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Feynman loop integrals or amplitudes are special in the sense that they contain diver-
gences, which prevent us from performing naive numerical evaluation (branch cut is another
problem). These divergences can be categorized to ultra-violet (UV) and infra-red (IR)
divergences.

The UV divergences appear because the loop momenta are integrated up to infinitely
large region. These can be estimated by power counting. Notice that the UV divergences
have different forms in different regulators. For example,∫ Λ

1

kndk

km
=

{
Λn+1−m − 1, n+ 1−m 6= 0

ln Λ, n+ 1−m = 0
(1) ∫ ∞

1

kn+αdk

km
= − 1

n+ α+ 1−m
, α = d− 4(2)

From eq. (1) , we know that the integral is divergent if n+ 1−m ≥ 0, while it is divergent
only if n+ 1−m = 0 in dimensional regulator as shown in eq. (2) .

Usually, in Lorentz invariant field theories, each loop contributes a 1/ε UV divergence.
But higher divergences occur in effective field theory.

The IR divergences arise from the (usually at least two) on-shell propagators in a loop
diagram, when it is not possible to use integration contour deformation to bypass the pole.
Take the simple real example,∫ +∞

−∞
ddl

1

l2 + i0+

1

(p− l)2 + i0+

1

(l + ...)2 + i0+
· · · , p2 = 0(3)

The first two denominators have poles at

l0 = |~l| − i0+, l0 = p0 − |~p−~l|+ i0+,(4)

If the loop momentum l is parallel to the external momentum p. Then the two poles are
located at the same place of the real l0-axis and can not be bypassed via a contour around
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the pole. Now, the integration contour is pinched between the two poles. In this case, the
integral is divergent.

The systematic way to check whether there is a pinched pole in an integral is to use
Landau equation. A generic Feynman integral with trivial numerators takes the form

(5) G =

∫ L∏
j=1

ddkj

1∫
0

P∏
i=1

dαi
δ(1−

∑
i αi)

ψP
,

where L are the number of loops, P the number of internal lines and the denominator reads

(6) ψ =
P∑
j=1

αj(l
2
j −m2

j ) + iε ,

where the lµj (k, p) is the momentum of the j-th propagator that depends linearly on the
loop momenta ki and external momenta pi.

Our main interest is the positions of all poles and branch points of G as a function of the
external momenta pi. They arise from zeros of the denominator ψ. But the mere presence
of a zero of D is not enough to produce a singularity in G because the integral is in complex
(k, α) space. Singularities can appear in two ways. (i) End-point singularities. We can
omit the constraint δ(1 −

∑
i αi) in analyzing the singularities because we can replace it

with ρδ(ρ−
∑

i αi) with arbitrary positive ρ. [digression]: Cheng-Wu theorem∫ ∞
0

∏
i

dαi
δ(1−

∑
i αi)

(
∑
αiDi)3

=

∫ ∞
0

∏
i

dαi
ρδ(ρ−

∑
i αi)

(
∑
αiDi)3

αi = ηα′i, η = α1 + α2

=

∫
dη

∫ ∞
0

∏
i

dα′i
ρδ(ρ− η

∑
i α
′
i)

η3(
∑
α′iDi)3

η2δ(1− α′1 − α′2)

=

∫ ∞
0

∏
i

dα′i
1

(
∑
α′iDi)3

δ(1− α′1 − α′2)(7)

Therefore, we only need to consider

(8) G′ =

∫ L∏
j=1

ddkj

∞∫
0

P∏
i=1

dαi
1

ψP
,

We should find out the points in the multiple dimensional space of kj and αi where the
integral becomes singular.

The integration range of k is infinite. There are no end-point singularities in the k
integration. The only possible end-point singularities are at

αi = 0(9)
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(ii) Pinch singularities, which means that ψ has two poles at the same point. These are
so-called leading singularities. These can be found by solving

(10)
∂ψ

∂αi
= 0 ,

∂ψ

∂kj
= 0 .

The first condition puts the internal legs on-shell, l2i = m2
i , while the second condition

relates momenta belonging to the same loop, l, as

(11)
∑
i∈l

αili = 0 .

Here li should be aligned in the same direction, i.e., in the form kj + ....
The above three equations are the famous Landau equations. Note that ψ = 0 is

automatically satisfied given these equations. The physical picture is simple. To obtain
a singularity, the propagators should be either on-shell, corresponding to l2i = m2

i , or
contracted, corresponding to αi = 0. And thus, the Laudau equations are closely related to
the unitary cut of Feynman diagrams, and can be used to determine symbols [2304.02629].

The integration over the loop momentum can then be readily done and yields

(12) G =

1∫
0

P∏
j=1

dαj
δ(1−

∑P
j=1 αj)U

P−(L+1)d/2

FP−Ld/2
,

with

(13) U = det aij , F = det

(
aij −bj
−bj c

)
,

where i, j = 1, . . . , L and

(14) aij =
1

2

∂2ψ

∂ki∂kj

∣∣∣∣
k=0

, bj =
1

2

∂ψ

∂kj

∣∣∣∣
k=0

, c = ψ|k=0 .

