有限域/块三角系统

马滟青 (北京大学)

第一届量子场论数学结构讲习班——费曼圈积分 合肥,2023/05/15-19

Feynman integrals reduction based on Laporta's algorithm

Integration-by-parts: example

• A family of FIs:
$$F(n) = \int \frac{\mathrm{d}^D \ell}{(2\pi)^D} \frac{1}{(\ell^2 - \Delta)^n}$$

> Vanishing on the big hypersphere with radius R

Lagrange, Gauss, Green, Ostrogradski, 1760s-1830s 't Hooft, Veltman, NPB (1972)

$$\int \frac{\mathrm{d}^D \ell}{(2\pi)^D} \frac{\partial}{\partial \ell^{\mu}} \left[\frac{\ell^{\mu}}{(\ell^2 - \Delta)^n} \right] \stackrel{\text{l}}{=} \int_{\partial} \frac{\mathrm{d}^{D-1} S_{\mu}}{(2\pi)^D} \left[\frac{\ell^{\mu}}{(\ell^2 - \Delta)^n} \right] \stackrel{\text{l}}{=} 0.$$

- Integrand: fixed power in R; Measure: R^{D-1}
- Thus vanishing in dimensional regularization

Relations between FIs

$$0 = \int_{\ell} \left[\frac{D}{(\ell^2 - \Delta)^n} - n \int_{\ell} \frac{2(\ell^2 - \Delta) + 2\Delta}{(\ell^2 - \Delta)^{n+1}} \right] = (D - 2n)F(n) - 2n\Delta F(n+1)$$
$$F(n+1) = \frac{1}{-\Delta} \frac{n - \frac{D}{2}}{n}F(n)$$

• All FIs in this family can be expressed by F(1)

IBP equations

> Dimensional regularization: vanish at boundary

't Hooft, Veltman, NPB (1972) Chetyrkin, Tkachov, NPB (1981)

• Linear equation:
$$\sum_{\vec{\nu'}} Q^{\vec{\nu}jk}_{\vec{\nu'}}(D,\vec{s}) I_{\vec{\nu'}}(D,\vec{s}) = 0$$

- Q: polynomials in D, \vec{s}
- Plenty of linear equations can be easily obtained by varying: \vec{v} , *j*, *k*

Master integrals

> # of equations grows faster than # of FIs

Laporta, Remiddi, 9602417, Gehrmann, Remiddi, 9912329

• Let positive powers $d = v_{i_1} + \dots + v_{i_z} - Z$, nonpositive $r = -(v_{i_{z+1}} + \dots + v_{i_N})$,

 $N_{d,r} = C_{d+z-1}^d C_{r+N-z-1}^r$ is the **#** of FIs with fixed d, r

- **#** of equations (for seeds with fixed d, r) = $L(L + E) \times N_{d,r}$
- # of new FIs = $N_{d+1,r} + N_{d+1,r+1}$ ($\approx 2 N_{d,r}$ for sufficient large d, r)
- Expectation: finite # of linearly independent FIs

> A family of FIs form a FINITE-dim. linear space

Proved by: Smirnov, Petukhov, 1004.4199

- Bases of the linear space called master integrals (MIs)
- IBPs reduce tens of thousands of FIs to much less MIs

IBP reduction

> Laporta's algorithm to do reduction

$$\sum_{\vec{\nu}'} Q^{\vec{\nu}jk}_{\vec{\nu}'}(D,\vec{s}) I_{\vec{\nu}'}(D,\vec{s}) = 0$$

Laporta, 0102033

- Generate eqs for all \vec{v} with $d \in [d_{min}, d_{max}], r \in [r_{min}, r_{max}]$
- Ordering: simpler FI has smaller z, then smaller d, then smaller r
- Solving linear eqs to eliminate more complicated FIs
- Eventually, all FIs are linear combinations of MIs

