Intersection Theory Rules Symbology

Jiaqi Chen (CSRC)

co-author: Bo Feng, and Li Lin Yang

arxiv: 2305.01283

1

contents

Canonical Differential Equation (CDE) & Symbology

Example: Kite diagram (cut sunrise propagator) $z_1 = l_1^2 - m^2$, $z_2 = (l_2 - p)^2 - m^2$, $z_3 = (l_1 - l_2)^2$, $z_4 = l_2^2$, $z_5 = (l_1 - p)^2$, $p^2 = s$,

3 Master integrals: φ_1 , φ_2 , φ_3 DE given by $\partial_{s_i} \langle \varphi | = \Omega^{(s_i)} \langle \varphi |$ Reduction: Integration-By-Parts (IBP) $\int d^d k \frac{\partial}{\partial k^{\mu}} q^{\mu} \frac{1}{(k^2 - m_1^2)^{\alpha_1} ((k - p_1)^2 - m_2^2)^{\alpha_2} \cdots} = 0$

Canonical Differential Equation (CDE) & Symbology

UT basis gives CDE:	
\n $\Omega = \varepsilon \begin{pmatrix}\n -2\log(m^2) - \log(1 - 2m^2) & 0 & 4(\log(m^2) + 2\log(1 - 2m^2) - 3\log(1 - m^2)) \\ 0 & 2\log(m^2) - 3\log(1 - 4m^2) & 6\tan^{-1}(\sqrt{4m^2 - 1})\n \end{pmatrix}$ \n	
\n Rescale: $\Rightarrow \rightarrow 1$ \n	\n 0\n
\n $\langle \varphi_I ^{(i+1)} = B_I^{(i+1)} + \int d\Omega_{IJ} \langle \varphi_J ^{(i)}$ \n	
\n Symbol: $S[W_1, W_2, \dots] \equiv \int d\log W_1 \int d\log W_2 \dots$ \n	
\n Symbol Letter (whose complete set is known as the symbol alphabet)\n	

Canonical Differential Equation (CDE)

 $\frac{1}{4}$ eps² (G[1, {-1, 0, 1, 1, 1}] + m2 G[1, {-1, 1, 1, 1, 1}] + G[1, {0, -1, 1, 1, 1}] - G[1, {0, 0, 0, 1, 1}] - $G[1, {0, 0, 1, 0, 1}] - G[1, {0, 0, 1, 1, 0}] - G[1, {0, 0, 1, 1, 1}] + 4 m 2 G[1, {0, 0, 1, 1, 1}] + G[1, {0, 1, 0, 0, 1}]$ $G[1, {0, 1, 0, 1, 1}] - m2G[1, {0, 1, 0, 1, 1}] - G[1, {0, 1, 1, 0, 0}] - m2G[1, {0, 1, 1, 0, 1}] + G[1, {0, 1, 1, 0}]$ $m2G[1, {0, 1, 1, 1, 0}] - m2G[1, {0, 1, 1, 1}] + 3m2^{2}G[1, {0, 1, 1, 1}] + m2G[1, {1, -1, 1, 1}] +$ $\langle \varphi_1|$ $G[1, {1, 0, 0, 1, 0}] - G[1, {1, 0, 0, 1, 1}] - m2G[1, {1, 0, 0, 1, 1}] - G[1, {1, 0, 1, 0, 0}] + G[1, {1, 0, 1, 0, 1}]$ $m2G[1, {1, 0, 1, 0, 1}] - m2G[1, {1, 0, 1, 1, 0}] - m2G[1, {1, 0, 1, 1, 1}] + 3m2^{2}G[1, {1, 0, 1, 1, 1}] +$ $G[1, {1, 1, -1, 1, 1}] - G[1, {1, 1, 0, 0, 0}] - G[1, {1, 1, 0, 0, 1}] + m2G[1, {1, 1, 0, 0, 1}] - G[1, {1, 1, 0, 1, 0}] +$ $m2G[1, {1, 1, 0, 1, 0}] + G[1, {1, 1, 0, 1, 1}] - 2m2G[1, {1, 1, 0, 1, 1}] - m2^{2}G[1, {1, 1, 0, 1, 1}] + G[1, {1, 1, 1, -1, 0}] +$ $G[1, \{1, 1, 1, 0, -1\}] - G[1, \{1, 1, 1, 0, 0\}] - 2 \, m \cdot 2 \, G[1, \{1, 1, 1, 0, 0\}] + m \cdot 2 \, G[1, \{1, 1, 1, 0, 1\}] - m \cdot 2^2 \, G[1, \{1, 1, 1, 0, 1\}] +$ $m2G[1, {1, 1, 1, 1, 0}] - m2^{2}G[1, {1, 1, 1, 0}] - m2^{2}G[1, {1, 1, 1, 1, 1, 1}] + 2m2^{3}G[1, {1, 1, 1, 1, 1}]$ $\left\{\varphi_{2}\right\}$ $\frac{1}{8}\sqrt{-1+4m^{2}}\epsilon^{2}G[1, \{1, 1, 1, 0, 0\}]$ $\left\{\varphi_{3}\right\}$ $\frac{1}{4}\epsilon^{2}(\text{G}[1, \{1, 1, 1, -1, 0\}]-m^{2}\text{G}[1, \{1, 1, 1, 0, 0\}])$ $\partial_{m^2}(\varphi_1) = \sum \left[\frac{2}{1-2m^2} - \frac{2}{m^2} (\varphi_1) + 4 \left(\frac{3}{1-m^2} + \frac{1}{m^2} - \frac{4}{1-2m^2} \right) (\varphi_3) \right]$ Reduction **Why it is so simple?**

