An Introduction to NeatIBP 1.0: A small-size IBP system generator

In collaboration with:

2305.08783

Nature of the problem

IBP reduction is a critical step in Feynman integral computation.

IBP reduction computation is heavy for IBP systems with: 1. multiple scales 2. large size

Nature of the problem

IBP reduction is a critical step in Feynman integral computation.

IBP reduction computation is heavy for IBP systems with: 1. multiple scales 2. large size

Idea of solution:

1. numerical reduction & expression reconstruction 2. finding a smaller sized IBP system

Features of NeatIBP

- 1. Controlling the size of the IBP system by avoiding integrals with denominator power increased.
- 2. Generating IBP relations in Baikov representation, using syzygy equations and module intersection methods.
- 3. Adopting row reduction methods on finite field in IBP generation and selection.
- 4. Employing parallization between sectors.

Inputs and outputs

configurations

Table of Contents

- 1. Description of the algorithms used in NeatIBP
- 2. Demonstration of how to use NeatIBP
- 3. Examples
- 4. Conclusions

IBP relations with multiple propagators

$$
0=\int\frac{\mathrm{d}^D l_1}{i\pi^{D/2}}\cdots\frac{\mathrm{d}^D l_L}{i\pi^{D/2}}\frac{\partial}{\partial l_k^\mu}\frac{v^\mu}{D_1^{\alpha_1}\cdots D_n^{\alpha_n}}\nonumber\\ =\int\frac{\mathrm{d}^D l_1}{i\pi^{D/2}}\cdots\frac{\mathrm{d}^D l_L}{i\pi^{D/2}}\frac{\frac{\partial v^\mu}{\partial l_k^\mu}-v^\mu\sum_{i=1}^n\frac{\partial D_i}{\partial l_k^\mu}\frac{\partial u_i}{\partial l_i}}{D_1^{\alpha_1}\cdots D_n^{\alpha_n}}
$$

Introducing multiple propagators

Target integrals (no multiple propagators)

Relevant integrals (no multiple propagators)

Relevant integrals (WITH multiple propagators)

Master integrals (no multiple propagators)

The Baikov representation

Feynman integrals in momentum space:

$$
I[\alpha_1,\cdots,\alpha_n]=\int\frac{\mathrm{d}^D l_1}{i\pi^{D/2}}\cdots\frac{\mathrm{d}^D l_L}{i\pi^{D/2}}\frac{1}{D_1^{\alpha_1}\cdots D_n^{\alpha_n}}
$$

Rather than integrating over loop momenta, Baikov representation integrates directly over propagators *zⁱ*

$$
I[\alpha_1,\cdots,\alpha_n]=C\int \mathrm{d}z_1\cdots\mathrm{d}z_n P(z)^\alpha \frac{1}{z_1^{\alpha_1}\cdots z_n^{\alpha_n}}
$$

IBP relations in Baikov representation

$$
0 = \int dz_1 \cdots dz_n \sum_{i=1}^n \frac{\partial}{\partial z_i} \left(a_i(z) P^{\alpha} \frac{1}{z_1^{\alpha_1} \cdots z_n^{\alpha_n}} \right)
$$

\n
$$
= \int dz_1 \cdots dz_n \left(\sum_{i=1}^n \frac{\partial a_i}{\partial z_i} P^{\alpha} + \sum_{i=1}^n \alpha a_i \frac{\partial P}{\partial z_i} P^{\alpha-1} \right) - P^{\alpha} \sum_{i=1}^n \alpha_i \frac{a_i}{|z_i|} \right) \frac{1}{z_1^{\alpha_1} \cdots z_n^{\alpha_n}}
$$

\nnot Baikov polynomial multiple propagators
\n
$$
\sum_{i=1}^n \left(\sum_{i=1}^n a_i(z) \frac{\partial P}{\partial z_i} \right) + b(z) P = 0
$$

\n
$$
0 = \int dz_1 \cdots dz_n \left(\sum_{i=1}^n \left(\frac{\partial a_i}{\partial z_i} - \alpha_i b_i \right) + \alpha b \right) P^{\alpha} \frac{1}{z_1^{\alpha_1} \cdots z_n^{\alpha_n}}
$$
 Without multiple propagators

The syzygy equations and module intersection

$$
\begin{aligned}&\left(\textstyle{\sum_{i=1}^n a_i(z)\frac{\partial P}{\partial z_i}}\right)+b(z)P=0&\Leftrightarrow{a_i\choose b}\in M_1\\&a_i(z)=b_i(z)z_i\;\;\text{ for }i\in\{j|\alpha_j>0\}\Leftrightarrow{a_i\choose b}\in M_2&\text{ } \end{aligned} \qquad \qquad \begin{aligned} &\boxed{M_1=}\\&M_2= \end{aligned}
$$

