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¢ Introduction to SCFT/VOA correspondence
® (Closed-form Schur index
® flavored modular differential equations

® Modules characters from surface defects



Introduction



Associated VOA: a review

[Beem, Lemos, Liendo, Peelaers, Rastelli, Rees]

® 4d N = 2 unitary SCFT T on R*

R4
R2

] T1,T2




Associated VOA: a review

® SCFT/VOA correspondence: Schur operators form an

ESGE N vertex operator algebra (VOA) V[T

® 4d R-symmetry — Virasoro subalgebra cog = —12¢49 < 0
® 4d § flavor-symmetry — /f\;% subalgebra, kg = _%]{;4(1



Associated VOA: a review

® | ots of existing literature on the subject

® identification of associated VOAs, VOA structure and modular
differential equations, bounds, indices ...
Class-S and T'y: [Beem, Peelaers, Rastelli, van Rees][Lemos,
Peelaers|[Kiyoshige, Nishinaka] ...
Argyres-Douglas: [Song, Xie, Yan] [Xie, Yan, Yau]
[Dedushenko, Wang] [Buican, Nishinaka] [Kozcaz, Shakirov,
Yan|[Creutzig] ...
MDE, defects: [Cordova, Gaiotto, Shao][Bianchi,
Lemos]|[Nishinaka, Sasa, Zhu|[Beem, Rastelli][YP, Wang,
Zheng] ...
Free field realization: [Adamovic|[Beem, Meneghelli,
Rastelli][Bonetti, Meneghelli, Rastelli] ...



Associated VOA: Schur index

® Schur ops counted by the Fldilile 1i[:[54 [Gadde, et.al],
I = strym qE_I“H'CZlebf = stry qLO_%fbf ,

(1)

where , b, f are flavor fugacities and Cartan gen'’s.

® Key equality: Schur index Zy = vacuum character of V[T



Associated VOA: Schur index

Computing Schur indices (focus on Lagrangian theories):

® Direct counting Schur opereators or identifying the VOA

[Gadde, Rastelli, Razamat, Yan]: a series expansion

e From LA ETS\YIIE partition functions [Gadde, Rastelli,

Razamat, Yan]: an infinite sum over representations

e From [EEIFEEENN on B x S, or zero-coupling limit

(independence of gY|\/|) [Gadde, et.al.][YP, Peelaers][Dedushenko,

Fluder][Jeong]: multivariate [l FTEHIEIN formula

- ;Ifalzl | 2@ )

Also compute [l B on B x ST [vp, Peelaers]
= = A 8/78
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Associated VOA: modules

VOAs are interesting objects from representation-theoretic
perspective
¢ Rational VOA V (the “simplest” guys)

Finitely many irreducible V-modules M;
Any module M is a direct sum

[¢]

[¢]

M= EBij . (3)

[¢]

Modularity of characters ch; and modular inv. partition
function Z~ 3, ; M;ch;ch;

Zero dimensional [EEEeETL VETTE R

Other nice properties

[}

o

=} (=) = E E A 9/78



Associated VOA: modules

® In SCFT/VOA correspondence: V[T] is ,
in general [Beem, et.al]

® More complicated representation theory [Arakawa][Adamovic]
® Simplest module
o Vacuum module My :=V

o Vacuum character chyg = Z1

® Sources of [IENEEEMIT modules from 4d physics:
superconformal surface defects in 7 [Cordova, Gaiotto,

Shao][Nishinaka, Sasa, Zhu][Bianchi, Lemos]|[Beem, Rastelli][Beem, Peelaers]

A~ 10/78



Goal

® Analytically compute Schur index and surface defect index in
closed form

® Explore non-vacuum module characters for 7 = A; theories

of class-S theory in terms of surface defects



Exact Schur index in closed-form

Ha 12/78



Ellipticity

® Some convention: normal v.s. fraktur font

P e27r237 y= 627”'0, a = 627ma b= eQﬂ'zb

)

except

— 627ri7' )



