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Introduction



Canonical Feynman integrals

• canonical basis: bring a differential equation system to eps-form [Henn 2013,

Henn 2015].

dI⃗ = ϵdAI⃗ (1)

For single parameter

∂x I⃗ (x) = ϵA(x)I⃗ (x) (2)

Then the integrals can be solved to be iterated integrals.

• If the integral family belongs to the MPL(multiple polylogarithms), then we can

introduce the degree of transcendentality (transcendental weight) T (f ) which

equals to the number of iteration in the iterated integral.

T (1) = 0,

T (log(z)) = 1, log(z) =

∫ z

1

dx

x

(3)

• In elliptic case, transcendental weight is not so clear [Broedel et al. 2018,

Frellesvig and Weinzierl 2023].

3



Canonical Feynman integrals

How can we get the canonical basis?

• In the MPL case, there are many algorithms to do this. There are basically two
kinds of method:

• transformation of basis:

∂x I⃗ = A(x, ϵ)I⃗ , I⃗ ′ ≡ T · I⃗ ⇒

∂x I⃗
′ = (∂xT · T−1 + T · A · T−1)I⃗ ′

(4)

programs based on above idea: FUCHSIA [Gituliar and Magerya 2017], EPSILON

[Prausa 2017], CANONICA [Meyer 2018], Libra [Lee 2021], INITIAL [Dlapa, Henn, and

Yan 2020]

A = A0 + ϵA1

∂xT · T−1 + T · A0 · T−1 = 0
(5)

• based on properties of integrand: leading singularities, dlog forms [Chicherin et al.

2019, Herrmann and Parra-Martinez 2020, Henn et al. 2020, Chen et al. 2020, Dlapa,

Li, and Zhang 2021]
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Canonical Feynman integrals

• In the elliptic case, no general algorithms like above. And mostly the canonical

basis is obtained by the first way [Frellesvig 2021, Dlapa, Henn, and Wagner

2022].

As for the second way, the generalization of d log-form is not known.

• Recently, an ansatz for banana family has been proposed [Pögel, Wang, and

Weinzierl 2022] and it seems working fine for single-parameter integral family

with Calabi-Yau manifold, including elliptic case.

Banana family shows the math structure, however, we want to generalize this analysis

to more general and phenomenal examples.
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Eps form for a non-planar triangle
with one elliptic curve



The integral family studied

s

p1

p2

Figure 1: Two-loop three-point electroweak form factor

I [ν1, . . . , ν7] = e2ϵγ
∫

dd l1

iπd/2

dd l2

iπd/2

D−ν7
7

Dν11 Dν22 . . .Dν66
(6)

The top sector has been studied in [Broedel et al. 2019]. Now we want to study this

whole family in a different manner. This family has a single parameter

y ≡ −
m2

s
(7)
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The integral family studied

D1 = (k1 − p1)
2, D2 = (k2 − p1)

2 −m2, D3 = (k1 + p2)
2,

D4 = (k1 − k2 + p2)
2 −m2, D5 = (k1 − k2)

2, D6 = k2
2 , D7 = k2

1 .

(p1 + p2)
2 = s

(8)

• LiteRed[Lee 2013] and Kira[Klappert et al. 2020] find 18 master integrals in this

family, 3 in top sector and 15 in sub-sectors.

• Integrals in sub-sectors are all MPLs, so we first construct UT basis for all

sub-sectors by constructing dlog-form basis [Chen et al. 2020, Chen et al. 2022]

then we tackle the top sector.

7



Canonical basis for sub-sectors

Constructing dlog form in the integrand level with Baikov representation. For example,

the most complicated case is sub-sector {1, 1, 1, 1, 0, 0}:

I (φ) =
e2ϵγE sϵ−1

4π2Γ(2− 2ϵ)

∫
dx1dx2dx3dx4dx7u(x)φ(x) ,

u(x) =P−1+ϵ
1 P−ϵ

2 P
1/2−ϵ
3 .

(9)

xi = Di and φ(x) is a rational function for x.

