in 4d/5d/6d in general,

Z4d/0d(x) =
∑
α

uαx
α , with uα ≡ ⟨TrΦα⟩ ;

Z5d/1d(x) =
∑
α

WαX
α , with X ≡ e−x ;

Z6d/2d(x) = Z5d/1d
KK (x) =

∑
α

Wα θ[α](x) ,

where θ[α](x) are bases of degree-α elliptic functions on the torus.

The 6d PFs in presence of codim four defect, can be either computed
from 6d or 5d perspectives. On the level of PFs,

Z6d/2d
α (x) =

∮ [
dϕ⃗
]
Zvec. · Zmat. · Z 2d

α (x) ,

with Z2d
α (x) ∼

k∏
i=1

θ1(ϵ− ± (ϕi + x))

θ1(−ϵ+ ± (ϕi + x))
,

from which, one can compute Z6d/2d(x) via localization by instanton
orders.
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uαx
α , with uα ≡ ⟨TrΦα⟩ ;

Z5d/1d(x) =
∑
α

WαX
α , with X ≡ e−x ;

Z6d/2d(x) = Z5d/1d
KK (x) =

∑
α

Wα θ[α](x) ,

where θ[α](x) are bases of degree-α elliptic functions on the torus.

The 6d PFs in presence of codim four defect, can be either computed
from 6d or 5d perspectives. On the level of PFs,

Z6d/2d
α (x) =

∮ [
dϕ⃗
]
Zvec. · Zmat. · Z 2d

α (x) ,

with Z2d
α (x) ∼

k∏
i=1

θ1(ϵ− ± (ϕi + x))

θ1(−ϵ+ ± (ϕi + x))
,
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Finally, we assemble the two ingredients, the codim two/four defects,
by the recipe: In the context of quantum Seiberg-Witten curves, the
claim is, the normalized codim four defects Z6d/2d(x), under
NS-limit, equals the q-characters from codim two defects Y,

Yα(x) = lim
ϵ2→0

Z6d/4d
α (x − ℏ)
Z6d/4d
α (x)

, Wα(x) = lim
ϵ2→0

Z6d/2d
α (x)

Z6d

Wα(x) =
∑

g∈iWeylq

g · Yα(x) .
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Example 1: Sk class (single tensor) [JC, Haghighat, Kim & Sperling; 20]

The 6d SCFTs is realized by 2 M5 branes probing Zk singularity,

k k k S1
2

2

2

2

2

2 k nodes

Only one codim two defect can be introduced from higgsing Sk+1 to
Sk , and one Y-function is defined,

Ψ(x) = lim
ϵ2→0

Z6d/4d(x)

Z6d
=⇒ Y(x) =

Ψ(x − ℏ)
Ψ(x)

,

Saddle point eq. gives,

Y(u) +
Q(u)

Y(u + ℏ)
= 0 , with Q(x) =

2k∏
i=1

θ1(x −mi ) ,
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The q-deformed iWeyl reflection s is given by

s : Y(x) 7→ Q(x)

Y(x + ℏ)
,

and the q-character

W(x) = Y(x) +
Q(x)

Y(x + ℏ)
.

W(x) can be verified as normalized Wilson surface defect under
NS-limit, specifically,

W(x) =
k∑

n=1

Wn · θ[n](x) ,

where Wn are the q-deformed Wilson lines in fund. Rep. of each
gauge node from 5d perspective.[H.-C. Kim, M. Kim, S.-S. Kim]

The quantum curve,

H(Ŷ , x) = Ŷ + Q(x)Ŷ−1 −W(x) ,

can be identified as two-body Ruijsennars-Schneider model enriched
by SU(2k) flavors.
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Example 2: Sk class (multiple tensors) [In progress]

The 6d SCFTs is realized by N M5 branes probing Zk singularity,
(e.g. N=4)

k k k

k k

S1
4

4

4

4

4

4 k nodes

We higgs the giant meson M from Sk+1 to Sk , and able to define 3
Yα from the brane picture,

NS5 NS5 NS5 NS5

D6’s
D4D4D4

Y3Y2Y1
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From saddle point eqs, we obtain 3 q-deformed iWeyl si reflections,

s1 :

{
Y1(x) →

Q1(x)Y2(x+
ℏ
2
)

Y1(x+ℏ)

Yi (x) → Yi (x) , for i ̸= 1 ,

s2 :

{
Y2(x) →

Q2(x)Y1(x+
ℏ
2
)Y3(x+

ℏ
2
)

Y2(x+ℏ)

Yi (x) → Yi (x) , for i ̸= 2 ,

s3 :

{
Y3(x) →

Q3(x)Y2(x+
ℏ
2
)

Y3(x+ℏ)

Yi (x) → Yi (x) , for i ̸= 3 ,

which determine the orbits of Yα:

