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MOTIVATIONS - ENSEMBLE AVERAGES

= Recent developments suggest
Gravitation Path Integrals (GPI) computes quantities in Ensemble Averaged Theories

(e.g. Jackiw-Teitelboim gravity is dual to random matrix theories)

= E.g. Spectral 2-point function (| Z(5+iT)*),

Z(B+iT) Z(B3—iT)
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MOTIVATIONS - ENSEMBLE AVERAGES

= Recent developments suggest
Gravitation Path Integrals (GPI) computes quantities in Ensemble Averaged Theories

(e.g. Jackiw-Teitelboim gravity is dual to random matrix theories)

= E.g. A topological model of “Baby universes”

2ty z130) = [ peeo 3N = ), ) =

P~ J d—0

(z10)21.0)) = OO ., @ - __ \j})




MOTIVATIONS - ENSEMBLE AVERAGES

= Recent developments suggest

Gravitation Path Integrals (GPI) computes quantities in Ensemble Averaged Theories

= Other discussions about ensemble averages

Pollack, Rozali, Sully and Wakeham
McNamara and Vafa

Afkhami-Jeddi, Cohn, Hartman and Tajdini
Maloney and Witten

Belin and de Boer

Cotler and Jensen

Bousso and Wildenhain

Stanford
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MOTIVATIONS - RENDOMNESS

» Questions:

How should we understand the ensemble average of random theories ?
No such averages in familiar examples, don’t know how to quantize

» I[dea:

» Models with true randomness

» Microscopic model that display
pseudo-randomness after coarse graining

» The true randomness is an analogue

of the pseudo-randomness

» Emergent pseudo-randomness and emergent gravity



ENSEMBLE AVERAGES - DISCRETE DISTRIBUTIONS

= Previous analyses focus on Gaussian distributions
< Simple

% Well studied

= We consider discrete Poisson distributions
< Quantum theories have discrete Hilbert space
< Discrete distributions could appear in GPI

+» Under control




ENSEMBLE AVERAGES - THE MODEL

= In practice, we consider L(¢)=0,00"¢—J¢ where J=J,(x)+J;(X)

> Jo(x) aclassical source
» Ji1(x) arandom source

= Integrate over the random source to get an effective action

&5 = [DI,00P, e 1

» Questions:

» What set of theories/sources to be included ?

» What is the measure for the average ?




ENSED

IBLE AVERAGES - THE RANDOMNESS

= A sensible choice is ( the physical description ):

P(3,(x) = [ TPois (3, (x,)AV (x,), A(x,)dV (x,)), VdV(x,) st Y dV(x,) = M

m

where Pois(m,l)ze‘M’—, meZ, and A(x)dV (x)=(J,(x)dV (x)),

m!

= Properties:

>

>

>

>

The distribution is local (x-dependent)

The discretization dV (x) enters the probability distribution

o




ENSEMBLE AVERAGES - THE RANDOMNESS

= A sensible choice is ( the physical description ):

P(3,(x) = [ TPois (3, (x,)AV (x,), A(x,)dV (x,)), VdV(x,) st Y dV(x,) = M

: A"
where Pois(m,A)=e"=—, meZ, and A(x)dV(x)={(J,(x)dV (x)), W W
mi 1 NN
L AT N
LY > <
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= Properties: L‘ P 4
> o> |
> The distribution is local (x-dependent) “ ;" 41& ‘V 4y
» The discretization dV (x) enters the probability distribution :‘j"‘*}‘"hh’ é
< <
> The “fluxes” obey the discrete distribution IJl(X)dV (x)=J,()dV(x)eZ, 4 w”

> ‘“Shape” of the distribution measured by A(X)



ENSEMBLE AVERAGES - THE EFFECTIVE ACTION I

= Averaging over the random source with this measure leads to

e | cIV(x)Jl(x)qﬁ(x)>Jl
e _ Zdv(xn)(Jl(xn)(¢(xn)+i7z)+2/1(x))
= (HZ Pois(J,(x,)dV (x,) =k, dV(xn)/l(xn))]e n
n k=0