Solving IBP eqs.: automatic, any-loop order

- Public codes: AIR, FIRE, LiteRed, Reduze, Kira, FiniteFlow, Blade, NeatIBP...
- Many more private codes
- Warning: time-consuming for complicated problems

Current status of integral reduction

➢ IBP is crucial

Laporta algorithm

Laporta, 0102033

Difficulties of IBP method

- Complicated intermediate expressions
- Too many auxiliary equations E.g. Laporta 1910.01248

Hundreds GB RAM

Months of runtime using super computer

E.g. J. Klappert et al., 2008.06494

E.g. Davies, Herren, Steinhauser, 1911.10214 (wall time 860 days)

Selected developments

- Finite field: solving intermediate express swell Manteuffel, Schabinger, 1406.4513
- Syzygy equations: trimming IBP system

Gluza, Kajda, Kosower, 1009.0472

Larsen, Zhang, et. al., 1511.01071, 1805.01873, 2104.06866

Block-triangular form: minimize IBP system (needs input)

Liu, YQM, 1801.10523, Guan, Liu, YQM, 1912.09294

• A better choice of basis: UT basis/ D-factorized $_{\rm L}$

S. Abreu, et al., PRL (2019)

Usovitsch, 2002.08173 A. V. Smirnov, V. A. Smirnov , 2002.08042

Finite field

Numerical sampling and reconstruction

Functional reconstruction

Univariate polynomial: Newton formula

$$f(z) = \sum_{r=0}^{R} a_r \prod_{i=0}^{r-1} (z - y_i)$$

= $a_0 + (z - y_0) \left(a_1 + (z - y_1) \left(a_2 + (z - y_2) \left(\dots + (z - y_{R-1}) a_R \right) \right) \right),$

Multivariate polynomial: iterative Newton formula

$$f(z_1,\ldots,z_n) = \sum_{r=0}^R a_r(z_2,\ldots,z_n) \prod_{i=0}^{r-1} (z_1-y_i).$$

Univariate rational function: Thiele formula

$$f(z) = a_0 + \frac{z - y_0}{a_1 + \frac{z - y_1}{a_2 + \frac{z - y_2}{\dots + \frac{z - y_N}{a_N}}}}$$

= $a_0 + (z - y_0) \left(a_1 + (z - y_1) \left(a_2 + (z - y_2) \left(\dots + \frac{z - y_{N-1}}{a_N} \right)^{-1} \right)^{-1} \right)^{-1}$,

Multivariate rational function

T. Peraro, JHEP(2019) J. Klappert, F. Lange, Comput. Phys. Commun(2019)

Finite field

Problem to solve

Big numbers encountered in numerical sampling

> Arithmetic

$$\phi_p(z) = z \operatorname{Mod} p$$

$$\phi_p(1/b) = t \Big|_{t * b \operatorname{Mod} p = 1}$$

$$\phi_p(a/b) = \phi_p(a)\phi_p(1/b)$$

E.g.
$$1 = GCD(7,3) = 1 * 7 + (-2) * 3$$

 $\Rightarrow \phi_p(1/3) = (-2)mod 7 = 5$

EEA algorithm

Rational Reconstruction

Wang, Guy, Davenport, SIGSAM(1982)

g	а	b	a - b[a/b]	 $g_{i-2} - g_{i-1}q_i$	0
S	1	0	1	 $s_{i-2} - s_{i-1}q_i$	
t	0	1	-[a/b]	 $t_{i-2} - t_{i-1}q_i$	
q			[<i>a</i> / <i>b</i>]	 $q_i \equiv [g_{i-2}/g_{i-1}]$	

$$a s_{i} + b t_{i} = g_{i}$$
Let $a = p$:
 $g_{i} = b t_{i} \mod p \quad \textcircled{\bullet} \quad g_{i}/t_{i} \mod p = b$

$$b \xrightarrow{Rational \, Reconstruct} \quad g_{i}/t_{i}$$
When $g_{i}^{2} \leq p, t_{i}^{2} \leq p, GCD(g_{j}, t_{j}) = 1$

Rational Reconstruction

> Example

g	7	3	1	0
S	1	0	1	-3
t	0	1	-2	7
q			2	

$$3 \xrightarrow{\text{Rational Reconstruction}} -\frac{1}{2}$$

Question

• What happens if *p* is not large enough?