Note that aij is only a function of αi. U is non-negative. bj and c depend on both αi and
kinematic invariants. In general, F can be both positive and negative depending on the
value of αi. F = 0 is the necessary condition for the existence of divergence in the integral.

An equivalent form of the Landau equations is obtained for representation (12),

(15) F = 0 ,
∂F

∂αi
= 0 .

Note that since F ∝ αi ∂F∂αi is homogeneous, F = 0 is automatically satisfied.
Simple examples:

Two-point integral :

G(p,m) =

∫
ddk

1

[k2 −m2 + i0+][(k − p)2 −m2 + i0+]
(16)

It Landau equations are

k2 −m2 = 0, (k − p)2 −m2 = 0, α1k
µ + α2(k − p)µ = 0(17)
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Figure 1. Examples of triangle diagrams with divergences.

Here we have omitted the case in which only one propagator is on-shell. One can
solve the above equations and obtains

α1 = α2, kµ =
1

2
pµ, p2 = 4m2(18)

The contour can be described by setting k → k + iλv(k). The imaginary parts of
the denominators are

2λv(k).k, 2λv(k).(k − p)(19)

At the singular point, they have opposite signs. Therefore, the singularity can be
avoided by contour deformation. Eq. (18) shows the classical threshold for the

two-point integrals, and explains the appearance of
√
p2 − 4m2 in the solution.

In Feynman parameter representation,

F = −p2α1α2 +m2(α1 + α2)2

∂F

∂α1
= −p2α2 + 2m2(α1 + α2) = 0

∂F

∂α2
= −p2α1 + 2m2(α1 + α2) = 0(20)

The solution gives

α1 = α2, p2 = 4m2(21)

which are the same as Eq. (18) . But the information of kµ is missing.
If the masses are vanishing, m2 = 0. The Landau equations require

kµ =
α2

α1 + α2
pµ, k2 = p2 = 0(22)

This is a typical collinear singularity.
Three-point integral : We consider the triangle shown in Fig. (1a) which contains

a soft singularity. In this case the denominator is given by

(23) F = (m2
2 +m2

3 − p2
2)a2a3 +m2

2a
2
2 +m2

3a
2
3 .
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This expression satisfies the Landau conditions for a2 = a3 = 0 and a1 arbitrary.
The triangle shown in Fig. (1b) which contains a collinear singularity. In this case
the denominator reads

(24) F = (m2
3 − p2

2)a2a3 + (m2
3 − p2

3)a1a3 +m2
3a

2
3 ,

which satisfies the Landau conditions for a3 = 0 and a1, a2 arbitrary. In these two
cases, the external momenta are arbitrary. The corresponding Landau singularities
correspond to soft and collinear divergences.

The IR divergences appear also in real corrections in gauge theories. And each loop may
have 1/ε2 divergences, which can be seen simply from∫

l−2ε
0 dl0
l0

(sin θ)−2εdθ

1− cos θ
(25)

The IR divergences at the scattering amplitudes are usually simpler than those in each
integrals.

2. Dimensional regularization

Main references :

(1) G. t Hooft and M. Veltman, Regularization and Renormalization of Gauge Fields,
Nucl.Phys. B44 (1972) 189.

(2) C. Gnendiger et al, To d, or not to d: Recent developments and comparisons of
regularization schemes, Eur.Phys.J.C 77 (2017) 7, 1705.01827

(3) F. Jegerlehner, Facts of life with gamma(5), Eur. Phys. J. C 18 (2001), hep-
th/0005255

The Feynman integrals contain UV and IR divergences. The UV divergence is caused
by the infinitely large values of the loop momenta. A naive regulator is to impose an
upper limit. But this cutoff breaks Lorentz invariance, e.g., it violates the Ward identity
in QED. The Pauli-Villars regularization introduces massive fictitious particles so that
the loop integrands drop fast enough. This regulator preserves Lorentz invariance but is
cumbersome.

Dimensional regularization, “dim reg,” is by far the most common regularization pro-
cedure in QFT, almost always used in conjunction with the modified minimal subtraction
(MS) renormalization scheme. It regularizes both UV and IR divergences, and is gauge
invariant. No additional scales are introduced and thus it is simple to calculate at higher
orders.

The basic idea of all dimensional regularization schemes is changing the space-time
dimension from 4 to d = 4− 2ε. For example,∫

d4k

(2π)4
· · · →

∫
ddk

(2π)d
· · ·(26)

In order to keep the coupling dimensionless,

g2
s → g2

sµ
2ε
R(27)
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so that the RG equation in d-dimension

d ln gs
d lnµ

→ −ε+O(αs)(28)

This equation is useful in deriving the divergences of the amplitudes from their anomalous
dimensions.