Ellipticity

® Lagrangian theory: Schur index as contour integral

dozZ
fj(m 1 H

2maz

(4)
® The integration contour is given by [l |a;| = 1
Jaffrey-Kirwan residue

® To get 7 in ¢series: expand ﬁZ(a) in ¢-series, the integral
computes residue at of each term

DA 14/78



Ellipticity

® Integrand Z(a; = ™) is w.r.t. [N a; [Razamat]
Z(az,...)=Z(a; + 1,

) =Z(ai+71,...),Vi.

a; plane

fund. parallelogram 1

a» 15/78



Ellipticity

® |solated singularities — singularity a; = 0

2L N &4

16

~

8



Ellipticity

® Fully flavored examples: isolated singularities are all m
poles with m

1
R := Respole (—IZ(a)

(5)

e 17/78



Ellipticity

Problem:

LA | RO E = MESIls Bl cancel M trivial Residue theorem

. singularity at the origin m notion

of
SSEIY does not exist §

[m]

=

A 18/78



Integrating Elliptic functions

® Various tricks involving Weierstrass (, p-function, Eisenstein

series and Jacobi theta

. (f has only simple poles): sum over
7|4a|_1f<a> &

2mia

flao) +

Z R:E,

real/img. a;
ap is an arbitrary reference value

Do 19/78



Example: N =4 SU(2) theory

o T:N =4 5U(2) SYM

l V[7T] = 2d small N =4 SCFA

® The Schur index is a contour integral

Tnr=a(b

7{ 01 (Fa)n(r)?
27rza

4 :|:Cl+ b 19 (b) '
® Two (imaginary) poles a = b*1g2 with almost identical
residues,

Ry = :l:— = LNy =
+ = 2191( b) N=4

ae 20/78



Example: N =4 SU(2) theory

® The coefficient Zy.5, = @4/V1 in front of Ey is important
o The m of the integrand

o Precisely = vacuum character of Vi3, [YP, Wang, Zheng]
Lo

(b, c)
(B,7)

Jo
3.-3) | 3:—3)
)

3
29
(LO ( 7_1)

o Vycy provides a BIEERIEILNEEIFETTTE of V[T [Bonetti,
Meneghelli, Rastelli]

— N

o Vyepy is a reducible but RUEEEGUTELEETER module of V[T
non-rationality

DA 21/78



Example: N =4 SU(2) theory

® The coefficient Zy.g, = @4 /V1 in front of Ey is important:

o Defect index of surface defect [Gukov,
Witten]

0 Tyn = Z5%x0%50 localized onto a [y

[l ™

o Variables encode flat gauge connection A = adt
o Gukov-Witten defect: singular profile A ~ a,dyp, singular field
strength F peaks at

o Effect: a — a4+ a,7, integration contour shifts
la| =1 — |af = [q~"].
o Contour crosses pole: pick up residue Zy 3.

=} (=) = E E DA 22/78



Example: SU(2) SQCD

® SU(2) gauge theory with four fundamental hypers: the
associated VOA is §0(8)_2

® Schur index Zy 4(b)

1 da n(T)
= = 91 (£2a)2 T - 1T
2%2712’& 1(2a) ]1:[194(ia+mj)




Example: SU(2) SQCD

® 8 imaginary poles a = qu%, 4 different
- Z 191

n(r)

. 9
—my) )
LI AT BT o [l Gukov-Witten type defects

2mj
H 191 mj + my 191(
o Apply the integral formula

4

i1 (2m;) n(T)
o
" ; () Hﬁl

(m; + my) 91 (m;

n(T)

—my)

A~ 24/78



Example: SU(2) SQCD

® Parameters m's recombine into fugacities associated to the

four punctures

1) (2)
1,01 b 2),(2 b
mlzbg)bg)7 mQZﬁa m3:b§)bg)7 m4:ﬁ‘
D) )

Manifest permutation invariance among bsf) is lost

® We will derive alternative and more elegant expression



General integral formula

® Higher ranks:

f dag da1

. Z(a1,...,a 10
27m'a2 27m'a1 \2\,_712 ( )
individually elliptic
® Problem: ellipticity is lost as function of as .,
da; da
foo o g,
2mias | 2mian