Chinese remainder theorem

Evaluation under different primes

• Obtain arbitrarily large $p = p_1 p_2 \dots p_k$

More in detail, given $a \in Z_n$, a set of pairwise co-prime numbers $n_1, \ldots n_k$ such that $n = n_1 \cdots n_k$, and a set of congruences

$$a_i = a \mod n_i,\tag{A.9}$$

a can be uniquely determined in \mathbb{Z}_n as

$$a = \sum_{i} m_i a_i \mod n,\tag{A.10}$$

where

$$m_i \equiv \left(\left(\frac{n}{n_i}\right)^{-1} \mod n_i\right) \frac{n}{n_i}.$$
 (A.11)

Chinese remainder theorem

		ln[29]:= m1 = ModularInverse[105/5, 5] * 105/5 [模逆	
ln[26]:=	Mod[46, 3]	Out[29]= 21	
	模余 Mod[46 5]	In[30]:= m2 = ModularInverse[105/7,7] * 105/7 _ 模逆	
	[模余	Out[30]= 15	
	Mod[46, 7] 模余	In[31]:= m3 = ModularInverse[105/3, 3] * 105/3 模逆	
		Out[31]= 70	
Out[26]=	1	$\ln[32] = n = 3 * 5 * 7$	
Out[27]=	1	Out[32]= 105	
Out[28]=	4	$\ln[33] = a = m1 * 1 + m2 * 4 + m3 * 1$	
		Out[33]= 151	
		In[34]:= Mod[a,n] 模余	
		Out[34]= 46	

Block-triangular form

Block-triangular form

Search algorithm

$$> \text{Decomposition of } Q_i(\vec{s},\epsilon) \qquad \sum Q_i(\vec{s},\epsilon) I_i(\vec{s},\epsilon) = 0$$

$$Q_i(\vec{s},\epsilon) = \sum_{\mu_0=0}^{\epsilon_{max}} \sum_{\mu} \tilde{Q}_i^{\mu_0\mu_1\dots\mu_r} \epsilon^{\mu_0} s_1^{\mu_1} \dots s_r^{\mu_r} \qquad \cdot \quad \tilde{Q}_i^{\mu_0\mu_1\dots\mu_r} \text{ are unknowns}$$

$$\cdot \quad \mu_1 + \dots + \mu_r = d_i$$

$$> \text{Input from numerical IBP} \quad I_i(\vec{s},\epsilon) = \sum_{j=1}^n C_{ij}(\vec{s},\epsilon) M_j(\vec{s},\epsilon)$$

$$\Rightarrow \quad \sum \sum_{i=1}^n \tilde{Q}_i^{\mu_0\dots\mu_r} \epsilon^{\mu_0} s_1^{\mu_1} \dots s_r^{\mu_r} C_{ij}(\vec{s},\epsilon) M_j(\vec{s},\epsilon) = 0$$

 $\sum_{\mu_0,\mu} \sum_{j=1}^{Q_i} Q_i \qquad e^{i \circ S_1}$

Linear equations:

$$\sum_{\mu_0,\mu} \tilde{Q}_i^{\mu_0\dots\mu_r} \epsilon^{\mu_0} s_1^{\mu_1} \dots s_r^{\mu_r} C_{ij}(\vec{s},\epsilon) = 0$$

- With enough constraints $\Rightarrow \tilde{Q}_i^{\mu_0 \dots \mu_r}$
- With finite field technique, equations can be efficiently solved
- Relations among $G \equiv \{I_1, I_2, \dots I_N\}$ can be determined