• Find some φ(x) such that

u(x)φ(x) = Pϵ1P
−ϵ
2 P−ϵ

3 d logα1 ∧ . . . ∧ d logα5 (10)

• We can find two such items (2 MIs in this sector)

φ1 =
ϵ3(1− 2ϵ)sP1

x1x2x3x4P3
, φ2 =

ϵ3(1− 2ϵ)s
√

s(s + 4m2)P2
1

x1x2x3x4P2P3
(11)
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Issue for ISP in Baikov representation

In above example, we have

P1 = v , P2 = sv − (v + x1)(v + x3), P3 = v2 +2v(x2 + x4 +2m2) + (x2 − x4)
2 . (12)

where

v ≡ x7 − x1 − x3 + s (13)

There are some freedom in the definition of ISP and this will bring some complexity.

Anyway, sub-sectors can be easily solved in this family. We next turn to the top sector.
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Elliptic integrals in the top sector

Elliptic integrals exist in the top sector. How can we identify this?

• If we try to construct dlog form in the top sector we will encounter∫
P(x)ϵ

dx7√
x7(s + x7)(4m4 + 4m2x7 + sx7 + x27 )

∧ d logα1 . . . ∧ d logα6 (14)

• More efficient way to detect this is to perform maximal cut to extract the most

hardcore information in a sector.

Choose the simplest integral I1 = I [1, 1, 1, 1, 1, 1, 0] in top sector and perform the

maximal cut

I1,mc ∝
∫

P(x7)
ϵ dx7√

x7(s + x7)(4m4 + 4m2x7 + sx7 + x27 )
(15)

We first study this integral in 4 dimension, that is, ϵ→ 0.
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Elliptic integrals in top sector

Under the condition of maximal cut and 4 dimension, we have

I
(4)
1,mc =

iy2

4π3m4

∫
C

dz√
z(z + 1)(z2 + (1− 4y)z + 4y2)

(16)

where z ≡ −yx7. And the elliptic curve is

Y 2 = X (X + 1)(X 2 + (1− 4y)X + 4y2) = (X − a1)(X − a2)(X − a3)(X − a4) (17)

where

a1 = −1, a2 = −
(1 +

√
1− 8y)2

4
, a3 = −

(1−
√
1− 8y)2

4
, a4 = 0 . (18)

Here we assume y is around 0 and we will have

a1 < a2 < a3 < a4 (19)
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Elliptic integrals in top sector

The integration contour C can be deformed like in the figure

Figure 2: Integration contour for I
(4)
1,mc

This contour requires that
√
Y 2 = i

√
|Y |2 on the two line segments [a1, a2] ∪ [a3, a4].
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Elliptic integrals in top sector

Performing two conformal transformations and one variable replacement

t2 = T1(z) =
z − a1

z − a4

a2 − a4

a2 − a1
, t2 = T2(z) =

z − a3

z − a2

a4 − a2

a4 − a3
(20)

Above integral can be mapped to the first kind complete elliptic integrals

i

∫
C

dz√
z(z + 1)(z2 + (1− 4y)z + 4y2)

=

4√
(a3 − a1)(a4 − a2)

∫ 1

0

dt√
(1− t2)(1− k2t2)

=
4K(k2)√

(a3 − a1)(a4 − a2)
.

(21)

where

k2 = 1/T1(a3) = 1/T2(a1) =
(a1 − a2)(a3 − a4)

(a1 − a3)(a2 − a4)
=

1− 4y − 8y2 −
√
1− 8y

1− 4y − 8y2 +
√
1− 8y

. (22)
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Frobenius method for the q expansion

Above I
(4)
1,mc is just one period of the elliptic function corresponding to the elliptic

curve multiplied by some constant coefficients. We define the two periods to be

ψ0(y) =
y2√

(a3 − a1)(a4 − a2)

2K(k2)

π
, ψ1(y) =

y2√
(a3 − a1)(a4 − a2)

iK(1− k2)

3π
.

(23)

the coefficients are set to match the solution from Frobenius method.

From IBP relation, we can derive the following differential equation for I1.

L
(ϵ)
3,y I1,mc = 0 . (24)

where L
(ϵ)
3,y is the Picard-Fuchs operator. In 4 dimension,

L
(0)
3,y I

(4)
1,mc = 0 (25)
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Frobenius method for the q expansion

Why we need L
(0)
3,y I

(4)
1,mc = 0?

• This is equivalent to solve the inhomogeneous term in linear differential equation

system:

∂y I⃗ = (A0 + ϵA1 + . . .)I⃗ (26)

• Get 3 solution at one time

• Get the series expansion results.