(11)

<<<<<<

ai-integral contains JEEESLEIREEEER with variables a3

DA 26/78



General integral formula

o IGESEIRETTTER (with one or two Ej): e.g.,

da -1
E
fia_l 2m’af(a> r [ab]
-1
= —Sk f(a0)+ Z RlEl a :I:é] (12)
real/img. a; a_Oq
k—1
- Z RiZSKEk—Z-H
real/img. a;

[ 1 ]
4+ 1 )
—o a;bg™2

Ly ¢
=N s
2sinh ¥ EZ; Y

where S is defined as

(13)

[m]

=

= E £ A 27/78



Higher-rank Lagrangian examples

® Compact formula for all A;-theories of class-S

® SU(N) with 2N flavors (computable, compact formula not
available yet)

e N=4G=SU(3),5U(4) = SO(6),S0(4), SO(5), SO(7)
SYM



Examples: A; theories of class-S

® A theories of class-S: specified by an n-punctured genus-g

Riemann surface

e 4d N =2 SCFT
® |agrangian: SU(2) vector multiplet + hypermultiplets

® Schur index Z,



Examples: A; theories of class-S

® Result for all Z,,

n n+2g—2 nt29—2
Zya(t) = £ 2D x
2 [TiL, P1(20s

Z )\(77+2g—2) Z (ﬁa’)Ek (_1)n ]

k K n (o7

k=1 a=+ =1 Hl—l ba
g—1 B

Tyneo = 2n(r)%92 x Z/\ﬁafz) (E 4 Bar )
= (2h)!

® )\'s are rational numbers: recursion relations

)\éeven) _ )\g)/gg) _ )\((;\;en) — 0,
2/<+1

2
AP =1
(2k+2) (2k+1)
2m+1 E , 24 SH m)» )\2m+2 § :)‘2“1
{=m
2k+1 Z

SQF m)»

B
( oY, 82p> .
=




Examples: A; theories of class-S

® Proof by recursion

® Input 1: three-punctured sphere [Gadde, Rastelli, Razamat, Yan]

1 n)
1oz = 2*2.1_[;;:1 1 (207) (2 (Hm) E;

® Input 2: handle/vector multiplet

da 1 9
% 2m’a§191(2a) (15)




Examples: A; theories of class-S

® T4n+1 = gauging Iy, and Zj 3




Examples: A; theories of class-S

® Schematic structure of Z ,,

1 -

Z b) v~ ————A 16
g,n>0( ) H7 11) (Zb[) g,n ( )
® Product of 1;(2b;): flavor affine currents of the s1(2)_o
subalgebras, adjoint under the flavor su(2)’s
o : multi-fundamental operators, (—1)"

reflect their conformal weights



Other applications

® Help check duality: e.g., generalized S-duality of the

genus-two theory

e Conjectural compact formula for unflavored index of ' = 4
SU(N) theories [Huang's talk]

® Non-Lagrangian Schur index in closed-form: Fg, F7 SCFTs,
f(G) theories [Closset, Giacomelli, Schafer-Nameki, Wang][Kang, Lawrie,

Song]
® \ortex defect index in closed-form

® Modular properties of Schur index and defect index



Application: N = 4 unflavored index

® Anzatz based on low-rank computation

® Conjectural unflavored indices for SU(N)

N ~(2N+3)(2)
(2N+3
Inr—s svansn) = ()VAFHY 4 ( NZ QHQ
In=4 su@N) =

EQk‘ )
NZ k/\ﬁﬁﬁ)@) i 2k—1 19512k)(0)
21 9 (0)

where (below [1™2"2 .. ] denotes a [[{I{=l=(= @ ETGHATET R4 )
Egi = Z 115

p
<_ 2p 2p> .
p>1
ZPZI pnp_k

(17)

A 35/78



Application: N = 4 unflavored index

® The formula were elucidated by using modular anomaly

equation in [Huang]

® The fully flavored N =4 SU(N) index were computed exactly
using Fermi-gas formulation [Hatsuda, Okazaki], generalizing the

results in [Bourdier, Drukker, Felix]



