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Background 
& MotivationPart 01
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Canonical Differential Equation (CDE) & Symbology

Example: Kite diagram (cut sunrise propagator)

3 Master integrals: φ1, φ2, φ3        DE given by 

Reduction：Integration-By-Parts (IBP)
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Canonical Differential Equation (CDE) & Symbology

Ω = ε

UT basis gives CDE:

Symbol:

Symbol Letter (whose complete set 
is known as the symbol alphabet)

Bootstrap
Amplitude

boundary

Rescale:s1
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Canonical Differential Equation (CDE）

Why it is so simple?Reduction

= + ε [ ] 
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Previous Research

Specific cases: N=4 SYM (generalized to d dim massless propagator integral), one-loop, first, second, and final 

entry conditions, etc (many of these methods are algebraic).

General cases: diagrammatic coaction (integration on discontinuity 1703.05064 Abreu, et.al. and its development), direct 

integration after expansion in the order of ε (recently developed to be algebraic 2304.01776 Tan, He), etc. 

The challenges general cases could face: 

Divergence (e.g. when expanding with respect to ε)

High order of ε

Complicated contour

Non-rational symbol (Rationalize all variablesGPL)

…

(many of which emerge in the integration method)
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Our starting point

Challenge: High order of ε  Solved by CDE, iteratively giving symbols to arbitrary order of ε. 

Our previous one-loop practice: Integrate the expansion of d log integrand (UT) to get CDE element (also symbol letters) 
2201.12998 Chen, et al. （d log integrand gives UT 1212.5605 Nima, et al, construction in Baikov rep. see 2008.03045 & 2202.08127 Chen, et al）

Observation: despite the complicated contours and trick plus distribution expansion for divergent 

cases the calculation could involve, letters are simply just the d log integrand take the pole 

values! (Roughly)

Suggestion: a simpler algebraic method should 
exist, where the multivariate poles play the key 

roles.
Intersection theory

+
d log integrand 

CDE 
(Symbology)

Show the Role of 
multivariate 
poles
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Intersection number: an IBP invariant inner product
Hypergeometric-like 

functions:
Baikov rep. & Schwinger 

parameterization 
& e.t.c. all take this form. 

Intersection 
number:

1810.03818 Mastrolia, Mizera 
1907.02000 Frellesvig, et al

2002.10476 Mizera 
…

only need information around the poles  solving ψ by 
Laurent series around poles (to finite order)  legal 
expansion needs the pole to be factorized  Sector-

Decomposition-like transformation factorizes the pole and 
could divide the region around p into several pieces.

2209.01997 Chestnov,  Frellesvig, Gasparotto, Mandal, 
Mastrolia 
Intersection Numbers from Higher-order Partial 
Differential Equations Challenge: Complicated contour  

Challenge: Non-rational symbol 

u-factor

algebraic in intersection theory but still tricky. (to be continued)
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Factorization of poles

: α denote the index of a factorized region

non-zero

factorized

Example (of a Degenerate pole):

Notation:

p=(0,0)

non-zero
factorized

Challenge: Divergence  addressed locally by factorization of poles and intersection theory.  

People do not need to handle all poles at the same time, but only factorize one pole for each time.

u-power
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Universal formula for first- and 
second-order intersection numberPart 02
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Intersection number

only simple pole

rank -1

Non-zero contributions 
arise only when  for all i
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CDE of dlog: only first- and second-order contributions to intersection number

rational
type

sqrt
type

d log integrand building block CDE in intersection theory

dlog-form only involves multivariate simple pole: 

Non-zero contributions arise only when  for all i

First-order contribution

Second-order contribution except one
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Universal formula of First- & Second-order contribution

First-order contribution

Directly solving ψ 

Second-order contribution

for one j

Challenge: Complicated contour   
Challenge: Non-rational symbol   Algebraically. Simple and universal formula.
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CDE Selection RulePart 03
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(n-1)- and n-SP contribution

except

(n-1)-SP

first-order contribution

n-SP

second-order contribution

first-order contribution

We will discuss why it always is a simple 
dlog-form in the reduced univariate problem later

φ� and φ� share a 
(n-1)-variable Simple Pole

For pure parameter factor

φ� and φ� share a 
n-variable Simple Pole
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n-SP chain and non-zero η��
−�

Only when φ� and φ� share a n-SP, ��� could be non-zero.

n-SP chain: If φI and φJ share an n-SP, we say that they are n-SP related (denoted as 
φI~φJ) and belong to a n-SP chain. If φJ~φK and φI~φJ, the three n-forms belong to an 

n-SP chain. Similar for more dlog-forms.
 