• A good guidance to the math structure underneath.
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Frobenius method for the q expansion

L
(0)
3,y =

d3

dy3
−

3 (1− 2y)

y(y + 1)(1− 8y)

d2

dy2
−

−7 + 6y + 30y2 + 8t3

y2(y + 1)2(1− 8y)

d

dx

+
4(−2 + y + 8y2 + 2y3)

y3(y + 1)2(1− 8y)

=

[
d

dy
+

8

8y − 1

] [
d2

dy2
+

(
8

8y − 1
+

1

y + 1
−

3

y

)
d

dy
+

4(2y2 + 4y − 1)

y2(y + 1)(8y − 1)

]
︸ ︷︷ ︸

elliptic operator

.

(27)

First line is derived from IBP. Second line can be performed by Maple command

DFactor.

There are 4 regular singular point

y =
1

8
, 0,−1,∞ (28)

Then we solve this differential equation by Frobenius method.

16



Frobenius method for the q expansion

• First, we expand around the point y = 0. y = −m2/s, this corresponds to the
high energy limit. Why this point?

• Its indical equation is

(r − 2)3 = 0 (29)

which means that it is a MUM (Maximal Unipotent Monodromy) point. This property

will allow us to use the general framework developed for banana family. y = ∞ is also a

MUM point.

• The solution will be in the form

ψk =
1

(2πi)k

k∑
j=0

lnj y

j!

∞∑
n=0

ak−j,n y
n+2 , (k = 0, 1, 2) . (30)

here the power starts from y2 because the solution of indical equation is 2. This

can be solved by ansatz or by command AsymptoticDSolveValue in

Mathematica.
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Frobenius method for the q expansion

Then we get the series expansion solution (easily got up to very high orders)

ψ0 =y2
(
1 + 2y + 10y2 + 56y3 + 346y4 + 2252y5

)
+O(y8) ,

ψ1 =
1

2πi

[
y3

(
3 +

33y

2
+ 100y2 +

2561y3

4
+

42631y4

10

)
+ ψ0 log y

]
+O(y8),

ψ2 =
1

(2πi)2

[
y4

(
9

4
+

45y

2
+

2793y2

16
+

10365y3

8

)
+2πiψ1 log y+

ψ0

2
log2 y

]
+O(y8).

(31)

Here we introduce a new variable

τ(y) =
ψ1(y)

ψ0(y)
, q ≡ e2πiτ (32)

The relation between y and q can be calculated locally to be

q =y(1 + 3y + 15y2 + 85y3 + 522y4 + 3366y5 + 22450y6) +O(y8) ,

y =q − 3q2 + 3q3 + 5q4 − 18q5 + 15q6 + 24q7 +O(y8) .
(33)

Reconstruct the analtytic form by OEIS

y(τ) =
η(τ)3 η(6τ)9

η(2τ)3 η(3τ)9
. (34)
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Frobenius method for the q expansion

To define the relation between y and q globally, we need to compensate possible

discontinuity from ψ1,0:

τ(y) =


ψ1(y)
ψ0(y)

= 1
6
I∗K(1−k2)

K(k2)
, 0 ≤ y <

√
3−1
4

ψ1(y)
ψ0(y)

+ 1
3
= 1

6

(
I∗K(1−k2)

K(k2)
+ 2

)
, otherwise

(35)

And under this definition we have

τ(−1) =
1

2
, τ(0) = i∞, τ(1/8) = 0, τ(∞) =

1

3
. (36)

The singularity are mapped to the cusps of modular form under Γ1(6).
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Frobenius method for the q expansion

y=1

y=0.124758

y=0.125985

y=-0.877213

y=1/4

d=0.459

[1/8,∞]

[0,1/8]

[-1,0]

[-∞,-1]

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 3: The relation between q and y for this family

We can see the relation between q and y is continuous. 3 of the 4 singularities lies on

the unit circle. A benefit for using q variable.
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The ansatz for top sector

Now we have all the elements for the following ansatz

M1 = ϵ4
I1

ψ0(y)
,

M2 =
J(y)

ϵ

d

dy
M1 − F11(y)M1 ,

M3 =
1

Y (y)

[
J(y)

ϵ

d

dy
M2 − F21(y)M1 − F22(y)M2

]
.

(37)

where

J(y) ≡
1

2πi

dy

dτ
=

dy

dq
= ψ2

0(y)(1 + y)(1− 8y)y−3 ,

Y (y) ≡
d2

dτ2
ψ2

ψ0
=
η(2τ)9

η(6τ)3
.