Y1
s1 Q1Y2

Y1

s2 Q1Q2Y3
Y2

s3 Q1Q2Q3
Y3

Y2
s2 Q2Y1Y3

Y2

s1

s3

Q1Q2Y3
Y1

Q2Q3Y1
Y3

s3

s1

Q1Q2Q3Y2
Y1Y3

s2 Q1Q
2
2Q3

Y2

Y3
s3 Q3Y2

Y3

s2 Q2Q3Y1
Y2

s1 Q1Q2Q3
Y1
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The orbits of Yα determines Wα,

W1(x) = Y1(x) +
Q1(x)Y2(x + ℏ

2
)

Y1(x + ℏ)
+

Q1(x)Q2(x + ℏ
2
)Y3(x + ℏ)

Y2(x + 3ℏ
2
)

+
Q1(x)Q2(x + ℏ

2
)Q3(x + ℏ)

Y3(x + 2ℏ)

W2(x) = Y2(x) +
Q2(x)Y1(x + ℏ

2
)Y3(x + ℏ

2
)

Y2(x + ℏ)
+

Q2(x)Q3(x + ℏ
2
)Y1(x + ℏ

2
)

Y3(x + 3ℏ
2
)

+
Q1(x + ℏ

2
)Q2(x)Y3(x + ℏ

2
)

Y1(x + 3ℏ
2
)

+
Q1(x + ℏ

2
)Q2(x)Q3(x + ℏ

2
)Y2(x + ℏ)

Y1(x + 3ℏ
2
)y3(x + 3ℏ

2
)

+
Q1(x + ℏ

2
)Q2(x)Q2(x + ℏ)Q3(x + ℏ

2
)

Y2(x + 2ℏ)
,

W3(x) = Y3(x) +
Q3(x)Y2(x + ℏ

2
)

Y3(x + ℏ)
+

Q2(x + ℏ
2
)Q3(x)Y1(x + ℏ)

Y2(x + 3ℏ
2
)

+
Q1(x + ℏ)Q2(x + ℏ

2
)Q3(x)

Y1(x + 2ℏ)
.

The above q-character Wα are expected to agree with Wilson surface
defects, introduced via the brane picture,

NS5 NS5 NS5 NS5

D6’s

D4’ D4’ D4’
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For Wα(x) are free of poles, and admits expansions for certain bases,

Wα(x) =
k∑

n=1

Wα, n · θ[n](x) ,

where Wα, n should correspond to 3k Wilson loops in Λ1, 2, 3-AS
Reps. of the k SU(4) gauge nodes from 5d perspective.

From Wα, reconstruct the Hamiltonian associated to Ψ1(x) as

H1(Ŷ , x) = Ŷ − P1(x) + P2(x) Ŷ
−1 − P3(x) Ŷ

−2 + P4(x) Ŷ
−3

with 
P1(x) = W1(x)

P2(x) = Q1(x)W2(x + ℏ
2
)

P3(x) = Q1(x)Q1(x + ℏ)Q2(x + ℏ
2
)W3(x + ℏ)

P4(x) = Q1(x)Q1(x + ℏ)Q1(x + 2ℏ)Q2(x + ℏ
2
)Q2(x + 3ℏ

2
)Q3(x + ℏ)

H1(Ŷ , x) can be identified as the spectral curve of the 4-body RS
model enriched with SU(2k) flavors.
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Example 3: E-string [JC, Haghighat, Kim, Sperling & Wang; 21]

The 6d E-string is realized by an M5 branes probing D4 singularity, or
in an NS5-D6/O6+-D8 brane system in type IIA.

The codim two/four defects are similarly to be introduced as in Sk ,

16 half D8’s

NS5 NS5

D6+O6+

D2

D4

The q-character W is given by

W(x) = Y(x) +
Q(−x)Q(x + ℏ)

Y(x + ℏ)
, with Q(x) =

∏8
i=1 θ1(x +mi )

θ1(2x)θ1(2x + ℏ)
,
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W(x) is verified to be the Wilson surface defect. However it contains
poles in x at the 1-instanton order. In fact, we find

W(x) = −W1(x) +W5d/1d

with W1(x) =
4∑

I=1

∏
i θI (mi )

2η9θ1(ℏ)

(
θ′I (x − ℏ

2
)

θI (x − ℏ
2
)
−

θ′I (x + ℏ
2
)

θI (x + ℏ
2
)

)
,

where W5d/1d is identified to the Wilson loop of the 5d SU(2) with 8
flavors, and displays a E8 symmetry enhancement.

On the other hand, W1(x) is remarkably identified to the famous
4-theta potential in van-Diejen model. The quantum curve

H(Ŷ , x) = Ŷ + Q(−x)Q(x + ℏ)Ŷ−1 +W1(x)−W5d/1d = 0 ,

is thus recognized as the van-Diejen model
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Example 3.5: E-string curve cascade [JC, Lü & Wang; in progress]

It has been long time known that the relativistic Toda chain can be
obtained via degeneration of n-body RS models (elliptic),

N M5 branes S1
N

M

M → ∞ N pure 5d SU(N) SYM

Along this line, can we establish a series of degenerations of E-string
quantum curves?
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Starting from E-string curve/van Diejen Ĥ(x , {mi}i=1,...,8;q,ℏ), can
take a series of (mass) limits, w.r.t. the corresponding del Pezzo
geometries, to establish various degenerate curves.

