An Introduction to NeatIBP 1.0: A small-size IBP system generator

In collaboration with:

Yang Zhang

Nature of the problem

IBP reduction is a critical step in Feynman integral computation.

IBP reduction computation is heavy for IBP systems with:1. multiple scales2. large size

Nature of the problem

IBP reduction is a critical step in Feynman integral computation.

IBP reduction computation is heavy for IBP systems with: 1. multiple scales 2. large size

Idea of solution:

numerical reduction & expression reconstruction
 finding a smaller sized IBP system

Features of NeatIBP

- 1. Controlling the size of the IBP system by avoiding integrals with denominator power increased.
- 2. Generating IBP relations in Baikov representation, using syzygy equations and module intersection methods.
- 3. Adopting row reduction methods on finite field in IBP generation and selection.
- 4. Employing parallization between sectors.

Inputs and outputs

configurations

relative integrals

Table of Contents

- 1. Description of the algorithms used in NeatIBP
- 2. Demonstration of how to use NeatIBP
- 3. Examples
- 4. Conclusions

IBP relations with multiple propagators

$$0 = \int rac{\mathrm{d}^D l_1}{i\pi^{D/2}} \cdots rac{\mathrm{d}^D l_L}{i\pi^{D/2}} rac{\partial}{\partial l_k^\mu} rac{v^\mu}{D_1^{lpha_1} \cdots D_n^{lpha_n}} = \int rac{\mathrm{d}^D l_1}{i\pi^{D/2}} \cdots rac{\mathrm{d}^D l_L}{i\pi^{D/2}} rac{rac{\partial v^\mu}{\partial l_k^\mu} - v^\mu \sum_{i=1}^n rac{\partial D_i}{\partial l_k^\mu} rac{lpha_k}{D_i}}{D_1^{lpha_1} \cdots D_n^{lpha_n}}$$

Introducing multiple propagators

Target integrals (no multiple propagators) Relevant integrals (no multiple propagators)

Relevant integrals (WITH multiple propagators) Master integrals (no multiple propagators)

The Baikov representation

Feynman integrals in momentum space:

$$I[lpha_1,\cdots,lpha_n] = \int rac{\mathrm{d}^D l_1}{i\pi^{D/2}}\cdots rac{\mathrm{d}^D l_L}{i\pi^{D/2}} rac{1}{D_1^{lpha_1}\cdots D_n^{lpha_n}}$$

Rather than integrating over loop momenta, Baikov representation integrates directly over propagators *z*^{*i*}

$$I[lpha_1,\cdots,lpha_n]=C\int\mathrm{d} z_1\cdots\mathrm{d} z_nP(z)^lpharac{1}{z_1^{lpha_1}\cdots z_n^{lpha_n}}$$

IBP relations in Baikov representation

$$\begin{split} 0 &= \int \mathrm{d} z_1 \cdots \mathrm{d} z_n \sum_{i=1}^n \frac{\partial}{\partial z_i} \left(a_i(z) P^\alpha \frac{1}{z_1^{\alpha_1} \cdots z_n^{\alpha_n}} \right) \\ &= \int \mathrm{d} z_1 \cdots \mathrm{d} z_n \left(\sum_{i=1}^n \frac{\partial a_i}{\partial z_i} P^\alpha + \sum_{i=1}^n \alpha a_i \frac{\partial P}{\partial z_i} P^{\alpha-1} - P^\alpha \sum_{i=1}^n \alpha_i \frac{a_i}{|z_i|} \right) \frac{1}{z_1^{\alpha_1} \cdots z_n^{\alpha_n}} \\ &\text{not Baikov polynomial multiple propagators} \\ &\swarrow \\ &\swarrow \\ & & & & & & & \\ \hline \left(\sum_{i=1}^n a_i(z) \frac{\partial P}{\partial z_i} \right) + b(z) P = 0 \\ & & & & & & & & \\ \hline \left(\sum_{i=1}^n a_i(z) \frac{\partial P}{\partial z_i} \right) + b(z) P = 0 \\ & & & & & & & \\ \hline \left(\sum_{i=1}^n a_i(z) \frac{\partial P}{\partial z_i} \right) + b(z) P = 0 \\ & & & & & & & \\ \hline \left(\sum_{i=1}^n a_i(z) \frac{\partial P}{\partial z_i} - \alpha_i b_i \right) + \alpha b \right) P^\alpha \frac{1}{z_1^{\alpha_1} \cdots z_n^{\alpha_n}} \\ & & & & & & \\ \hline \left(\sum_{i=1}^n \left(\frac{\partial a_i}{\partial z_i} - \alpha_i b_i \right) + \alpha b \right) P^\alpha \frac{1}{z_1^{\alpha_1} \cdots z_n^{\alpha_n}} \\ & & & & & \\ \hline \right) \\ & & & & & & & \\ \hline \right) \\ & & & & & & \\ \hline \right) \\ & & & & & & & \\ \hline \right) \\ & & & & & & \\ \hline \right) \\ & & & & & & \\ \hline \right) \\ & & & & & & & \\ \hline \right) \\ & & & & & & \\ \hline \right) \\ & & & & & & & \\ \hline \right) \\ & & & & & & & \\ \hline \right) \\ & & & & & & & \\ \hline \right) \\ & & & & & & & \\ \hline \right) \\ & & & & & & & \\ \hline \right) \\ & & & & & & & \\ \hline \right) \\ & & & & & & & \\ \hline \right) \\ & & & & & & & \\ \hline \right) \\ & & & & & & & \\ \hline \right) \\ & & & & & & & & \\ \hline \right) \\ & & & & & & & \\ \hline \right) \\ & & & & & & & \\ \hline \right) \\ \\ & & & & & & & & \\ \hline \right) \\ \\ & & & & & & & & \\ \\ \right) \\ \\ & & & & & & & & \\ \\ \right) \\ & & & & & & & & \\ \\ \right) \\ \\ & & &$$