The questions are whether we regularize every thing, such as the internal and external
momenta, gµµ, polarizations, or only part of them. Keeping some of them 4 dimensional is
important to be compatible with supersymmetry or helicity methods.

The original 4-dimensional metric tensor is denoted by ḡµν The d-dimensional analog is
ĝµν . The space of polarizations is represented by gµν . Then it is defined that

ḡµν ḡµν = 4, ĝµν ĝµν = d, gµνgµν = 4(29)

The projection relations are given by

ḡµν ĝνρ = ḡµρ , ḡµνgνρ = ḡµρ , , ĝµνgνρ = ĝµρ(30)

These schemes are listed in table 1.

Table 1. Different dimensional schemes. Here ’internal’ means those in
loop or soft/collinear.

CDR HV FDH DRED
Internal ĝµν ĝµν gµν ḡµν

External ĝµν ḡµν ḡµν ḡµν

The Dirac algebra is generalized to d dimensional

γµγν + γνγµ = 2gµν(31)

However, it is fine to still use Tr1 = 4.
Conversions between results in CDR, HV, FDH, and DRED can be made for individual

parts contributing to a cross section. For the virtual contributions this is known to NNLO
and can be elegantly described solely through the scheme dependence of β functions and
anomalous dimensions. For real corrections and initial-state factorization terms the explicit
scheme dependence is only known to NLO. These results have been used to explicitly
demonstrate the scheme independence of a cross section at NLO.

FDH and DRED are perfectly consistent regularizations schemes, at least up to NNLO.
However, they require the introduction of additional (evanescent) couplings with (in gen-
eral) different counterterms.

The definition of γ5 does not exist in d dimensions. It is defined in 4 dimension by
γ5 = iγ0γ1γ2γ3 = i

4!εµνρσγ
µγνγργσ, which satisfies

γ2
5 = 1,

{γ5, γ
µ} = 0,

Tr(γµγνγργσγ5) = 4iεµνρσ(32)
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Consider

κµνρσTr(γτγµγνγργσγ
τγ5)(33)

with κµνρσ = 0 if two indices are equal. Then we find

2(d− 4)κµνρσTr(γµγνγργσγ5) = 0(34)

In HV scheme, γ5 is taken as a 4-dimensional object.

{γµ, γ5} = 0, µ ∈ {0, 1, 2, 3}
[γµ, γ5] = 0, otherwise(35)

The axial Ward identities are broken in this scheme due to the non-anticommuting property,
which can be fixed by an additional finite renormalization of the axial current, e.g.,

Zns
5 = 1 +

αs
4π

(−4CF ) +
(αs

4π

)2
(

22C2
F −

107

9
CFCA +

2

9
CFnf

)
(36)

3. Strategy of regions and asymptotic expansion

Main references :

(1) M. Beneke, V.A. Smirnov, Asymptotic expansion of Feynman integrals near thresh-
old. Nucl. Phys. B522, 321344 (1998) [hep-ph/9711391].

(2) V.A. Smirnov, Applied Asymptotic Expansions in Momenta and Masses. Springer
Tracts in Modern Physics

(3) T. Becher, A. Broggio, A. Ferroglia, Introduction to Soft-Collinear Effective Theory,
Lect. Notes Phys. 896 (2015), pp.1-206 Springer

The strategy of regions is a technique which allows one to carry out asymptotic expan-
sions of loop integrals in dimensional regularization around various limits. The expansion
is obtained by splitting the integration in different regions and appropriately expanding the
integrand in each case. In the effective theory, the different regions will be represented by
different effective theory fields. The expanded integrals obtained by means of the strategy
of regions technique are in one-to-one correspondence to the Feynman diagrams of effective
field theories regularized in dimensional regularization.

If one is simply interested to expand some perturbative result in a small parameter, one
can therefore work directly with the strategy of regions technique, without constructing
an effective Lagrangian. However, the use an effective field theory offers some important
advantages when one is interested in deriving all-order statements. In particular, one can
use the effective Lagrangian

• to derive factorization theorems and
• to resum logarithmically enhanced contributions at all orders in the coupling con-

stant using Renormalization Group (RG) techniques.

In addition, in the effective field theory gauge invariance is manifest at the Lagrangian level,
while this is not the case for individual diagrams. The effective Lagrangian also provides a
systematic way to organize higher power corrections, by including subleading terms in the
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effective Lagrangian. (In a collider physics context, higher-power contributions are also
called higher twist corrections.)

3.1. A Simple Example. In order to illustrate the main idea of the strategy of regions we
start by considering a simple integral, which we will expand using different methods, first
using a cutoff to separate two different regions and then with dimensional regularization.
The integral we will consider is

(37) I =

∫ ∞
0

dk
k

(k2 +m2)(k2 +M2)
=

ln M
m

M2 −m2
.