Application: vortex surface defect

® Focus on A theories T,

® Vortex defect with [eREleHa7 4 ~ m b; = q% of Zyni1

[Gaiotto, Rastelli, Razamat]

® \ortex defect index with vorticity k [Cordova, Gaiotto, Shao|[Alday,
et.al.][Nishinaka, Sasa, Zhu]
_ ()2 2n(7)?

def
Ig,en ect( /C) =q 2 R% 2

Zgnt1(b) - (18)

b—q

=} (=) = E E DA 37/78



Application: vortex surface defect

® k= 0: recovers Schur index m defect
T3t (k= 0) = Zyn - (19)

® k> 1 and n> 0, simple poles

n+2g—2
Idefect k) ~ 77517-) 20
g,n ( ) Hi:1 191(2b1) ( )
n+2g—1 n+k
T (n+2g—1) ( 1) +
> 5wy (o) e | S0
=1 a;

® )\: some rationals, also appears in N' = 4 SU(N) unflavored

index



Application: vortex surface defect

. Ige,.fec"(k) resembles Z, ,: linear combination of
By,

—1)»
(H?) ] when k even, E;

—(—1)"
(-1) when £ odd.
I1o

® QObservation: when k = odd, multi-fundamentals are
spectral flowed J:¥A half-integer i

A~ 39/78



Application: vortex surface defect

® k>1and n:O,poles

g—1

Ig’%fed(k) ~ Z Cn(k)E2n when k even , (21)
n=0
g—1

~ > (k) Ean

n=0

—1
. ] when kodd , . (22)

Here ¢, ¢/, are some rational numbers.



Flavored modular differential equations

DA 41/78



Modular forms and more

e Modular (w.rt. I' € SL(2,Z)) form fof
ar +b
/

ct+d

) = ter+ o),

a b
el’. (23
(0 Mer e
® Example: polynomials of standard Eisenstein series Fjy, Fg

o Example: [UESERELTIES Foy
ar +b 2 c(
E = E -
2 <c7- n d) (em + d)"Ex(7)

et + d)
2ms '

(24)

= E E DA™ 42/718



Modular forms and more

® Generalization: RalSiele b S L) e

Ei>1

e27: ] () = — Bkk(!)\) (25)

T‘~|—>\k 1—1q7'+)\
_1.2

].—Z_l A (26)
k 1 q—)\
_1.2 e

where ¢ = 277"

+1
+z

1
Ey, *

z

() [(aves) (gt

>0 £>0

).

o = = = D 43/78



Modular forms and more

o Differential operator ng) : weight-0 — weight-2k

DY = (40, + 2k =2 Bs) 00 (49, + 28> ) o (40,



MDESs from null states

e Any null state A of a VOA V and a V-module M

0 = trp(—=1) N gro—2ibf
Here bf =TT, bf’

) (28)
® ANVES (el el EN helps compute one-point function

recursively

DA 45/78



MDESs from null states

Peelaers|[YP, Wang, Zheng]: when Jya = 0

o WATTHRTOT (o] M l{ IIEN [Zhu][Krauel, Mason][Beem, Rastelli][Beem

straso(a a—p, ]b)

stras o

+ZEQ,c

Jo Lo

] |0))o(b)a" g™

(29)
27rzh
stras o(a—p, 121 b)T gl

when Jpa # 0

stry o(a[ ha]

Jo LO_ZE

27Tlha
StI”MO( h+n]b OqLO

[m]

=

DA 46/78



MDESs from null states

e Any null state A" of a VOA V

0 = trp(—1) AN gro2ibf . (30)

Here bf =TT, bf’
o WA i =ilo ) i Dol f 1l ER: for some nice AV, the above turns
[ 3N flavored modular differential equation EJgEnLNY

module character chjs [Gaberdiel, Keller][Gaberdiel, Lang][Beem,

Rastelli][Beem, Peelaers][YP, Wang, Zheng][Zheng, YP, Wang]
D(DYY, Dy,) chyr =0, (31)

where coefficients are RalIE L=l H S (1 P =],

u]
8
l
n
it

D 47/78



MDESs from null states

® For any associated VOA V(7): at least one such null N is
expected to exist [Beem, Rastelli].