Reduction

\succ With $G = G_1 \cup G_2$, satisfy

- G_1 is more complicated than G_2
- G_1 can be reduced to G_2

 $\begin{array}{l} Q_{11} \ I_1 + Q_{12} \ I_2 + Q_{13} \ I_3 + Q_{14} \ I_4 + \ \dots + Q_{1N} \ I_N = 0 \\ Q_{21} \ I_1 + Q_{22} \ I_2 + Q_{23} \ I_3 + Q_{24} \ I_4 + \ \dots + Q_{2N} \ I_N = 0 \\ Q_{33} \ I_3 + Q_{34} \ I_4 + \ \dots + Q_{3N} \ I_N = 0 \\ Q_{43} \ I_3 + Q_{44} \ I_4 + \ \dots + Q_{4N} \ I_N = 0 \end{array}$

Algorithm Search for efficient relations

- 1. Set degree bound
- 2. Search relations among G
- 3. If obtained relations are enough to determine G_1 by G_2 , stop;

else, increase degree bound and go to step 2

\succ Conditions for G_1 and G_2

- **1**. Relations among G_1 and G_2 are not too complicated: easy to find
- 2. $#G_1$ is not too large: numerically diagonalize relations easily

Adaptive search strategy

Semi-analytic

- The number of unknowns of full-analytic block-triangular form may be too large
- Keep a subset of variables analytic \Rightarrow easy to search
- The integral set is the same \Rightarrow still very efficient
- More than one block-triangular form is needed

> Adaptive search

- 1. n = 1
- 2. Search *n*-variable block-triangular form within time limit T
- 3. If search succeed, n + + and go to step 2, otherwise go to step 4
- 4. Perform reduction by solving the most efficient linear system(*i*-variable)

Exploit full potential of block-triangular form

$$Q_i(z) = \sum_{\mu} Q_i \qquad z_1 \qquad \dots z_r$$

 $O(\vec{z}) - \sum \tilde{O}^{\mu_1 \dots \mu_r} z^{\mu_1} z^{\mu_r}$

$$Q_{i}(z_{1,0}, \dots z_{r-1,0}, \mathbf{z}_{r}) = \sum_{\mu_{r}} \tilde{Q}_{i}^{\mu_{0}} z_{r}^{\mu_{r}}$$
$$Q_{i}(z_{1,0}, \dots z_{r-2,0}, \mathbf{z}_{r-1}, \mathbf{z}_{r}) = \sum_{\mu_{r-1}, \mu_{r}} \tilde{Q}_{i}^{\mu_{r-1}\mu_{r}} z_{r-1}^{\mu_{r-1}} z_{r}^{\mu_{r}}$$

... ...

Package: Blade

Download

Guan, Liu, Ma, Wu, 230x.xxxx

--- 75 Commits 🖇 1 Branch 🛷 0 Tags 🗔 2.4 MB Project Storage

Block-triangular form improved Feynman integral decomposition .

Description

- Carefully designed integral set
- Flexible polynomial ansatz
- Automatic reduction
- Usually improve the efficiency of IBP reduction by 1-2 orders

A four loop example

> Forward scattering with massive internal line

- Functions of ϵ and m_t^2 ($k1^2 \rightarrow 1$)
- Feynman integrals up to degree 4
- Applied to $e^+e^- \rightarrow \gamma^* \rightarrow t \ \bar{t} \ at \ N^3 LO_{QCD}$

Chen, Guan, He, Liu, YQM 2209.14259

Comparison

# int.	# MIs	<i>t_{search}/</i> h	<i>t_{IBP}</i> /s	<i>t_{solve}</i> /s	# IBP	# sample	# primes
43788	369	8	432	4.5	64	4555	7

About two orders of magnitude faster than plain IBP

Outline

I. Introduction

II. Auxiliary mass flow

III. Block-triangular form

IV. CalcLoop

V. Summary and outlook

Precision: gateway to discovery

Discovery via precision

- (HL-)LHC, BELLII, EIC, CEPC/ILC/FCC-ee
- Search anomalous deviations from theory
- Interplay between exp. and th.