This corresponds to a self-energy one-loop integral with two different particle masses at
zero external momentum, evaluated in d = 2. We will assume a large hierarchy between
the masses, for example m2 � M2, and will discuss the expansion of the integral around
the limit of small m. Since we know the full result, we can obtain the expansion simply by
expanding the denominator on the r.h.s. of Eq. (37)

(38) I =
ln M

m

M2

(
1 +

m2

M2
+
m4

M4
+ · · ·

)
.

Note that the integral is not analytic in the expansion parameter m/M because of the
presence of the logarithm. Expansions of functions around points where they have essential
singularities are also called asymptotic expansions. Our goal in the following is to obtain
the expansion in Eq. (38) by expanding the integrand in Eq. (37) before carrying out the
integral. This is important in cases where the full result is not available. It will also tell
us what kind of degrees of freedom the effective theory will contain.

A naive expansion of the integrand leads to trouble, because it gives rise to IR divergent
integrals. In fact

(39)
k

(k2 +m2)(k2 +M2)
=

k

k2(k2 +M2)

(
1− m2

k2
+
m4

k4
+ · · ·

)
cannot be used in the integrand of Eq. (37):

(40) I 6=
∫ ∞

0
dk

k

k2(k2 +M2)

(
1− m2

k2
+
m4

k4
+ · · ·

)
.

This was to be expected: If it had been legitimate to simply Taylor expand the integrand
in m/M and integrate term by term, the result would necessarily be an analytic function
of m in the vicinity of m = 0 because none of the integrals on the r.h.s. of Eq. (40) depend
on m and so the integrals would simply give the Taylor coefficients of the expansion in m.
But the result for I is not analytic in m/M , as we stressed above. So just from the form
of the result in Eq. (38), it is clear that expansion and integration do not commute. The
reason is simply that the series expansion in Eq. (39) is valid only for k � m2, while the
integration domain in Eq. (37) includes a region in which k2 ∼ m2, which contributes to
the integral. To account for this fact, we should split the integration into two regions. We
can do this by introducing a new scale Λ such that m � Λ � M . We will call the scale
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Λ a cutoff, even though the name is misleading, since we do not cut away any part of the
integral. The role of Λ is just to separate the two momentum regions. We then obtain

(41) I =

∫ Λ

0
dk

k

(k2 +m2)(k2 +M2)︸ ︷︷ ︸
I(I)

+

∫ ∞
Λ

dk
k

(k2 +m2)(k2 +M2)︸ ︷︷ ︸
I(II)

.

We call the region [0,Λ] the low-energy region. In this region k ∼ m�M , and therefore
one can expand the integrand in the integral I(I) as follows

(42) I(I) =

∫ Λ

0
dk

k

(k2 +m2)(k2 +M2)
=

∫ Λ

0
dk

k

(k2 +m2)M2

(
1− k2

M2
+

k4

M4
+ · · ·

)
.

The scale Λ acts as an ultraviolet cutoff for the integrals on the r.h.s. of the Eq. (42).
The region [Λ,∞] is referred to as the high-energy region; in that region m � k ∼ M ,

and one can expand the integrand according to

(43) I(II) =

∫ ∞
Λ

dk
k

(k2 +m2)(k2 +M2)
=

∫ ∞
Λ

dk
k

k2(k2 +M2)

(
1− m2

k2
+
m4

k4
+ · · ·

)
.

In the equation above, Λ acts as an infrared cutoff.
By integrating the first two terms on the r.h.s. of Eq. (42) one finds

(44)

I(I) ≈
M2 +m2

2M4
ln

(
1 +

Λ2

m2

)
− Λ2

2M4
= − 1

M2
ln
(m

Λ

)
− Λ2

2M4
+O

(
Λ4

M6
,
m2

M4
log

(
Λ

m

))
,

since it was assumed above that Λ � m. Similarly, by integrating the first term on the
r.h.s. of Eq. (43) one obtains

(45) I(II) ≈
1

2M2
ln

(
1 +

M2

Λ2

)
= − 1

M2
ln

(
Λ

M

)
+

Λ2

2M4
+O

(
Λ4

M6
log

(
M

Λ

))
.

Adding up the Eq. (44) and (45) one finally obtains

(46) I = I(I) + I(II) = − 1

M2
ln
(m
M

)
+O

(
m2

M4
log

(
M

m

))
,

which is the expected result (see Eq. (38)). When summing the results for the low-energy
and high-energy regions, the terms which depend on the cutoff Λ cancel out; this has to
happen, since the scale Λ is not present in the original integral and was only introduced
in order to split the original integral in a sum of two different terms. Since the final result
cannot depend on Λ, there should be a way to obtain the expansion without introducing
this additional scale. Our ultimate goal is to apply a similar technical expedient to the
calculation of loop diagrams and it is well known that the use of hard cutoffs is impractical
in such calculations. Fortunately it is possible to separate the low- and high-energy regions
using dimensional regularization. To see this, let us rewrite the original integral as follows

(47) I =

∫ ∞
0

dk k−ε
k

(k2 +m2)(k2 +M2)
,
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where we will eventually send ε → 0 at the end of the calculation. (For simplicity, we
did not introduce the d-dimensional angular integration so this is not exactly dimensional
regularization.)