The degeneration series are expected to quantum curves of 5d SCFTs
of SU(2) with Nf = 7, 6, 5, 4 flavors, whose quantum curves are
trigonometric, and have enhanced E8, E7, E6, D5 symmetries,

van Diejen

with E8

1st deg.

with E8

2nd deg.

with E7

2nd deg.

with E6

2nd deg.

with D5

Remarkably, from the integrable system perspective, it has been
recently shown that the reduced (quantum) hamiltons from van
Diejen also display exactly the same symmetries [Takemura; 16], [Sasaki, Takagi &

Takemura; 21]. There are also many progresses to study these 6d/5d
(classical/quantum) curves via brane-web/del Pezzo geometries.[Kim,

Sugimoto & Yagi; 20], [Kim, Sugimoto & Yagi; 22?]; [Moriyama; 20], [Moriyama & Yamada; 21]
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take a series of (mass) limits, w.r.t. the corresponding del Pezzo
geometries, to establish various degenerate curves.

The degeneration series are expected to quantum curves of 5d SCFTs
of SU(2) with Nf = 7, 6, 5, 4 flavors, whose quantum curves are
trigonometric, and have enhanced E8, E7, E6, D5 symmetries,

van Diejen

with E8

1st deg.

with E8

2nd deg.

with E7

2nd deg.

with E6

2nd deg.

with D5

Remarkably, from the integrable system perspective, it has been
recently shown that the reduced (quantum) hamiltons from van
Diejen also display exactly the same symmetries [Takemura; 16], [Sasaki, Takagi &

Takemura; 21]. There are also many progresses to study these 6d/5d
(classical/quantum) curves via brane-web/del Pezzo geometries.[Kim,

Sugimoto & Yagi; 20], [Kim, Sugimoto & Yagi; 22?]; [Moriyama; 20], [Moriyama & Yamada; 21]

Jin Chen (Xiamen University) On Elliptic Quantum Curves August 25, 2022 27 / 32



Starting from E-string curve/van Diejen Ĥ(x , {mi}i=1,...,8;q,ℏ), can
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Example 4: 6d SO(2N) on -4 curve [JC, Haghighat, Kim, Lee, Sperling & Wang; 21]

The 6d SCFT is realized by a system of NS5-D6/O6−-D8 branes

The quantum SW-curve is given by

H(Ŷ , x) = Ŷ + Q(−x)Q(x + ℏ)Ŷ−1 −W(x) ,

with Q(x) = θ1(2x)θ1(2x + ℏ)
2N−8∏
i=1

θ1(x ±mi +
ℏ
2
)

It should define a elliptic integrable model with Sp(4N-16) symmetry.

The Wilson surface defect,

W(x) =
N∑
i=0

Wi · θ2(2x |2τ)iθ3(2x |2τ)N−i ,

gives Wilson loops Wi in fund. Reps. of SU(2) nodes in the D̂N

quiver from 5d perspective.
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Example 4.5: D-type CM & -1-4-1 Necklace, [JC, Lü & Wang; in progress]

The D-type minimal conformal matter 6d SCFTs are Sp(N-4) on ”-1
curve”, a generalization of E-string. We established their quantum
curves and identified them as a type of elliplitc Garnier systems.

One can further glue the D-type minimal CM with SO(2N) on ”-4
curve”, and study its quantum curves,

1
sp(k1)

4
so(k2)

1
sp(k3)

4
so(k4)

One can close the ”-1-4-1” necklace, and make the quiver affine. It
gives the Sp-SO little string theories. Its classical curve has been
studied in recent years by different approaches [Hagighat, Kim, Yan & Yau; 18], [Kim,

Sugimoto & Yagi; 22?]. It is very interesting to study the quantum version of it.
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Outlooks: work in progress and future

Some of furture direction has been shown in the examples. Basically
there are two basic operations:

degenerations and gluings of various elliptic quantum curves as
building blocks. Both of them will give us quantum curve cascades.

Searching for more fundamental building blocks:

Quantum curves in minimal SCFTs: SU(3) on -3, F4 on -5, E6,7,8 on
-6, -7, -8, -12 curves. Their quantum curves, due to no known brane
constructions, are challenging, but very interesting to study.

Bridging elliptic integrable systems from elliptic quantum curves:

Since the 6d SCFTs have been classified from F-theory, can one
expect to have a (partial) classification of the elliptic integrable
systems?
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Historic stuffs

John Scott Russell and the solitary wave [1844]
“...I followed it [wave] on horseback, and overtook it still rolling on at a
rate of some eight or nine miles an hour, preserving its original figure some
thirty feet long and a foot to a foot and a half in height.”
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Russell made his observations on solitons on his HORSE.

In other words, if you don’t have a HORSE, you won’t be able to
catch up the solitons.

Maybe 6d SCFTs and their quantum curves are the HORSE to help
us explore the 1d soliton world.

THANK YOU FOR YOUR ATTENTION!
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