® Stress tensor T of V(T) should be up to a null
state Nr and p € Co(V(T)): Ik € N>y

LE5|0) = o + N7 (32)

= FECEIRTIE state A7 associated with the [l L=1a

® All module characters of V(7) satisfy some (unflavored) MDE
from NT [Beem, Rastelli][Kaidi, et.al.].

® They may be nulls

=} (=) = E E QA 48/78



Example: symplectic boson

® (v system with conformal weights hs = h, = 1
VOA of one hypermultiplet
z

L
¢ B(D) = Yoez-1 Bu? "7, A(2)

associated
I |
ZneZ—% TYnZ 2
1
B(2)y(w) ~

z—w
® (1) current and Stress tensor

(33)

1 1
J=(18), T=5B0y— 5798 .

(34)
o WAL ETER from |0) (annihilated by Bn>_%,7n>_%)

chy = tr qLO_i blo =

. (35)

DA 49/78



Example: symplectic boson

® Simplest nulls

T-(8) =0, T— (80 =~08)=0. (30)

® Zhu's recursion = flavored modular differential equations

-1 -1
b])chO:O, (Dgl)—EQ b])chozo

o m solution /character chg

® There are other nulls: additional but redundant FMDEs.

(Db + By




Example: symplectic boson

e Consider QLIS Td (spectral flowed by 3 unit),

B(2) =Y 6o ™2, ()= e "2
neZ

(37)
neZ

® The twisted module from NETHEEE (annihilated by
2
Br>0, Tn>1),

(38)

® The same two nulls and Zhu's recursion,

(Db + B =0, (D&” ~ B

+1

S
N——
o
=
ol

+1

> 51/78



Example: symplectic boson

® Untwisted to twisted
< the —1 — +1 in Eisenstein

& conformal weight goes from (hz = h,
(hﬁ =0,hy = 1).

. m solution/character in the twisted sector




Example: symplectic boson

® Under SL(2,Z) transformation, E,[%!]| are quasi-Jacobi:
equations are covariant

ch = yk__% tr qLO_i b0
and

(39)

(Tvb)n)i(_l b

b2
- = n——). 40
T T 9 T ) (40)
® If there are multiple b;, include corresponding level k;

A 53/78



Example: symplectic boson

e Qperator Dg") transforms under §

DY — <728(2n—2) + 7> biDy, + bk — (2n— 2)%2)

O---

o (7’28(2) +7 Z b; Dy, + b%ki — 2L)

271
o (7’28(0) + TZ b; Dy, + b?kl) ,
and

Db,- = bz@bz — TDbi + 2bk; . (41)



Example: symplectic boson

® After y-extension:
—l:l —)STS (7‘— 1) <Db+ Fq —1:|>
b b
_bl} 2T, (7 —1)b <Db + B _le
2
GtV (r (DE}) — B
T

—1 —1
b| D E .
1 1
Dy + By —2:|i> T<Db+E1 —2 )
DM By |TH 5 2 <D§1)—E2 +

b >+bT<Db+E1 1

J)
® STS/S maps untwisted/twisted to another
untwisted /twisted [l

Q> 55/78



Example: SU(2) theory with 4 flavors

® The associated VOA is V(7) = §0(8)_2, ¢ = —14
® This VOA is shown to have five irreducible non-logarithmic
highest weight modules [Arakawa, Kawasetsu]

o Vacuum module V(7))
o Four modules Mj_; 234 with highest weight
A = wj(wy + w3 +ws) — p with w; = 1,51 34

e Can we recover them by analyzing FMDEs?