The integral in the low-energy region k ∼ m�M will be

(48) I(I) =

∫ ∞
0

dk k−ε
k

(k2 +m2)M2

(
1− k2

M2
+

k4

M4
+ · · ·

)
.

In Eq. (48) the integral is infrared safe in the region in which k → 0, the dimensional
regulator ε can be chosen positive, so that the integrand is also ultraviolet finite.

The integral in the high-energy region will be

(49) I(II) =

∫ ∞
0

dk k−ε
k

k2(k2 +M2)

(
1− m2

k2
+
m4

k4
+ · · ·

)
.

The integral is ultraviolet safe, and we consider ε < 0, so that the integrand does not give
rise to an infrared singularity in the region where k → 0.

By integrating the first term on the r.h.s. of Eq. (48) one finds, at leading power in the
expansion around m/M ,

(50) I(I) =
m−ε

2M2
Γ
(

1− ε

2

)
Γ
(ε

2

)
=

1

M2

(
1

ε
− lnm+O(ε)

)
.

The integral of the first term on the r.h.s. of Eq. (49) is

(51) I(II) = −M
−ε

2M2
Γ
(

1− ε

2

)
Γ
(ε

2

)
=

1

M2

(
−1

ε
+ lnM +O(ε)

)
.

The poles in ε cancel in the sum of Eqs. (50,51), and the final result is again the one
obtained by means of the cutoff method in Eq. (46).

The reader might be worried that we choose ε < 0 in the low-energy region and ε > 0
in the high-energy region and then combine the two. It is important to remember that the
integrals in dimensional regularization are defined for arbitrary ε: we only choose ε < 0 to
be able to evaluate I(I) as a standard integral, but by analytic continuation the resulting
function on the right-hand side is uniquely defined for any complex-valued ε and can be
combined with I(II).

Also, the fact that in both Eq. (48) and Eq. (49) the integration domain coincides with
the full integration domain of the original integral might seem disturbing at first sight.
Since we integrate the high-energy part over the low-energy region (and vice versa), one
could fear that this leads to additional contributions which are already accounted for in
the low-energy part. To see that this does not happen and that the two parts lead a
life of their own, one should observe that the two integrals scale differently. The low-
energy integral I(I) factors out m−ε, while the high-energy integral I(II) factors out M−ε.
This statement remains true even if we consider the subleading terms. When keeping the
complete dependence on m and M the result is

(52) I =
1

2
Γ
(

1− ε

2

)
Γ
(ε

2

) m−ε −M−ε

M2 −m2
.
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The result clearly displays the low-energy and the high-energy part. Expanding in one
region, one loses the other part and the full integral is recovered after adding the two
contributions. Even though we integrate twice over the full integration domain, there is no
double counting, since the two pieces scale differently: the low-energy integrals can never
produce a term M−ε since they depend analytically on the large scale, and vice-versa.

To demonstrate directly from the integral that there is indeed no double counting, let
us now see what happens if we insist in restricting the integration domain of the low- and
high-energy region integrals when using dimensional regularization. The integral in the
low-energy region would become in this case

IΛ
(I) =

∫ Λ

0
dk k−ε

k

(k2 +m2)M2

(
1− k2

M2
+

k4

M4
+ · · ·

)
=

[∫ ∞
0

dk −
∫ ∞

Λ
dk

]
k−ε

k

(k2 +m2)M2

(
1− k2

M2
+

k4

M4
+ · · ·

)
= I(I) −R(I) .(53)

The first integral in the second line of the equation above is the same as the one in Eq. (48).
In the integrand of R(I), which depends on the cutoff Λ, one can use the fact that k ≥ Λ�
m2 to expand in the small m limit:

R(I) =

∫ ∞
Λ

dkk−ε
k

(k2 +m2)M2

(
1− k2

M2
+ · · ·

)
=

∫ ∞
Λ

dkk−ε
k

k2M2

(
1− m2

k2
− k2

M2
+ · · ·

)
.(54)

For the remainder part R(I), we thus have performed two expansions. First the low-energy
expansion, which is equivalent to expanding the integrand in the limit M →∞. Then we
have expanded the result around m→ 0, which is equivalent to the high-energy expansion.

At this point it is sufficient to observe that for dimensional reasons the integrals in the
equation above must behave as follows

(55)

∫ ∞
Λ

dk kn−ε ∼ Λn+1−ε .