Previous Research

Specific cases: N=4 SYM (generalized to d dim massless propagator integral), one-loop, first, second, and final entry conditions, etc (many of these methods are algebraic).

General cases: diagrammatic coaction (integration on discontinuity 1703.05064 Abreu, et. al. and its development), direct integration after expansion in the order of ϵ (recently developed to be algebraic 2304.01776 Tan, He), etc.

The challenges general cases could face:

Divergence (e.g. when expanding with respect to ε)

High order of $ε$

Complicated contour

Non-rational symbol (Rationalize all variables \rightarrow GPL)

…

(many of which emerge in the integration method)

Our starting point

Challenge: High order of $\varepsilon \to S$ olved by CDE, iteratively giving symbols to arbitrary order of ε .

Our previous one-loop practice: Integrate the expansion of d log integrand (UT) to get CDE element (also symbol letters) 2201.12998 Chen, et al. (d log integrand gives UT 1212.5605 Nima, et al, construction in Baikov rep.see 2008.03045 & 2202.08127 Chen, et al) Observation: despite the complicated contours and trick plus distribution expansion for divergent cases the calculation could involve, letters are simply just the d log integrand take the pole values! (Roughly)

Intersection number: an IBP invariant inner product

Hypergeometric-like functions:	\n $\langle \varphi_L \equiv \int u \varphi_L, \quad \varphi_R \rangle \equiv \int u^{-1} \varphi_R,$ \n	Baikov rep. & Schwinger parameterization parameterization parameterization						
Intersection number:	\n $\langle \varphi_L \varphi_R \rangle = \sum_{\mathbf{p}} \frac{\text{Res}_{\mathbf{z}=\mathbf{p}}(\psi_L \hat{\varphi}_R),$ \n	\n $\langle \varphi_L \varphi_R \rangle = \sum_{\mathbf{p}} \frac{\text{Res}_{\mathbf{z}=\mathbf{p}}(\psi_L \hat{\varphi}_R),$ \n	\n $\langle \varphi_L \varphi_R \rangle = \sum_{\mathbf{p}} \frac{\text{Res}_{\mathbf{z}=\mathbf{p}}(\psi_L \hat{\varphi}_R),$ \n	\n $\langle \varphi_L \varphi_R \rangle = \sum_{\mathbf{p}} \frac{\text{Res}_{\mathbf{z}=\mathbf{p}}(\psi_L \hat{\varphi}_R),$ \n	\n $\langle \varphi_L \varphi_R \rangle = \sum_{\mathbf{p}} \frac{\text{Res}_{\mathbf{z}=\mathbf{p}}(\psi_L \hat{\varphi}_R),$ \n	\n $\langle \varphi_L \varphi_R \rangle = \sum_{\mathbf{p}} \frac{\text{Res}_{\mathbf{z}=\mathbf{p}}(\psi_L \hat{\varphi}_R),$ \n	\n $\langle \varphi_L \varphi_R \rangle = \sum_{\mathbf{p}} \frac{\text{Res}_{\mathbf{z}=\mathbf{p}}(\psi_L \hat{\varphi}_R),$ \n	\n $\langle \varphi_L \varphi_R \rangle = \frac{1810.03818 \text{ Mastrolia, Mizera}}{2002.10476 \text{ Mizera}}.$ \n