- exp( [ av () A(x) (e —1))

= Adding back the other terms gives the effective action
Sy = [ AV (¥)(8,00"$— 3, ()¢ — A()(e* ~1))

Generalized Liouville theory
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ENSEMBLE AVERAGES - THE SIGN

= The sign of the potential term is “wrong”

= To cure this we consider instead the integration measure

P, (x)) =] [Pois(3,(x,)aV (x,), A(x,)aV (x,)) (D)7,  (-1)” =(=

= This leads to the averaged action

Ser = [ AV (%)(0,80"¢— I, (\)g+ A(X)(e*" ~1))

= Is there a more accurate description of what we did?

1)le(x)dV(x) \ezj.dV(x)l(x)j

N
normalization

(=)



POISSON PROCESS - pEFINITION

= Consider the same theory, now reconsider it in terms of the Poisson Process.

Definition: Poisson process

A random countable subset [] on a given carrier space M, s.t.
» For disjoint subsets A — M, the random variable N(A)=#(II"A)

are mutually independent
A N(A)
> N(A;) satisfies the Poisson distribution Pois(N(A),A(A)) =e** I(\IAE—,)A)'

with A(A)=E(N(A))

= Mean measure A(4), determined by the intensity function A(X)
A(A) = jA/z(x)dV(x)

N LN



POISSON PROCESS - pEFINITION

Definition: Poisson process

A random countable subset [] on a given carrier space M, s.t.

‘ -
» For disjoint subsets A — M, the random variable N(A)=#(II"A) 4 ;\ w"’\
are mutually independent y :Av b :;1\
N(A) A 4
> N(A;) satisfies the Poisson distribution Pois(N(A),A(A)) =e** % . L“A’ N “ .
' A 44 Ar
with A(A)=E(N(A)) ) B hg ' < v
D \ ‘L
ﬁj"‘ b

= Mean measure A(4), determined by the intensity function A(X)

A(A) = [, 209dV (%) @



POISSON PROCESS - INTERPRETATION

= In terms of the Poisson processes, we reinterpret our computation as follows:

> The fluxes of the random source is identified with the random counting measure
jB dV (x)J,(x) = N(B)
For infinitesimal subset B ~ dV (x), we get

N(dx) = J,()dV (X) s [V (%), ()(X) = [ N(AX)$(X)

» Average over the random source is identified with the Laplace functional

d d
E[ej V<x)J1(x)¢(x)] _ E[ejN( x)¢(x)]



POISSON PROCESS - LAPLACE FUNCTIONAL

= Generically, the Laplace functional of a test function f(x) is

al N(dx)f(x) A(x)(e*T (1)
E{e B }eh

= In our computation, we thus have

E[eIdV(x)Jl(x)gb(x) [7@x)p00 jMA(x)(e¢(x)—1)

1=E[e ]=e

= Same as the result we got previously

= Sign flip can be accomplished by an (-1)"® factor = P(N(B)=n)= ﬂe“m
n!
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ENSEMBLE AVERAGES - & SHORT SUMMARY

= What we have done is similar to the known example

Average over Low energy limit

SYK =———mmmm==) effective action ==========)  Schwarzian/|T gravity

random couplings

Average over random potentials . . .
Our model 2 Liouville gravity

= We have demonstrated the importance of choosing

> which set of theories to be averaged over ( fluxes but not sources)

> what is an appropriate measure for the average (the (—1)7 factor)



MICROSTATES - RATIONALE

= Recap:

the ensemble average of random potentials could be an analogue of some
originated from the ignorance of some microscopic structure

= We will

= Construct a microscopic model
= Go to a special double scaled, low energy limit
= Jllustrate how pseudo-randomness appears

= Demonstrate its equivalence to the type of true randomness we have discussed previously

e



MICROSTATES - & REALIZATION

= A lattice, sites labelled by a position vector X
= On each site: A complex fermion: ¥, |0) =D, N, =w,w,, N, [iy=ili), i=0,1
A real boson: P,

= The Hamiltonian of the system:
M _ _
H — Z Hx,O + Hx,l’ HX,O — Hi + ?¢x2 + thy¢x¢y + JO(X)¢X’ Hx,l — ml//xl//x _WXWX¢X
X y
= Prepare the system in the state
P=p®p, P, =®Po  p.=1-P())[0),0]+p(x)|D,l

where p(x) is the probability of fermionic excited state on site X

©



MICROSTATES - & DOUBLE SCALED LIMIT

1
= Consider the continuous limit: N= a_d —> 00

where a is the lattice spacing, n is the number of site per unit volume
= In this limit, countable infinite lattice sites in each open set.