(38)

η is Dedekind eta function. F11,F21,F22 to be determined.
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Explanation for this ansatz

First, we choose one ”good” integral which we make as our first basis (seed), then we

use its derivatives as basis (similar with INITIAL but more radical).

What is a ”good” integral in elliptic case? Why I1?

• dlog forms with only one last elliptic form, recall I1 ∝∫
P(x)ϵ

dx7√
x7(s + x7)(4m4 + 4m2x7 + sx7 + x27 )

∧ d logα1 . . . ∧ d logα6 (39)

• degenerate to UT (MPL) in special kinematics limit. I1(y → 0) is UT integral

(actually this is our boundary condition for this system).
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Explanation for this ansatz

It has been found that this ansatz works amazingly well in even more complicated

geometry [Pögel, Wang, and Weinzierl 2022] and it shows the corresponding structure

behind the integral. That is

L
(0)
3,y ∝ Θq

1

Y (q)
Θ2

q
1

ψ0(q)
. (40)

where

Θq = q
d

dq
= J(y)

d

dy
. (41)

Hint: The study of (factorization property of) differential operator for 4 dimension

integrals may also help understand some general structure in 4− 2ϵ. Since it indicates

the proper variables we should use, in this case, q.
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The ansatz for top sector

The interesting thing is that if we require that the top sector satisfy eps-form

differential equation

J(y)
d

dy

 M1

M2

M3


mc

= ϵAmc(y)

 M1

M2

M3


mc

. (42)

J(y) and Y (y) defined above will just satisfy the non-trivial constraints automatically.

We can further solve F11,F21,F22 to be

F11(y) =F22(y) = ψ0(y)
2 1 + 2y + 28y2

3y4
,

F21(y) =ψ0(y)
4 (−1 + 2y)(−11 + 66y + 84y2 + 88y3)

3y8
.

(43)
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The ansatz for top sector

You will find J(y),Y (y),Fij (y) all have a single form:

ψ0(y)
mA(y) (44)

A(y) is a rational function of y (not arbitrary). Actually, this form corresponds to a

special kind of integrals called modular form [Broedel et al. 2018].
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Modular form: group

• Modular group:

SL2(Z) =

{[
a b

c d

]
: a, b, c, d ∈ Z, ad − bc = 1

}
(45)

it acts on a point on the upper half plane H̄ = H ∪ Q ∪ i∞ like [Broedel et al.

2018, GTM228]

γ(τ) =
aτ + b

cτ + d
(46)

• congruence subgroup of level N of modular group

Γ0(N) =

[
a b

c d

]
∈ SL2(Z) : c = 0 mod N

Γ1(N) =

[
a b

c d

]
∈ SL2(Z) : c = 0 mod N, a = d = 1 mod N

Γ(N) =

[
a b

c d

]
∈ SL2(Z) : b = c = 0 mod N, a = d = 1 mod N

(47)

cusps: {Q ∪ i∞}/Γ
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Modular form: function

• modular function for Γ: A meromorphic function satisfying

f (γ(τ)) = f (τ), γ ∈ Γ (48)

• weakly modular of weight k for Γ: A meromorphic function satisfying

f (γ(τ)) = (cτ + d)k f (τ), γ ∈ Γ (49)

• A modular form of weight k: a weakly modular function of weight k holomorphic

on H̄. They are graded by their weight.

The differential matrix elements we study are modular forms or closely related to the

modular forms.

Use Sage to loop up for the properties of some congruence group Γ and the

corresponding modular forms.
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Canonical differential equation

Then for top sector, we arrive at

Amc = ϵ


(28y2+2y+1)ψ0(y)

2

3y4
1 0

(2y−1)(88y3+84y2+66y−11)ψ0(y)
4

3y8
(28y2+2y+1)ψ0(y)

2

3y4
− (y+1)2(8y−1)ψ0(y)

3

y6

64(y+1)2(8y−1)ψ0(y)
3

27y6
0 2(y+1)(8y−1)ψ0(y)

2

3y4

 .

(50)

This matrix is actually graded by modular weight (exchange M2 and M3):

Amc = ϵ


(28y2+2y+1)ψ0(y)

2

3y4
0 1

64(y+1)2(8y−1)ψ0(y)
3

27y6
2(y+1)(8y−1)ψ0(y)

2

3y4
0

(2y−1)(88y3+84y2+66y−11)ψ0(y)
4

3y8
− (y+1)2(8y−1)ψ0(y)

3

y6
(28y2+2y+1)ψ0(y)

2

3y4

 .