Substituting ψ by Laurent series around poles (to finite order) \rightarrow legal expansion needs the pole to be factorized \rightarrow Section 2209.04997 <i>Chestnov, Frellesvig, Gasparotto, Mandal, Materola</i> \n\n								
Challenge: Complicated contour <								

Factorization of poles

: α denote the index of a factorized region non-ze $\mathsf{r}\mathsf{o}$ and i u-power factorized **Example (of a Degenerate pole):** Notation: $\boldsymbol{\rho}^{(\alpha)}$ $\boldsymbol{z} \to \boldsymbol{x}^{(\alpha)}$ **p**=(0,0) $z_1^{p_1} z_2^{p_2}(z_1)$ non-zero factorized

Challenge: Divergence \rightarrow addressed locally by factorization of poles and intersection theory.

People do not need to handle all poles at the same time, but only factorize one pole for each time.

Intersection number

m.

$$
\nabla_i = dz_i \wedge (\underbrace{\partial_{z_i} + \hat{\omega}_i}_{\text{only simple pole}}) \qquad \qquad \underbrace{\nabla_n \cdots \nabla_1 \psi_L}_{\text{rank } \mathbf{-1}} = \varphi_L
$$
\n
$$
\omega = \sum_i \hat{\omega}_i \, dz_i, \quad \hat{\omega}_i = \underbrace{\partial_{z_i} \log(u)}_{\text{only simple pole}} \qquad \qquad \langle \varphi_L | \varphi_R \rangle = \sum_p \underbrace{\text{Res}_{z=p}(\psi_L \hat{\varphi}_R)}_{\text{key } \mathbf{-p}}.
$$
\n
$$
\varphi^{(b)} = C^{(b)} \wedge \left[x_i^{(\alpha)} - \rho_i^{(\alpha)} \right] \text{d} x_i^{(\alpha)}
$$
\n
$$
\text{axis only when } b_{L,i} + b_{R,i} \leq -2 \text{ for all } i
$$

CDE of dlog: only first- and second-order contributions to intersection number

 $\langle \dot{\varphi}_I | \equiv \hat{\mathrm{d}} \langle \varphi_I | = (\hat{\mathrm{d}} \Omega)_{IJ} \langle \varphi_J |$ $\left(\hat{\mathrm{d}}\Omega\right)_{IK}=\left[\left\langle\dot{\varphi}_I\right|\varphi_J\right]\left(\eta^{-1}\right)_{JK}\right]$ $\eta_{IJ} = \langle \varphi_I | \varphi_J \rangle$

dlog-form only involves multivariate simple pole: $b_i > -1$

Non-zero contributions arise only when $b_{L,i} + b_{R,i} \le -2$ for all i

First-order contribution all $b_{L,i} + b_{R,i} = -2$ **Second-order contribution** $b_{L,i} + b_{R,i} = -2$ except one $b_{L,j} + b_{R,j} = -3$