So the cutoff pieces scale as fractional powers of the cutoff. Since the Λ dependent terms
must cancel out completely in the calculation of I, one can as well drop the Λ dependent
integrals from the start. Therefore, when regulating divergences by means of dimensional
regularization one can integrate over the complete integration domain, in this case k ∈
[0,∞].

We can explicitly verify that the cutoff pieces vanish if we also consider the high-energy
integral I(II) in Eq. (49) with a lower cutoff Λ on the integration. Proceeding in the same
way as before, we can rewrite the high-energy integral as the expanded integral without a
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cutoff and a remainder which depends on the cutoff

R(II) =

∫ Λ

0
dkk−ε

k

k2(k2 +M2)

(
1− m2

k2
+ · · ·

)
=

∫ Λ

0
dkk−ε

k

k2M2

(
1− m2

k2
− k2

M2
+ · · ·

)
.(56)

In this remainder, we have again expanded the integrand in both the limit of small m
and also in the limit of large M , but in the opposite order as in R(I). However, the two
expansions commute so that the integrands of R(I) and R(II) are identical. Adding up the
two pieces, we find that

(57) R = R(I) +R(II) =

∫ ∞
0

dkk−ε
k

k2M2

(
1− m2

k2
− k2

M2
+ · · ·

)
.

This is manifestly independent of the cutoff. It is also manifestly zero, because it is given
by a series of scaleless integrals. In the context of SCET, the overlap contribution R is
usually referred to as the “zero-bin” contribution. There are two ways of obtaining the full
overlap R. One can either expand the integrand of the high-energy integral I(II) around the
low-energy limit, or the integrand of the low-energy integral I(I) around the high-energy
limit. Since the overlap is obtained by expanding the single-scale integrals I(I) or I(II) it
is given by scaleless integrals which vanish in dimensional regularization.

The example considered had the purpose of illustrating some common features of the
expansion of Feynman diagrams in the simplest possible setting. The general strategy to
obtain the expansion of a given Feynman integral in a given kinematic limit is the following:

i) Identify all regions of the integrand which lead to singularities in the limit under
consideration,

ii) Expand the integrand in each region and integrate each expansion over the full
phase space.

iii) Add the result of the integrations over the different regions to obtain the expansion
of the original full integral.

In order for the procedure to work, it is necessary to make sure that all of the expanded
integrals are properly regularized. Sometimes dimensional regularization alone is not suf-
ficient to regularize the integrals in every region, and one might need to employ additional
analytic regulators or to perform subtractions. Below, we will discuss the massive Sudakov
form factor, which is an example where this is necessary. It is also important to consider
each region only once to avoid double counting. As stated above, one needs to identify
all regions of integration which lead to singularities. Often, this is a simple task and the
regions which one encounters at one loop are the same which are relevant at higher or-
der. However, there are examples in which new regions must be added to the list when
increasing the number of loops present in the diagram [Phys.Lett.B 465 (1999) 226]. We
also stress that there is so far no general proof that the above procedure always produces
the correct result. Recent work towards such a proof can be found in JHEP 12 (2011) 076.
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k

k + l k + p

Figure 2. One-loop vertex corrections. The Feynman diagram is here
shown in terms of fermions and photons, however, the spin structure is
neglected in this section.

3.2. The Sudakov Problem. We want now to consider the simplest possible example
relevant in the context of SCET, namely a one-loop vertex diagram. We neglect compli-
cations related to the spin of the particles, since the momentum regions that one finds
in the calculation of the tensor integrals are the same that one finds in the calculation
of the scalar integral considered below. With reference to Figure 2, the vertex correction
requires the evaluation of the following Feynman integral (all the internal propagators are
considered massless):

(58) I = iπ−d/2µ4−d
∫
ddk

1

(k2 + i0) [(k + l)2 + i0] [(k + p)2 + i0]
,

where d = 4−2ε is the dimensional regulator. The ’t Hooft scale µ has been introduced to
make the mass dimension of I independent of the value of d. We introduce the following
notation:

(59) L2 ≡ −l2 − i0 , P 2 ≡ −p2 − i0 , Q2 ≡ −(l − p)2 − i0 .

The goal is to calculate the integral in Eq. (58) in the limit in which L2 ∼ P 2 � Q2 that
is, in the case in which the external legs carrying momenta l and p have large energies but
small invariant masses.

Before going any further, we now need to introduce some basic notation used in SCET.
We choose two light-like reference vectors in the direction of the momenta p and l in the

frame in which1 ~Q = 0:

(60) nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1) .

It is immediate to verify that

(61) n2 = n̄2 = 0 , and n · n̄ = 2 .

1In this lectures we employ the “mostly minuses” metric, and the components of a generic four-vector
xµ are (t, x, y, z).
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Any vector can be then decomposed in a component proportional to n, a part proportional
to n̄, and a remainder perpendicular to both

(62) pµ = (n · p) n̄
µ

2
+ (n̄ · p)n

µ

2
+ pµ⊥ ≡ p

µ
+ + pµ− + pµ⊥ .