Era of precision physics at the LHC

> High-precision data

- Many observables probed at
 precent level precision
- At least NNLO QCD and NLO EW corrections generally required (plus parton shower, resummation, etc.)

Automatic NNLO perturbative calculation is highly demanded

A "billion-dollar project"

- Halving total uncertainty \approx building another LHC
- Note: LHC cost about 10 billion

Perturbative QFT

1. Generate Feynman amplitudes

- Feynman diagrams and Feynman rules (New developments: unitarity, recurrence relation, CHY, ...)
- Express amplitudes as linear combinations of FIs with rational coefficients

2. Calculate Feynman loop integrals (FIs)

Integral reduction + Master integrals calculation

3. Perform phase-space integrations

- Monte Carlo simulation with IR subtractions
- Relating to loop integrals via reverse unitarity (if no jet)

$$\int \frac{\mathrm{d}^D p}{(2\pi)^D} (2\pi) \delta_+(p^2) = \int \frac{\mathrm{d}^D p}{(2\pi)^D} \left(\frac{\mathrm{i}}{p^2 + \mathrm{i}0^+} + \frac{-\mathrm{i}}{p^2 - \mathrm{i}0^+} \right)$$

Fully automatic calculation: packages ABC

	Generate amplitudes	Manipulate amplitudes	Integral reduction	Master integrals calculation
Package used	FeynArts or qgraf	CalcLoop	Blade	AMFlow
Notes	https://feyna rts.de/ http://cfif.ist. utl.pt/~paulo /qgraf.html	<u>https://gitlab.co</u> <u>m/yqma/CalcLoop</u>	<u>https://gitlab.co</u> <u>m/multiloop-</u> <u>pku/blade</u>	<u>https://gitlab.</u> <u>com/multiloop</u> <u>-pku/amflow</u>
. Fully system		Implementing block t	riongular form	

- Fully automatic, valid to any-loop order
- The key: **AMFlow**

implementing block-triangular form,

usually improves efficiency by $O(10^2)$

Main challenge: integral reduction is time/resource consuming ٠

The dawn of automatic multi-loop calculation!

Automatic NLO correction obtained more than 10 years ago: MadGraph, Helac, FDC, etc.

Outline

I. Introduction

II. Auxiliary mass flow method

III. Block-triangular form

IV. CalcLoop

V. Summary and outlook

Differential equations: example

> Due to IBP: DEs of MIs

Boundary Condition

$$-I_{11}|_{m^2 \to 0} = (-s)^{D/2-2} \Gamma(2-D/2) \frac{\Gamma(D/2-1)^2}{\Gamma(D-2)}$$
$$-I_{10}$$

DEs method

- ✓ Step 1: Set up \vec{s} -DEs of MIs
 - Differentiate MIs w.r.t. invariants \vec{s} , such as m^2 , $p \cdot q$
 - **IBP relations result in:** $\frac{\partial}{\partial s_i} \vec{I}(D, \vec{s}) = A_i(D, \vec{s}) \vec{I}(D, \vec{s})$

Kotikov, PLB(1991)

- **?** Step 2: Calculate boundary condition
 - Calculate integrals at special value of m^2 , p^2 (strategy of region)
 - Case by case, not systematic enough, maybe still hard!
- ✓ Step 3: Solve DEs
 - Analytical : if ϵ -form exists, but not always Henn, 1304.1806
 - Numerical: efficient, systematic (explain later)

Since 90s'

Using IBPs: express any FI as linear combination of MIs, also setup DEs for MIs

FIs \triangleq **Linear algebra** \oplus **Master integrals**

Input:

The same kinematics

The same spacetime dimension

The same number of loops

DEs method: needs BCs

Current status: master integrals calculation

Main methods

- Mellin-Barnes representation
 Usyukina (1975)
 Smirnov, 9905323
 J. Wang, ...
- Difference equations Laporta, 0102033 Lee, 0911.0252
- Differential equations Kotikov, PLB(1991)

Analytical : if ϵ -form exists

Henn, 1304.1806 L.B Chen, L.L. Yang, G. Yang, Y. Zhang, ...