Universal formula of First- & Second-order contribution

Directly solving

\n
$$
\psi \nabla_n \cdots \nabla_1 \psi_L = \varphi_L \quad \varphi^{(b)} = C^{(b)} \bigwedge_i \left[x_i^{(\alpha)} - \rho_i^{(\alpha)} \right]^{b_i} \mathrm{d}x_i^{(\alpha)}
$$
\n**First-order contribution**

\n
$$
\underbrace{C_L^{(b_L)} C_R^{(b_R)}}_{\tilde{\gamma}_1^{(\alpha)} \cdots \tilde{\gamma}_n^{(\alpha)}} \qquad \tilde{\gamma}_i^{(\alpha)} = \gamma_i^{(\alpha)} - b_{R,i} - 1
$$
\n**Matrix**

\n
$$
\widetilde{\gamma}_1^{(\alpha)} \cdots \widetilde{\gamma}_n^{(\alpha)}
$$

Second-order contribution
\n
$$
b_{L,i} + b_{R,i} = -2 \qquad -\frac{C_L^{(b_L)} C_R^{(b_R)}}{\tilde{\gamma}_1^{(\alpha)} \cdots \tilde{\gamma}_n^{(\alpha)}} \partial_{\rho_j^{(\alpha)}} \log \left(\bar{u}_{\alpha}(\boldsymbol{\rho}^{(\alpha)}) \right)
$$
\n
$$
b_{L,j} + b_{R,j} = -3 \quad \text{for one j}
$$

Challenge: Complicated contour $\rightarrow \rightarrow$ **Challenge:** Non-rational symbol $\rightarrow \rightarrow$

Algebraically. Simple and universal formula.

(n-1)- and n-SP contribution

$$
(\hat{d}\Omega)_{IK} = (\varphi_I|\varphi_J) (\eta^{-1})_{JK}
$$
\n
$$
\underbrace{(\hat{n}-1)\text{-variable Simple Pole}}_{(n-1)\text{-variable Simple Pole}} \xrightarrow{(\hat{n}-1)\text{-SP}} \mathbf{x}_{\underline{k}}^{(\alpha)} \qquad \underbrace{(\hat{n}^{\text{q and }\varphi_J \text{ share a}}_{n\text{-variable Simple Pole}} \text{ in--SP}} \mathbf{x}^{(\alpha)} \qquad \qquad \text{if } \hat{n} \text{ is a single pole} \qquad \text{if } \hat{n} \
$$

We will discuss why it always is a simple dlog-form in the reduced univariate problem later

 (n-1) -SP $\boldsymbol{x}_{\hat{i}}^{(\alpha)}$ $\boldsymbol{\varphi}_I$ and $\boldsymbol{\varphi}_J$ share a $\boldsymbol{\varphi}_I$ $\boldsymbol{\varphi}_I$ and $\boldsymbol{\varphi}_J$ share a $\boldsymbol{\varphi}_I$ $\boldsymbol{\varphi}_I$ n-SP $\bm{x}^{(\alpha)}$ n-variable Simple Pole

$$
b_I = b_J = -1
$$

For pure parameter factor $P_0^{\beta_0}$

 ∂_{P_0} first-order contribution

$$
\frac{C_I^{(-1)}C_J^{(-1)}}{\gamma^{(\alpha)}} \hat{\mathrm{d}} \log\left(\bar{u}_\alpha(\pmb{\rho}^{(\alpha)})\right)
$$

n-SP chain and non-zero η_{JK}^{-1}

$$
(\hat{d}\Omega)_{IK} = \langle \dot{\varphi}_I | \varphi_J \rangle \left(\eta^{-1} \right)_{JK} \quad \eta_{IJ} = \langle \varphi_I | \varphi_J \rangle
$$

Only when φ_I and φ_I share a n-SP, η_{II} could be non-zero.

n-SP chain: If φ _I and φ _I share an n-SP, we say that they are n-SP related (denoted as φ_I~φ_J) and belong to a n-SP chain. If ϕ _J~φ_K and φ_I~φ_J, the three n-forms belong to an n-SP chain. Similar for more dlog-forms.

CDE Selection Rules

Reduce to univariate problem

Which can be easily analyzed systematically!