General expressions exist

$$
\binom{a_i}{b} \in M_1 \cap M_2
$$

Seeding and IBP relation generation

Formal IBP relations Seeding

$$
0=\int \mathrm{d} z_1\cdots \mathrm{d} z_n\Biggl(\sum_{i=1}^n\biggl(\frac{\partial a_i}{\partial z_i}-\alpha_ib_i\biggr)+\alpha b\Biggr)P^\alpha\frac{1}{z_1^{\alpha_1}\cdots z_n^{\alpha_n}}\qquad\qquad \frac{\vec\alpha\to(1,\cdots,1,-2,-3)}{\vec\alpha\to(1,\cdots,1,0,-5)}
$$

IBP relations generated from Formal IBPs via seeding

$$
0=\sum_j c_{ij}I_j \qquad \quad \Longleftarrow
$$

Numeric row reduction on finite field to determine whether the system is enough

 \bullet

IBP relation selection

Column reduction (numeric + finite field) An enough IBP system $0 = \sum_i c_{ij} I_j$ Linearly independent system $0 = \sum_i \tilde{c}_{ij} I_j$ Row reduction (numeric + finite field) $R_{ik} = L_{ij} \tilde{c}_{jk}$ Remove the unneeded relations for reducing the targets

Small-size IBP system minimally needed

Remarks on numeric + finite field matrix reductions

IBP relations with symbolic variables

Enumerate at a generic numerical point $s_{12} \rightarrow \frac{1}{97}, \dots, m_1^2 \rightarrow \frac{1}{9001}, \dots, d \rightarrow \frac{1}{137}$

Numerical IBP relations

Row reduce modulo *p*

RREF form

Risk: numeric point not general enough

Current solution: check on other numeric points afterwards

Tail mask strategy

Parallelization between sectors

Web structure of the sectors **Parallelization scheme in NeatIBP** 1.0

Package Installation

<https://github.com/yzhphy/NeatIBP>

Symmetries in NeatIBP

Polynomial symmetry of $G = U + F$ \longleftarrow Momentum map

 $x_i \rightarrow x_{\sigma(i)}$

 $l_i \rightarrow A_{ij} l_j + B_{ij} p_j$ $p_i \rightarrow C_{ij} p_j$

A counterexample

Propagator cuts in NeatIBP

Cuts in Baikov representation

$$
I_{\alpha_1,\cdots,\alpha_n}|_{\mathcal{C}-\text{cut}}\propto\oint_0\prod_{i\in\mathcal{C}}\text{d}z_i\int\prod_{i\notin\mathcal{C}}\text{d}z_iP^\alpha\frac{1}{z_1^{\alpha_1}\cdots z_n^{\alpha_n}}
$$

In NeatIBP 1.0

 $\alpha_i < 2, i \in \mathcal{C}$

For sectors such that $\alpha_i = 1, i \in \mathcal{C}$

$$
P\to P|_{z_i\to 0, i\in \mathcal{C}}
$$

Example I

Target integrals with high-degree numerators

Quantity: 2483

Max numerator degree: 5

Max denominator power: 1

#MI: 61

#IBP: 14120

#IBP (FIRE6): 11207942

J. Gluza, K. Kajda, D. A. Kosower, 1009.0742

Example I

Target integrals for differential equations

Quantity: 880

Denominator power: >1

#MI: 61

#IBP: 3313

#IBP (FIRE6): 1010236

J. Gluza, K. Kajda, D. A. Kosower, 1009.0742

Example II

Target integrals from amplitudes

Quantity: 597

#MI: 90

#IBP: 7169

CPU cores: 10 RAM: 128GB

Example III

Target integrals with high-degree numerators

Quantity: 21185

Max numerator degree: 6

Max denominator power: 1

#MI: 83

#IBP: 200074

J. M. Henn, J. Lim, W. J. Torres Bobadilla, 2302.12776

Conclusions

NeatIBP is a parallelized program generating small-size IBP system.

NeatIBP generates IBP relations from Baikov representation using syzygy and module intersection.

The generated small-size IBP system could make the subsequent computations much lighter. Including:

- 1. Numerical reduction & analytic reconstruction.
- 2. Analytic reduction.
- 3. As an input for Blade.
- 4. …

Current version of NeatIBP is v1.0. Possible future upgrades:

- 1. Parallelization inside sectors.
- 2. To support cutting indices larger than 1. Auto detection of spanning cuts.
- 3. Code optimizations.

4. …