(51)
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Canoncial differential equation

Combining sub-sector UT integrals and we can get the eps-form for the whole integral

family (tow methods):

• Naively, (M1,M2,M3) = T · (I1, I2, I3) where

I1 = I [1, 1, 1, 1, 1, 1, 0], I2 = I [1, 1, 1, 2, 1, 1, 0], I3 = I [1, 1, 1, 1, 1, 2, 0] (52)

I2, I3 already depend on sub-sectors with ϵ factorized.

• More systematically, An ansatz for M3

M3 =
1

Y (y)

[
J(y)

ϵ

d

dy
M2 − F21(y)M1 − F22(y)M2

]
− g⃗(y) · M⃗sub (53)

Require the dependence on sub-sector UT integrals is ϵ factorized.
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Canoncial differential equations

1

2πi

d M1

dτ
= ε

[
η1,2M1 +M2

]
,

1

2πi

d M2

dτ
= ε

[
η4M1 + η1,2M2 + η1,3M3 + 10η2,3M5 − 10η2,3M6 − 8η2,3M7 − 8η2,3M8

+ ϱM9 − 9η2,3M10 + 10η2,3M11 + 12η2,3M12 + 8η2,3M13 − 4η2,3M14

− 7η2,3M15 − 58η2,3M16 − 30η2,3M17 − 8η2,3M18

]
, (54)

1

2πi

d M3

dτ
= ε

[
−

64

27
η1,3M1 + η2,2M3 − 4η3,2M5 + 4η3,2M6 + 2η3,2M7 + 2η3,2M8

− 4ϑM9 − (4η3,2 + 6ϖ)M11 + 4η3,2M13 − 2η3,2M14 + η3,2M15

− (8η3,2 + 24ϖ)M16 − (6η3,2 + 12ϖ)M17 + (5η3,2 + 9ϖ)M18

]
.

where

ϱ =
7− 8y
√
1− 4y

η2,3 , ϑ =
1 + y

√
1− 4y

η3,2 , ϖ =
η3,2

y − 1
. (55)

η are all modular forms.
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Solve all the master integral



Boundary condition

We have already got the differential equation system, to solve the master integrals, we

still need the boundary condition.

They are chosen to be singular point in most cases. We choose y → 0.

ϵ4
I1

y2
= ϵ4

[
1

3
log4 y − π2 log2 y − 40ζ3 log y −

49π4

90

]
+ ϵ5

[
1

5
log5 y −

10π2

9
log3 y

− 42ζ3 log
2 y −

29π4

90
log y +

32π2

3
ζ3 + 32ζ5

]
+ ϵ6

[
7

90
log6 y −

11π2

18
log4 y

− 32ζ3 log
3 y −

23π4

30
log2 y +

2

3

(
31π2ζ3 − 354ζ5

)
log y −

8π6

27
+ 246ζ23

]
+O(ϵ7, y) .

(56)

where Lq = Log [q].

Boundaries of M2,3 can be derived from M1. Sub-sectors are all solved to weight 6.

The calculation is perform by Mellin-Barnes method and asymptotic expansion. There

are tools like MBTools [Belitsky, Smirnov, and Smirnov 2022] and XSummer [Moch and

Uwer 2006] can handle this.
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The series expansion solutions

Now we can solve the system with q-expansion around y = 0, that is, q = 0.

-200 -100 0 100 200 300 400

-1000

-500

0

500

-10 -5 0 5 10
-150

-100

-50

0

50

Figure 4: M
(4)
1 weight-4 part of M1. The results agree well with AMFlow (the points on the graph)

with q only expanded to q8
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The convergent region

The following figure shows the convergent region of M1 with expansion around y = 0.

It is constrained by the singularity y = 1 from subtopologies.

y=1

y=0.124758

y=0.125985

y=-0.877213

y=1/4

d=0.459

[1/8,∞]

[0,1/8]

[-1,0]

[-∞,-1]

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 5: The relation between q and y for this family
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summary



summary

• We get the canonical basis for the non-planar triangle family with one elliptic

curve and solve all the master integrals with q-expansion. (The sub-sector

integrals are actually solved to weight-6 by HPL functions.)

• It seems the ansatz we use can be applied to general case.

• Elliptic integral family with more parameters or more than one elliptic curve?

null space

Thank you!
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