Splitting the vectors into their light-cone components is useful to organize the expansion,
since the different components scale differently. For the square of the vector p one then
finds

(63) p2 = (n · p)(n̄ · p) + p2
⊥ ,

while the scalar product between two vectors p and q becomes

(64) p · q = p+ · q− + p− · q+ + p⊥ · q⊥ .
In the following we will often identify a vector by means of its components in the n, n̄, and
⊥ basis, with the notation

(65) pµ = ( n · p︸︷︷︸
“+ comp.”

, n̄ · p︸︷︷︸
“− comp.”

, pµ⊥) .

We warn the reader that in certain situations it is convenient to work with the scalar
quantities p+ ≡ n · p and p− ≡ n̄ · p, which should not be mixed up with the related vector
quantities pµ± introduced above. In the following we explicitly indicate what we mean by
the symbols p± whenever the notation can give rise to ambiguities.

We now introduce an expansion parameter λ which vanishes in the limit in which we
are interested in:

(66) λ2 ∼ P 2

Q2
∼ L2

Q2
, and p2 ∼ l2 ∼ λ2Q2 .

We choose the reference vectors in the directions of large momentum flow pµ ≈ Qnµ/2 and
lµ ≈ Qn̄µ/2. The components of p and l will then typically scale as follows

(67) pµ ∼
(
λ2, 1, λ

)
Q , and lµ ∼

(
1, λ2, λ

)
Q ,

but the scaling is not completely unique. We could, for example, choose the reference
vector nµ such that the perpendicular components of pµ are zero, which is compatible with
Eq. (67), but also with

(
1, λ2, λn

)
Q for any n > 1. However, when computing the loop

diagram via the strategy of regions, one finds that only scalings kµ ∼ (λa, λb, λc)Q, with
a+b = 2c are important. For c > 0, these describe particles which go on shell as λ→ 0. In
later sections, we will see that the corresponding propagators are associated with particles
in the low-energy theory. Specifically, upon expanding the integrals, one finds that only
the following four regions give non-vanishing contributions:

• Hard Region (denoted by h in the following) where the components of the inte-
gration momentum scale as kµ ∼ (1, 1, 1)Q,
• Region Collinear to p (denoted by c) where k scales as kµ ∼ (λ2, 1, λ)Q,
• Region Collinear to l (denoted by c̄) where k scales as kµ ∼ (1, λ2, λ)Q,
• Soft Region (denoted by s) where k scales as kµ ∼ (λ2, λ2, λ2)Q.
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All of the other possible scalings of the integration momentum, of the form kµ ∼
(λa, λb, λc)Q and with a, b, c not matching one of the four cases listed above, give rise
upon expanding to scaleless integrals only, and therefore they do not contribute to the
final result.

In the following, we will compute the contribution of each of the non-vanishing regions
in turn, but it is instructive to start by considering an example of a scaling which does
not contribute for the case of the form factor, namely a soft scaling kµ ∼ (λ, λ, λ)Q,
which we will call semi-hard in order to distinguish it from the standard soft region, whose
components scale as λ2. The expansion of the propagator denominators takes the form

(68) (k + l)2 =

O(λ2)︷︸︸︷
k2 +2(

O(λ3)︷ ︸︸ ︷
k+ · l−+

O(λ)︷ ︸︸ ︷
k− · l+ +

O(λ2)︷ ︸︸ ︷
k⊥ · l⊥) +

O(λ2)︷︸︸︷
l2 = 2k− · l+ +O(λ2) ,

and analogously

(69) (k + p)2 = 2k+ · p− +O(λ2) ,

after which the hypothetical semi-hard contribution becomes

(70) Ish = iπ−d/2µ4−d
∫
ddk

1

(k2 + i0) (2k− · l+ + i0) (2k+ · p− + i0)
.

This integrals vanishes: Ish = 0.2 As an exercise, we invite the reader to show that also the
Glauber region kµ ∼ (λ2, λ2, λ)Q gives a vanishing contribution to the form factor integral.

In order to determine the integral that one needs to evaluate when the integration
momentum is considered hard, we consider the way in which the terms in the propagators
in Eq. (58) scale. Clearly k2 ∼ λ0Q2; for the other two propagators one finds

(71) (k + l)2 =

O(1)︷︸︸︷
k2 +2(

O(λ2)︷ ︸︸ ︷
k+ · l−+

O(1)︷ ︸︸ ︷
k− · l+ +

O(λ)︷ ︸︸ ︷
k⊥ · l⊥) +

O(λ2)︷︸︸︷
l2 = k2 + 2k− · l+ +O(λ) ,

and, similarly

(72) (k + p)2 = k2 + 2k+ · p− +O(λ) .