Only when φJ and φK 
in the same n-SP chain, 
η��

−� could be non-zero.  
 

K      1       2       3       4       5

J
1
2
3
4
5

φJ~φ1, φ1~φ2, φ2~φK, 
then a term in the cofactor 
η(��)  could be non-zero. 
η��

−1 = η(��)/|η|

Example: 
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CDE Selection Rules

ΩIK can be nonzero only if there exists at least one 
φK belonging to an n-SP chain with φJ, and sharing 

at least one n-SP or (n-1)-SP with φI.

weight n weight -1 * dlog weight n-1 dlog

all u-powers regarded as weight -1

weight -n
weight -1 coeff  x  dlog

We show how canonical form emerges!
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Reduce to 
univariate problemPart 04
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Reduce to univariate problem

n-SP (n-1)-SP

Take the n-1 variable Residue on gives the contribution

Then, the multivariate problem is reduced to a univariate one.

Which can be easily analyzed systematically!
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Rational-type univariate problem

Although the parameters here could involve 
the same original parameters, they are 
regarded as independent when we use a 
partial operator for each selected        .

dlog integrand: 

All letters are pole distance and pure parameter factor!



22

Sqrt-type univariate problem

dlog integrand

pole distance
except for the τ

By univariate rationalization, all conclusions of rational-type apply!

Non-rational symbol   By merely univariate rationalization
 Letters are pole distance and parameter factors Challenge: 
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Newton polytopePart 04
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2-loop pedagogical example

Kite diagram (cut sunrise propagator)

Example:

Another factor can provide a pole at (∞,0)

degenerate pole
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Denote 3 factorized regions at (∞,0) as

Factorization
transformation

dlog integrand

(n-1)-SP
formula

Expansion
around  1    

take n-1 variable residue

from (n-1)-SP

in
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Newton polytope

The Letter

The high-order terms will 
automatically vanish in the calculation.

Facet ③ is a degenerate facet for (∞,0).
(The normal vector points towards the fourth quadrant.)

Letters are related to the coefficient of the vertices!
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Factorization in Newton polytope

Factorization transformation

shear transformation�2

�1 �1
′

�2
′ �2

a �4
1 is factorized out, and no 

degenerate factor remained.
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Ω��

=

need to be considered.
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Newton polytopes related to Ω��

(0, 0) (∞, 0)

(0, ∞) (∞,∞)

Non-
degenerate degenerate

degeneratedegenerate
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Ω��

(0,0):    − 2�6 + �4

(1,0):   �4 − ��2   

(2,1):    − 1                

(0,1):   �4 − ��2   

(1,2):    − 1                 

letters in Ω�� 

−2�6 + �4

�4 − ��2

For general cases, one Newton polytope will be not enough.
For sqrt-type, we also can read a part of the information of the letters for the coefficient of vertices.

univariate

maximal cut
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Summary and 
outlookPart 05
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Summary: how we handle the challenges in general cases

Challenge: Divergence  Addressed locally by factorization of poles and intersection theory.  

Challenge: High order of ε  Solved by CDE, iteratively giving symbols to arbitrary order of ε. 

Challenge: Complicated contour  Algebraic formulas in intersection theory.

Intersection theory plays an essential role to transform the geometric 

integration contour problem into an algebraic problem

Challenge: Non-rational symbol  Intersection theory, n-1 variables residue  univariate
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Summary

• With only universal formula for the first- and second-contribution of intersection 

number, CDE selection rules and the formula for n-SP and (n-1)-SP are derived. 

We show how CDE emerges for dlog integrand.

• This problem can be transformed into a univariate problem, then all letters are 

pole distance or parameter factor after merely univariate rationalization. 

• We take a first glance at applying Newton polytope which can help people get a 

geometric and intuitive view of this problem.

• Since CDE also are reduction relations, intersection theory shows its true power 

to explicitly relate the algebraic structure of reduction and the analytic structure 

of Feynman integral together! 
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Outlook

For the reduction aspect:
• CDE are also reduction relations. The reduction relation we get keeps the power of the 

propagator as a parameter, so it may serve as iterative reduction relation by taking different 
values of the powers.

•  People can investigate elliptic (and beyond) cases. 
• The formula beyond first- and second-order contribution to intersection number can be 

investigated. People could consider avoiding redundant calculations in intersection numbers 
since they may have the same formula.

For the symbology aspect:
• The role of Newton polytope can be investigated systematically.
• How to read out the symbol alphabet before the construction of dlog integrand could be 

considered.
• With the development of elliptic UT integrand (such as using the period matrix), elliptic 

symbology could be analyzed in a similar way.
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Thank you for listening
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Backup
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dlog form of master integrals
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Details in Ω�� 