Example: SU(2) theory with 4 flavors

® There are a lot of null states in §0(8)—_o

o T— W > KapJ*J =0
o (J*J")s5,35.,35, = 0
o Nulls at level 3, 4 (N7)
® 10 weight-two, 4 weight-three and 1 weight-four FMDEs for

Toys: e.g.,

1
0= |:D$11) - Z (Db3Db2 +Db4Db2 + Db4Db3 JrD%‘L)

1 1
-5k by (Dbl_Db2_Db3_Db4)

2 b b3 by
- ZE ! (Dy, 4+ Dy, + Dy, + Dy,) — E 'l p

D) 1 by by bsby by by b3 by 1 bi by
+ | B2 +2E » | 428 +om, | I

2 2 b 2 2 0,4 -
Toboh b1 babsby b3




Example: SU(2) theory with 4 flavors
® Weight-three

Dy, + 8E;3

4
0= [Z ( 'Dy, + By Dy, — 2B, )
_Z Z Hk 1 ba’“] ”z:la iajciDy,
+ 2 Z ZazczEg

1
A k . bzk] ]IOA ) (42)
=% i=1

7

where ¢; are arbitrary constants.



Example: SU(2) theory with 4 flavors

e Weight-four (from A7)

4

(Zan) +2ZE3

=1

4
’L_l z

2
i

0= <<2>+ ZEg

- 12215‘4 T 31E -6 Z E, H )IOA .
i=1 i H
i Unflavoring [Arakawa][Beem, Rastelli]
0= (DY) — 175E4)To4 . (43)

® Note the origin of coefficients: SU(2); adjoint moment maps

or multi-fundamentals.



Example: SU(2) theory with 4 flavors

® 15 equations have precisely 5 FileliH[ef-= {14l Top Tl of

the form [Beem, Peelaers]

+oo
¢ an(by, ... ba)" (44)
n=0
given by
Toa, Riz1,..4 - (45)

e Correspond to the five highest weight modules (including the

vacuum module) by Arakawa and Kawasetsu

® R;do have smooth b; — 1 limit: M; do not have
finite-dimensional weight spaces, m if unflavored

=] (=)

£ HA™ 60/78



Example: SU(2) theory with 4 flavors

® All the relevant equations are under S
R occcnsion

S(weight-2) = 72 (weight-2)

(46)
4
S(weight-3) = 73 (weight-3) + Z 72b;(weight — 2);

=1
S(weight-4) = 74 (weight-4) + 73(weight-3)

+ 72 Z b;bj(weight-2);; ,

LY

(47)

= E £ DA™ 61/78



Example: SU(2) theory with 4 flavors

® Corollary: ST is also a m ELGCEY logarithmic

1 1
or loga |
s

2

. Z(lOg mj)Rj .
J

® $3x S': ST can also be viewed as some
e S T matrix: chg =Z,ch; = ST

5201’ T:e%o
10

_ T
e 3

(48)

_sm) - (49)
e 6
e Null N7 + modularity generates all the lower-weight FMDEs:

determines all the allowed characters.

[m]

=

A~ 62/78



Example: SU(2) theory with 4 flavors

® The above discussion concerns the untwisted sector

® Consider vortex defect index Z3efect (k):

Only 1 = [%] independent index with [l
T5et (k= 0) = Tou -

(50)
Only 1 = [%} independent index with [elt )

1 1
4 Q; N
Hi:l b’L

Tk =1) =

nm? g ﬂa, 5
H?:lﬁl(%i) a=+ \i=1 l ’




Example: SU(2) theory with 4 flavors

o |f k=1 vortex defect corresponds to some module My, then
defeCt(k: = 1) =stry, ¢ 21bf . (51)
and
0 = stry, Ngho21bt (52)

® From Zgefect(k = 1): all multi-fundamentals have half integral
weights

® For all N, Zhu's recursion still goes through:

o FMDEs are [ElUELESLERETEIN to those for Zg 4

o all E, [1—[ B ] should be replaced by E, [H,;a}



Example: SU(2) theory with 4 flavors
® weight-two:

1
0= [ p 1 <Db3Db2 + Dy, Dy, + Dy, Dy, +D§4>

1 -1
——F by (Dbl — Dy, — Dy, — Db4)

2 babz by

1
2 b1b2b3b4:| ( b + b2 + bs + b4) bi ba
N -1

+ | B2+ 2E2 + 2E> + 2E, Tdefect (1) |
( bQZilsb4 bl b2b3b4 b2 ) 0,4 ( )




Example: SU(2) theory with 4 flavors

® weight-three:
) 1
0= ch Dy, + By Dy, =28, |
- = 5 a;oici Dy,
PIL b

4
2 Z ZaiCiEg

Oli::t =1

® True for all other FMDEs.