The syzygy equations and module intersection

$$egin{aligned} &\left(\sum_{i=1}^n a_i(z)rac{\partial P}{\partial z_i}
ight)+b(z)P=0 &\Leftrightarrow inom{a_i}{b}\in M_1 \ & M_1=< f_1,f_2,\dots>0 \ & a_i(z)=b_i(z)z_i \ \ ext{for}\ i\in\{j|lpha_j>0\}\Leftrightarrowinom{a_i}{b}\in M_2 \ & M_2=< g_1,g_2,\dots>0 \end{aligned}$$

General expressions exist

$$egin{pmatrix} a_i \ b \end{pmatrix} \in M_1 \cap M_2$$

Module intersection

Seeding and IBP relation generation

Formal IBP relations

$$0 = \int \mathrm{d} z_1 \cdots \mathrm{d} z_n igg(\sum_{i=1}^n igg(rac{\partial a_i}{\partial z_i} - lpha_i b_i igg) + lpha b igg) P^lpha rac{1}{z_1^{lpha_1} \cdots z_n^{lpha_n}}$$

IBP relations generated from Formal IBPs via seeding

$$0=\sum_{j}c_{ij}I_{j}$$

Numeric row reduction on finite field to determine whether the system is enough

Seeding

IBP relation selection

An enough IBP system $0 = \sum_{i} c_{ij} I_j$ Column reduction (numeric + finite field) Linearly independent system $0 = \sum_{i} \tilde{c}_{ij} I_j$ Row reduction (numeric + finite field) $R_{ik} = L_{ij} \tilde{c}_{jk}$ Remove the unneeded relations for reducing the targets

Small-size IBP system minimally needed

Remarks on numeric + finite field matrix reductions

IBP relations with symbolic variables

Enumerate at a generic numerical point $s_{12} \rightarrow \frac{1}{97}, \dots, m_1^2 \rightarrow \frac{1}{9001}, \dots, d \rightarrow \frac{1}{137}$

Numerical IBP relations

Row reduce modulo *p*

RREF form

Risk: numeric point not general enough

Current solution: check on other numeric points afterwards

Tail mask strategy

Parallelization between sectors

Web structure of the sectors

Parallelization scheme in NeatIBP 1.0

Package Installation

https://github.com/yzhphy/NeatIBP

Symmetries in NeatIBP

Polynomial symmetry of G = U + F

 $x_i o x_{\sigma(i)}$

 $egin{aligned} ext{Momentum map} \ l_i &
ightarrow A_{ij} l_j + B_{ij} p_j \ p_i &
ightarrow C_{ij} p_j \end{aligned}$

A counterexample

Propagator cuts in NeatIBP

Cuts in Baikov representation

$$I_{lpha_1,\cdots,lpha_n}|_{\mathcal{C}-\mathrm{cut}} \propto \oint_0 \prod_{i\in\mathcal{C}} \mathrm{d} z_i \int \prod_{i
otin\mathcal{C}} \mathrm{d} z_i P^lpha rac{1}{z_1^{lpha_1}\cdots z_n^{lpha_n}}$$

In NeatIBP 1.0

 $|lpha_i < 2, i \in \mathcal{C}|$

For sectors such that $\alpha_i = 1, i \in \mathcal{C}$

$$|P
ightarrow P|_{z_i
ightarrow 0, i \in \mathcal{C}}$$

Example I

Target integrals with high-degree numerators

Quantity: 2483

Max numerator degree: 5

Max denominator power: 1

#MI: 61

#IBP: 14120

#IBP (FIRE6): 11207942

J. Gluza, K. Kajda, D. A. Kosower, 1009.0742

Example I

Target integrals for differential equations

Quantity: 880

Denominator power: >1

#MI: 61

#IBP: 3313

#IBP (FIRE6): 1010236

Example II

Target integrals from amplitudes

Quantity: 597

#MI: 90

#IBP: 7169

CPU cores: 10 RAM: 128GB

Example III

Target integrals with high-degree numerators

Quantity: 21185

Max numerator degree: 6

Max denominator power: 1

#MI: 83

#IBP: 200074

J. M. Henn, J. Lim, W. J. Torres Bobadilla, 2302.12776

Conclusions

NeatIBP is a parallelized program generating small-size IBP system.

NeatIBP generates IBP relations from Baikov representation using syzygy and module intersection.

The generated small-size IBP system could make the subsequent computations much lighter. Including:

- 1. Numerical reduction & analytic reconstruction.
- 2. Analytic reduction.
- 3. As an input for Blade.
- 4. ...

Current version of NeatIBP is v1.0. Possible future upgrades:

- 1. Parallelization inside sectors.
- 2. To support cutting indices larger than 1. Auto detection of spanning cuts.
- 3. Code optimizations.

4. ...