Numerical: general and efficient

X. Liu, YQM, C. Y. Wang, 1711.09572 Hidding, 2006.05510 X. Liu, YQM, 2201.11669

Powered by auxiliary mass flow

See also Prof. Yang's talk

Auxiliary mass terms

X. Liu, YQM, C. Y. Wang, 1711.09572

> Auxiliary FIs

$$I_{\vec{\nu}}^{\mathrm{aux}}(D,\vec{s},\eta) = \int \prod_{i=1}^{L} \frac{\mathrm{d}^{D}\ell_{i}}{\mathrm{i}\pi^{D/2}} \frac{\mathcal{D}_{K+1}^{-\nu_{K+1}} \cdots \mathcal{D}_{N}^{-\nu_{N}}}{(\mathcal{D}_{1} - \lambda_{1}\eta + \mathrm{i}0^{+})^{\nu_{1}} \cdots (\mathcal{D}_{K} - \lambda_{K}\eta + \mathrm{i}0^{+})^{\nu_{K}}}$$

- $\lambda_i \ge 0$ (typically 0 or 1), an auxiliary mass if $\lambda_i > 0$
- Analytical function of η
- Physical result obtained by (causality)

$$I_{\vec{\nu}}(D,\vec{s}) \equiv \lim_{\eta \to i0^{-}} I_{\vec{\nu}}^{\mathrm{aux}}(D,\vec{s},\eta)$$

• 1) Setup η -DEs; 2) Calculate boundary conditions; 3) Solve η -DEs

$\gg \eta$ -DEs for MIs in auxiliary family using IBP

$$\frac{\partial}{\partial \eta} \vec{I}^{\text{aux}}(D, \vec{s}, \eta) = A(D, \vec{s}, \eta) \vec{I}^{\text{aux}}(D, \vec{s}, \eta)$$

Flow of auxiliary mass

Solve ODEs of MIs

$$\frac{\partial}{\partial \eta} \vec{I}^{\mathrm{aux}}(D, \vec{s}, \eta) = A(D, \vec{s}, \eta) \vec{I}^{\mathrm{aux}}(D, \vec{s}, \eta)$$

- If $\vec{I}^{aux}(D, \vec{s}, \infty)$ is known, solving ODEs numerically to obtain $\vec{I}^{aux}(D, \vec{s}, i0^-)$
- A well-studied mathematical problem

Step1: Asymptotic expansion at $\eta = \infty$ Step2: Taylor expansion at analytical points Step3: Asymptotic expansion at $\eta = 0$

• Efficient to get high precision : ODEs, known singularity structure

Boundary values at $\eta \to \infty$

> Nonzero integration regions as $\eta \to \infty$

- Linear combinations of loop momenta: $\mathcal{O}(\sqrt{|\eta|})$ or $\mathcal{O}(1)$
- \succ Simplify propagators at $\eta \rightarrow \infty$
 - ℓ_L is the $\mathcal{O}(\sqrt{|\eta|})$ part of loop momenta
 - ℓ_S is the $\mathcal{O}(1)$ part of loop momenta
 - p is linear combination of external momenta

$$\frac{1}{(\ell_{\rm L}+\ell_{\rm S}+p)^2-m^2-\kappa\,\eta}\sim\frac{1}{\ell_{\rm L}^2-\kappa\,\eta}$$

• Unchange if $\ell_L = 0$ and $\kappa = 0$

Boundary FIs after simplification

- 1. Vacuum integrals
- **2.** Simpler FIs with less denominators, if all loop momenta are O(1)

Beneke, Smirnov, 9711391 Smirnov, 9907471

Iterative strategy

> For boundary FIs with less denominators:

• Calculate them again use AMF method, even simpler boundary FIs as input

(besides vacuum integrals)

X. Liu, YQM, 2107.01864

- Eventually, leaving only (single-mass) vacuum integrals as input
- Kinematic information can be recovered by linear algebra!