The contribution of the hard region to the integral I is therefore given by

(73) Ih = iπ−d/2µ4−d
∫
ddk

1

(k2 + i0) (k2 + 2k− · l+ + i0) (k2 + 2k+ · p− + i0)
;

it coincides with the form factor integral with on shell external legs (i.e. calculated by
setting p2 = l2 = 0 from the start). The integral evaluates to

Ih =
Γ(1 + ε)

2l+ · p−
Γ2(−ε)

Γ(1− 2ε)

(
µ2

2l+ · p−

)ε
=

Γ(1 + ε)

Q2

(
1

ε2
+

1

ε
ln
µ2

Q2
+

1

2
ln2 µ

2

Q2
− π2

6

)
+O (ε) .(74)

2The calculation proceeds through the same steps as the evaluation of the soft integral when the external
legs are put on-shell, Ish = Is(p

2 = 0, l2 = 0) = 0, which also vanishes, as discussed below.
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The poles in ε are of infrared origin.
In the region collinear to p the integration momentum scales as kµ ∼ (λ2, 1, λ)Q. In this

region k2 ∼ λ2Q2, while

(75) (k + l)2 = 2k− · l+ +O(λ2) , (k + p)2 = O(λ2) .

The collinear region integral is obtained by keeping only the leading term in each prop-
agator

Ic = iπ−d/2µ4−d
∫
ddk

1

(k2 + i0) (2k− · l+ + i0) [(k + p)2 + i0]

= −Γ(1 + ε)

2l+ · p−
Γ2(−ε)

Γ(1− 2ε)

(
µ2

P 2

)ε
=

Γ(1 + ε)

Q2

(
− 1

ε2
− 1

ε
ln
µ2

P 2
− 1

2
ln2 µ

2

P 2
+
π2

6

)
+O(ε) .(76)

We observe that the integral scales as P−2ε . The calculation of the integral in the region
collinear to l is identical to the calculation of the integral in the region collinear to p,
Eq. (76), except that one needs to replace P 2 with L2 in the final result.

In the soft region all of the components of the integration momentum are proportional
to λ2, therefore

(77) k2 = O(λ4) , (k+l)2 = 2k− ·l+ +l2 +O(λ3) , and (k+p)2 = 2k+ ·p−+p2 +O(λ3) ,

and therefore the integral in the soft region is

Is = iπ−d/2µ4−d
∫
ddk

1

(k2 + i0) (2k− · l+ + l2 + i0) (2k+ · p− + p2 + i0)

= −Γ (1 + ε)

2l+ · p−
Γ(ε)Γ (−ε)

(
2l+ · p−µ2

L2P 2

)ε
=

Γ(1 + ε)

Q2

(
1

ε2
+

1

ε
ln
µ2Q2

L2P 2
+

1

2
ln2 µ

2Q2

L2P 2
+
π2

6

)
+O (ε) .(78)

The poles in the last line of Eq. (78) are of ultraviolet origin. As expected, the result
depends on the “new” soft scale Λ2

soft ∼ P
2L2/Q2.

One can now sum the results obtained in the different regions to obtain what was the
original goal of the calculation: an analytic expression for the integral in Eq. (58) in the
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limit in which L2 ∼ P 2 � Q2. One finds

Ih =
Γ (1 + ε)

Q2

(
1

ε2
+

1

ε
ln
µ2

Q2
+

1

2
ln2 µ

2

Q2
− π2

6
+O(λ)

)
Ic =

Γ (1 + ε)

Q2

(
− 1

ε2
− 1

ε
ln
µ2

P 2
− 1

2
ln2 µ

2

P 2
+
π2

6
+O(λ)

)
Ic̄ =

Γ (1 + ε)

Q2

(
− 1

ε2
− 1

ε
ln
µ2

L2
− 1

2
ln2 µ

2

L2
+
π2

6
+O(λ)

)
Is =

Γ (1 + ε)

Q2

(
1

ε2
+

1

ε
ln
µ2Q2

L2P 2
+

1

2
ln2 µ

2Q2

L2P 2
+
π2

6
+O(λ)

)

I≡Ih+Ic+Ic̄+Is =
1

Q2

(
ln
Q2

L2
ln
Q2

P 2
+
π2

3
+O(λ)

)
.(79)

The final result does not depend on the dimensional regulator ε and the reader is invited
to check that it coincides with the one that would be obtained by evaluating directly the
integral in Eq. (58) and then expanding the result in the λ → 0 limit. We stress the fact
that the infrared divergences found in the hard region cancel out against the ultraviolet
divergences found in the sum of the soft and collinear contributions. This feature is general
and requires a nontrivial interplay of the logarithms found in the various integrals:

(80) −1

ε
ln
µ2

P 2
− 1

ε
ln
µ2

L2
+

1

ε
ln
µ2Q2

L2P 2
= −1

ε
ln
µ2

Q2
.

The requirement that infrared divergences of the hard region should cancel against the
ultraviolet divergences of the soft and collinear regions leads to constraints that must be
satisfied by the infrared pole structure of a generic amplitude.