Rational-type univariate problem

$$
u = P_0^{\beta_0} (z - c_1)^{\beta_1} (z - c_2)^{\beta_2} (z - c_3)^{\beta_3}
$$

$$
\frac{1}{\partial P_0} \qquad \frac{1}{\rho_i^{(\alpha)}}
$$

 $c_{\alpha} \in \{c_1, c_2, c_3, \infty\},\$

 $\gamma^{(\alpha)} \in \left\{\beta_1, \beta_2, \beta_3, -\sum_i \beta_i\right\}$

Although the parameters here could involve the same original parameters, they are regarded as independent when we use a partial operator for each selected $x_i^{(\alpha)}$.

dlog integrand: φ_I

$$
\in \left\{ \frac{\mathrm{d}z}{z - c_1}, \, \frac{\mathrm{d}z}{z - c_2} \right\}
$$

 $\eta = \left(\begin{matrix} \frac{1}{\gamma^{(1)}}+\frac{1}{\gamma^{(4)}} & \frac{1}{\gamma^{(4)}} \\ \frac{1}{\gamma^{(4)}} & \frac{1}{\gamma^{(2)}}+\frac{1}{\gamma^{(4)}} \end{matrix} \right)$

Each φ_I involves two poles, c_I and $c_4 = \infty$.

$$
\langle \dot{\varphi}_I | \varphi_I \rangle = \sum_{\alpha \neq I} \frac{\gamma^{(\alpha)}}{\gamma^{(I)}} \hat{d} \log(c_I - c_\alpha) + \eta_{II} \beta_0 \hat{d} \log P_0
$$

$$
\langle \dot{\varphi}_I | \varphi_J \rangle = -\hat{d} \log(c_I - c_J) + \eta_{IJ} \beta_0 \hat{d} \log P_0
$$

All letters are pole distance and pure parameter factor!

Sqrt-type univariate problem

Challenge:

$$
u = (z - c_1)^{\beta_1} (z - c_2)^{\beta_2} (z - c_+)^{\beta_3} (z - c_-)^{\beta_4}
$$

\n
$$
c_{\alpha} \in \{c_1, c_2, \infty, c_+, c_-\},
$$

\ndlog integrand
\n
$$
\gamma^{(\alpha)} \in \left\{\beta_1, \beta_2, -\sum_i \beta_i, \beta_3, \beta_4\right\}
$$

\ndlog $\tau[z, c_1; c_+]$, dlog $\tau[z, c_2; c_+]$, dlog $\tau[z, \infty; c_+]$
\n
$$
\langle \varphi_I | \varphi_I \rangle = \frac{1}{\gamma^{(I)}} \hat{d} \log(\bar{u}_I(c_I)) - \hat{d} \log(c_+ - c_-)
$$

\n
$$
+ \hat{d} \log(c_I - c_+) + \hat{d} \log(c_I - c_-),
$$

\n
$$
\langle \varphi_I | \varphi_J \rangle = \langle \varphi_J | \varphi_I \rangle = -\hat{d} \log \underline{\tau[c_I, c_J; c_+]}.
$$

By univariate rationalization, all conclusions of rational-type apply!

Non-rational symbol \rightarrow \rightarrow \rightarrow By merely univariate rationalization

 \rightarrow Letters are pole distance and parameter factors

2-loop pedagogical example

Example: degenerate pole $(\infty, 0)$ $z_A = 1/t_A$

$$
= t_4^{2\epsilon - \delta_1} z_5^{\delta_2} \mathcal{G}_{\infty 0}^{-\epsilon}
$$

$$
= t_4^{2\epsilon - \delta_1} z_5^{\delta_2} \mathcal{G}_{\infty 0}^{-\epsilon}
$$

$$
\mathcal{G}_{\infty 0} \equiv t_4^2 \mathcal{G}(1/t_4, z_5) \equiv t_4[r_+(t_4) - z_5][z_5 - r_-(t_4))]
$$