> Typical single-mass vacuum MIs

Baikov, Chetyrkin, 1004.1153 Lee, Smirnov, Smirnov, 1108.0732 Georgoudis, et. al., 2104.08272

- Much simpler to be calculated
- The same number of loops and spacetime dimensions

From vacuum integrals to p-integrals

> A family of single-mass vacuum integrals

$$I_{\vec{\nu}}(D, m^2) = \int \prod_{i=1}^{L} \frac{\mathrm{d}^D \ell_i}{\mathrm{i}\pi^{D/2}} \frac{\mathcal{D}_{K+1}^{-\nu_{K+1}} \cdots \mathcal{D}_N^{-\nu_N}}{(\mathcal{D}_1 + \mathrm{i}0^+)^{\nu_1} \cdots (\mathcal{D}_K + \mathrm{i}0^+)^{\nu_K}}$$
$$\mathcal{D}_1 = \ell_1^2 - m^2 + \mathrm{i}0^+$$

- m^2 : the only scale. Can choose $m^2 = 1$
- Propagator (p-)integrals

$$\widehat{I}_{\vec{\nu}'}(\ell_1^2) = \int \left(\prod_{i=2}^L \frac{\mathrm{d}^D \ell_i}{\mathrm{i}\pi^{D/2}}\right) \frac{\mathcal{D}_{K+1}^{-\nu_{K+1}} \cdots \mathcal{D}_N^{-\nu_N}}{\mathcal{D}_2^{\nu_2} \cdots \mathcal{D}_K^{\nu_K}} \qquad \qquad \vec{\nu} =$$

$$\vec{\nu}' = (\nu_2, \cdots, \nu_N)$$
$$\nu = \sum_{i=1}^N \nu_i$$

- As ℓ_1^2 is the only scale: $\widehat{I}_{\vec{\nu}'}(\ell_1^2) = (-\ell_1^2)^{\frac{(L-1)D}{2} \nu + \nu_1} \widehat{I}_{\vec{\nu}'}(-1)$
- L-loop single-mass vacuum integral expressed by (L 1)-loop p-integral

$$I_{\vec{\nu}} = \int \frac{\mathrm{d}^{D}\ell_{1}}{\mathrm{i}\pi^{D/2}} \frac{(-\ell_{1}^{2})^{\frac{(L-1)D}{2}-\nu+\nu_{1}}}{(\ell_{1}^{2}-1+\mathrm{i}0^{+})^{\nu_{1}}} \widehat{I}_{\vec{\nu}'}(-1) = \frac{\Gamma(\nu-LD/2)\Gamma(LD/2-\nu+\nu_{1})}{(-1)^{\nu_{1}}\Gamma(\nu_{1})\Gamma(D/2)} \widehat{I}_{\vec{\nu}'}(-1)$$

From p-integrals to vacuum integrals

> Apply AMF method on (L - 1)-loop p-integral

Z. F. Liu, YQM, 2201.11637

1) IBP to setup η **-DEs**

2) Single-mass vacuum integrals no more than (L - 1) loops as input

Single-mass vacuum integrals with L loops are determined by

that with no more than (L-1) loops (besides IBP)

• Boundary: 0-loop p-integrals equal 1

Only IBPs are needed to determine FIs!