Dy +8F3 |,

)

-1
Ht_l b(]:k‘| ‘|IO,4 ) (53)

e Corollary: vortex defect with odd vorticity < twisted modules

® Almost covariance: ST.SZdefect(k;

logarithmic twisted module

= 1) is also a solution:

E DA™ 66/78



Example: N =4 SU(2) theory

® The associated VOA V is 2d small A = 4 superconformal
algebra with ¢ = —9, contains a subalgebra su(2),__s
2

® Schur index

L1 9(b) () -1
1= %014(21)) - 191%2[:)& [ b] ' (54)

® Nulls at dimension 2, 3, 4. E.g., the Sugawara construction

1
0=T——— S K,J*J. 55
2(k+ V) Zb: b (55)

And (schematically) [Beem, Rastelli]

N~ (L2, + G Gy +JaJa+ Ly)[0) - (56)



Example: N =4 SU(2) theory

e three nulls of level-2, 3, 4 N334 = weight-2,3,4 FMDEs,
e.g., the weight-2 equation is

1 1 1 1
|:D£11) _ 2(k+ hV) <2D§ + kEs + 2kFo b2 +2F; b2 Db> In=4=0.
The weight-4 equation
0= (DP + LB Ix—s
1 po -1 -1
+ 72E2 Dq — 4E3 Db + 18E4 IN:4
1
+ | 3kog By + 2E3 9 Dy, —9E, 52 In=4 - (57)




Example: N =4 SU(2) theory

® Precisely 3 solutions (Zycg is a residue)

T, Tepy STST . (58)
N——
logarithmic

non-logarithmic
® Modules of V were studied [Adamovic]: only two irreducible
modules from category-O

V,  Vies,/V. (59)

Precisely correspond to the two non-Logarithmic solutions

* Flavoring is [EZEERT: Zoesy have smooth

b — 1 limit, conformal-weight-spaces are infinite dimensional

due to zero mode ¢



Example: N =4 SU(2) theory

® For an equation, the coefficients are ST'S

m: equation is [ G4 under STS

, dular t .
solution T2 solution (60)

. : is STSZ a solution when flavored?
® Almost covariance after with k= —3/2,

STS(weight-2) = (7 — 1)?(weight-2) , (61)

STS(weight-3) = (7 — 1)3(weight-3) — 26(7 — 1)?(weight-2) ,

STS(weight-4) = (7 — 1)*(weight-4) + 2b(7 — 1)3(weight-3)
—2b%(1 — 1)*(weight-2) .
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Example: N =4 SU(2) theory

e FMDE from N1 + modularity generates all other FMDEs:

determines all three characters.



Example: N =4 SU(2) theory
PN s

3 2midy(b) + (1 — 1)V (b)
=— 2
STSL = —y2 2701 (20) (62)
® Likely corresponds to some logarithmic module of V[T]
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© Some conjectures

e Conjecture/observation: untwisted module characters

Schur index Z, ,,

woflt] 8

——
residue/Gukov-Witten defect index

1
T9efet (k= even) = Res EIQ’”H :

(63)

(64)

(65)



© Some conjectures

e Conjecture/observation: REFETGRTS untwisted module
characters

defect
modular trans. on Z,, Z5°< (k= even)

(66)

A 74

~

8



© Some conjectures

¢ Conjecture/observation: module characters

1
T3t (k = odd) = Res ~Ty 11

a
There may be more.

(67)
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¢ Some conjectures
® Conjecture/observation: [T 14 module
characters

modular trans. on Z3%*(k = odd)

(68)
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Conclusion

® Propose some elementary method to compute Schur index

and defect index exactly (for some theories)

® For some A; theories of class-S: study (twisted) flavored

modular differential equations of and their solutions

® These solutions originate from some surface defects
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