Another factor can provide a pole at (∞,0) $z_5 - m^2(m^2 - s)t_4 + \mathcal{O}(t_4^2)$

 \rightarrow degenerate pole

 $\rho^{(5)}$ in degenerate pole $(\infty, 0)$

Denote 3 factorized regions at $(\infty,0)$ as

Newton polytope

Facet $\circled{3}$ is a degenerate facet for $(\infty,0)$. (The normal vector points towards the fourth quadrant.) FIG. 1. The Newton polytope of $\mathcal{G}_{\infty 0}$. Horizontal and vertical

Letters are related to the coefficient of the vertices!

axis are the power of t_4 and z_5 . The solid line represents the zero facet of $(\infty, 0)$.

Factorization in Newton polytope

 Ω_{13}

$$
\left(\hat{\mathrm{d}}\Omega\right)_{IK} = \left\langle \dot{\varphi}_I | \varphi_J \right\rangle \left(\eta^{-1}\right)_{JK}
$$

$$
\left(\eta^{-1}\right)_{JK} = \begin{pmatrix} \frac{\delta_1 \delta_2(-\delta_1 - \delta_2 + \epsilon)}{6} & 0 & -2\delta_1 \delta_2 & -2\delta_1 \delta_2 \\ 0 & \epsilon^2 & 0 & 0 \\ -2\delta_1 \delta_2 & 0 & -2\epsilon (\delta_2 + \epsilon) & -\epsilon (\delta_1 + \delta_2 + \epsilon) \\ -2\delta_1 \delta_2 & 0 & \epsilon (\delta_1 + \delta_2 + \epsilon) & -2\epsilon (\delta_1 + \epsilon) \end{pmatrix}
$$

 $\langle \dot{\varphi}_1 | \varphi_1 \rangle$ $\langle \dot{\varphi}_1 | \varphi_3 \rangle$ $\langle \dot{\varphi}_1 | \varphi_4 \rangle$ need to be considered.

Newton polytopes related to Ω

 Ω_{13}

$$
\mathcal{G} = -2m^6 + m^4(s + z_4 + z_5) + m^2(2z_4z_5 - sz_4 - sz_5) + z_4z_5(s - z_4 - z_5)
$$

For general cases, one Newton polytope will be not enough.

For sqrt-type, we also can read a part of the information of the letters for the coefficient of vertices.

Summary: how we handle the challenges in general cases

Challenge: High order of $\varepsilon \to$ Solved by CDE, iteratively giving symbols to arbitrary order of ε .
 Challenge: Divergence \to Addressed locally by factorization of poles and intersection theory.

Challenge: Complicated contour \rightarrow Algebraic formulas in intersection theory.

Challenge: Non-rational symbol \rightarrow Intersection theory, n-1 variables residue \rightarrow univariate

Intersection theory plays an essential role to transform the geometric integration contour problem into an algebraic problem

Summary

- With only universal formula for the first- and second-contribution of intersection number, CDE selection rules and the formula for n-SP and (n-1)-SP are derived. We show how CDE emerges for dlog integrand.
- This problem can be transformed into a univariate problem, then all letters are pole distance or parameter factor after merely univariate rationalization.
- We take a first glance at applying Newton polytope which can help people get a geometric and intuitive view of this problem.
- Since CDE also are reduction relations, intersection theory shows its true power to explicitly relate the algebraic structure of reduction and the analytic structure of Feynman integral together!

Outlook

$$
u=z_4^{\delta_1}z_5^{\delta_2}[{\cal G}(z_4,z_5)]^{-\epsilon}
$$

For the reduction aspect:

- CDE are also reduction relations. The reduction relation we get keeps the power of the propagator as a parameter, so it may serve as iterative reduction relation by taking different values of the powers.
- People can investigate elliptic (and beyond) cases.
- The formula beyond first- and second-order contribution to intersection number can be investigated. People could consider avoiding redundant calculations in intersection numbers since they may have the same formula.