FIs *≜* Linear algebra

Package: AMFlow

Download

X. Liu, YQM, 2201.11669

Link: <u>https://gitlab.com/multiloop-pku/amflow</u>

Name	Last commit	Last update
🗅 diffeq_solver	update	5 months ago
🗅 examples	update	3 months ago
🗅 ibp_interface	fix_a_bug_for_mpi_version	1 week ago
C AMFlow.m	fix mass mode	2 months ago
M+ CHANGELOG.md	update changelog	1 week ago
₩ FAQ.md	update	6 months ago
😜 LICENSE.md	test	7 months ago
M# README.md	update	3 months ago
🕒 options_summary	update	3 months ago

Sang	2202.11615
Tao	2204.06385
Chen	2204.13500
Armadillo	2205.03345
Chaubey	2205.06339
Zhang	2205.06124
Abreu	2206.03848
Bonciani	2206.10490
Feng	2207.14259
Feng	2208.04302
Chaubey	2208.05837
Sang	2208.10118
Tao	2209.15521
Sang	2210.02979
Henn	2210.13505
Badger	2210.17477
Jakubčík	2211.08446
Abreu	2211.08838
Wang	2211.13713

Description

- The first (method and) package that can calculate any FI (with any number of loops, any *D* and \vec{s} , or linear propagators) to arbitrary precision, *given sufficient resource*
- Integral reduction is the bottleneck

Outline

I. Introduction

II. Auxiliary mass flow method

III. Block-triangular form

IV. CalcLoop

V. Summary and outlook

Outline

I. Introduction

II. Auxiliary mass flow method

III. Block-triangular form

IV. CalcLoop

V. Summary and outlook

Package: CalcLoop

Download (to be finished)

YQM, To appear

Link: <u>https://gitlab.com/yqma/CalcLoop</u>

CalcLoop

Project ID: 44202528

- 🗢 88 Commits 🛛 😵 1 Branch 🛛 🖉 0 Tags 🛛 🗔 451 KB Project Storage

Description

Automatic high order perturbative calculation

Example

≻ E.g. $e^+e^- \rightarrow Q\bar{Q}$ at NNLO QCD

```
files={"twoloop","tree"};
dir=FileNameJoin[{filename,"integrals",StringJoin@@files}];
```

ampAssoc=AmplitudeSquared[dir,amps@files[[1]],amps@files[[2]]]//CLTiming;

resLoop2=RunAMFlow[FileNameJoin[{dir,dirXsection}],kinematics]//Expand//CLTiming;

Summary

- > AMFlow: in principle any FI can be calculated
- > Blade: improve the efficiency of IBP reduction significantly
- CalcLoop: towards fully automatic high-order perturbative calculation
- Integral reduction: bottleneck of most current cutting-edge problems, stay tuned

Adaptive search strategy

Semi-analytic

- The number of unknowns of full-analytic block-triangular form may be too large
- Keep a subset of variables analytic ⇒ easy to search
- The integral set is the same \Rightarrow still very efficient
- More than one block-triangular form is needed

> Adaptive search

- 1. n = 1
- 2. Search *n*-variable block-triangular form within time limit T
- 3. If search succeed, n + + and go to step 2, otherwise go to step 4
- 4. Perform reduction by solving the most efficient linear system(*i*-variable)

Exploit full potential of block-triangular form

$$Q_{i}(\vec{z}) = \sum_{\mu} \tilde{Q}_{i}^{\mu_{1}\dots\mu_{r}} z_{1}^{\mu_{1}} \dots z_{r}^{\mu_{r}}$$

$$Q_{i}(z_{1,0}, \dots z_{r-1,0}, \mathbf{z}_{r}) = \sum_{\mu_{r}} \tilde{Q}_{i}^{\mu_{0}} z_{r}^{\mu_{r}}$$
$$Q_{i}(z_{1,0}, \dots z_{r-2,0}, \mathbf{z}_{r-1}, \mathbf{z}_{r}) = \sum_{\mu_{r-1}, \mu_{r}} \tilde{Q}_{i}^{\mu_{r-1}\mu_{r}} z_{r-1}^{\mu_{r-1}} z_{r}^{\mu_{r}}$$

... ...