For the symbology aspect:

- The role of Newton polytope can be investigated systematically.
- How to read out the symbol alphabet before the construction of dlog integrand could be considered.
- With the development of elliptic UT integrand (such as using the period matrix), elliptic symbology could be analyzed in a similar way.

Thank you for listening

dlog form of master integrals

$$
\varphi_1 = d \log(z_4) \wedge d \log(z_5)
$$

\n
$$
\varphi_2 = d \log(\tau[z_4, m^2; r_{1;\pm}]) \wedge d \log \left(\frac{z_5 - r_{5+}}{z_5 - r_{5-}} \right)
$$

\n
$$
\varphi_3 = -d \log(\tau[z_4, \infty; r_{1;\pm}]) \wedge d \log \left(\frac{z_5 - r_{5+}}{z_5 - r_{5-}} \right),
$$

\n
$$
\varphi_4 = -d \log(\tau[z_5, \infty; r_{1;\pm}]) \wedge d \log \left(\frac{z_4 - r_{4+}}{z_4 - r_{4-}} \right),
$$

\n
$$
r_{1;\pm} \equiv r_{\pm}[\mathcal{G}_1; z_5], \qquad \mathcal{G}_1(z_5) \equiv G(l_1, p)
$$

\n
$$
r_{4\pm}(z_5) \equiv r_{\pm}[\mathcal{G}; z_4], \quad r_{5\pm}(z_4) \equiv r_{\pm}[\mathcal{G}; z_5],
$$

\n
$$
r_{5+}(\infty) = \infty, \quad r_{5-}(\infty) = 0, \quad r_{5\pm}(m^2) = m^2.
$$

Details in Ω

 η_{3i} contribute to Ω_{13} implies we only need to consider $\langle \hat{d}1|1\rangle$, $\langle \hat{d}1|3\rangle$ and $\langle \hat{d}1|4\rangle$. And due to the symmetry, $\langle \hat{d}1|4 \rangle$ is just exchange the δ_1 and δ_2 in $\langle \hat{d}1|3 \rangle$. The independent nonzero contributions for $\langle \hat{d}1|1 \rangle$ are: The N-SP $\rho^{(1)}$ between φ_1 itself:

$$
-\frac{\epsilon}{\delta_1 \delta_2} \left(2 \log(m^2) + \log(s - 2m^2)\right); \tag{65}
$$

The N-SP $\rho^{(5)}$ of φ_1 itself:

$$
-\frac{\epsilon}{(\epsilon - \delta_1 + \delta_2)\delta_2} \left(\log(m^2) + \log(s - m^2)\right); \qquad (66)
$$

The N-SP $\rho^{(8)}$ of φ_1 itself are given by exchange symmetry.

For $\langle \hat{d}1|3 \rangle$, the (N-1)-SP between $\rho_2^{(5)}$ of φ_1 and φ_3 gives

$$
\frac{1}{\epsilon - \delta_1 + \delta_2} \left(\log(m^2) + \log(s - m^2) \right). \tag{67}
$$

The contribution of shared (N-1)-SP $\rho_1^{(8)}$ between φ_1 and φ_4 for $\langle d_1 | 4 \rangle$ are given by exchange symmetry.

Some contributions from N -SP and $(N-1)$ -SP are $\hat{d} \log(C)$ and equals 0, so they are not shown in the above. Combining $\langle \hat{d}1|i\rangle$ and η_{i3}^{-1} , take $\delta_1 = \delta_2$, add the symmetry that $\langle \varphi_3 | = \langle \varphi_4 |$ when $\delta_1 = \delta_2$ (now there are only 3 master integrals), and take a rescale transformation $s \to 1$ we get the final result of Ω_{13} to be

$$
4\epsilon (2\log(1-2m^2) - 3\log(1-m^2) + \log(m^2)) \qquad (68)
$$

Notice that we haven't taken δ_i to be zero, so we can check this result by comparing it to the differential equations obtained from traditional IBP with the same dlog basis with different choice of δ_i (for example $\delta_1 = \delta_2 = 0$) or $\delta_1 = \delta_2 = 1$ or some other positive integers), and we find our result is right.