= Further a double scaling limit: the number of sites (per unit volume) where
fermionic d.o.f. is excited remains finite

limnp(x)=4(x),  A(x)~OQ)




MICROSTATES - & DOUBLE SCALED LIMIT

= The fermionic factor of the density matric in a small enough subset dV (x) is

® A= & A=p(x)]0),(0]+p(x)|D), 1]

xedV (x) xedV (x)

= 2., P(0, =) (10,01 ®(|D, 1) P(n, = k) = m PO (1= ()"

= In the above limit, P(n, =k) becomes

(n'p)“(@

']
k'( ,—k)l rk

a Poisson distribution with A, (x) = A(X)dV (x) .

k
I'im de (nx _ k) _ n p)n -k dxk(|X) e—Adx(X) P0|s(k Adx (X))




MICROSTATES - TRECING OUT FERMIONS

» Next we get an effective action for the bosonic field ¢,

= Integrating over the fermionic degrees of freedom

e M =T, (- pe™)=Tr, (pe”"""F):=STr, (pe”™)

= Such a trace is chosen so that it is base free



MICROSTATES - TRECING OUT FERMIONS

= Tracing over the fermions leads to

dv (x)

e PHet _ Tt {@on ﬂdvz(x)[xec;(x)[HX;Fdij] H [Z Pois(k, Adx(x))e [ " _ﬂ)j =€
dv(x)

= Redefining b= é e Le‘/’?m _ ie‘2bm ,
2 278 47b

and adding back the pure bosonic terms, we get

A(X)

Mo (0= 454 * D+ 300900 + 230" + 5

—ﬂjdV(x)MX)(

m-fx) +l)

©



MICROSTATES - THE LOW ENERGY LIMIT

= Take the low energy limit by focusing on the lowest few Fourier modes
: . . 1
» For simplicity, we choose t, =t, =~tJ (Ix=yll-1)

= The low energy effective theory is

Hoe (x) = 72,0+ C%(w(x))z +MEB(X)? = I ()(X) + 27u(X)e™ +%f)

where

©



MICROSTATES - THE DUAL CHANNEL

= Can also integrate out the ¢, field to get a quantum mechanical model of the fermions

1 - 1 o
5log(g)+jd{IZ!//xwx+mZwax+§gxy wal//xv/ywa
X X X,y

e—jdtLeﬁ :J‘D¢Xe—jdu_ e

where g7, =-0.6,, +M6, , +1.,,0, 1 +10,.: and leads to a nearest neighbor coupling.

= Expanding by number of derivatives, the only relevant piece of the interaction is

( 2t 2|p| ot 2|pl+1
1 1 > MJ (M)
) - At? Z > 2|p|'5y,X+2p o > 2lplL 5y,x+2p+1
p=—
M\/l—W [ 1—:'/:2 +1j {,/l—:'/fz+1]

2

. M m
= The range of parameter is — = 2(1+ T¢) > 2

0,

Y, X+1

O, =(MS,, +t,,,0, ., +t

Xx—=1,x7y,x-1 X, X+1

= A branch cut at my = 0, corresponding to integrating out a massless mode.

©



R GRAVITY INTERPRETATION

= In previous analyses, probabilistic measures emerge. Interpret it as a geometric
volume measure in gravity ?

!

= This helps understand Gravitational Path Integral = Ensemble Average of Theories

= Recall our effective action

Ser = | AV (X) (2209(x) — 3, () + A(x)(e* 1))
and the Liouville gravity action

5. = 2 [0 TR (QUOOR, () + (V)* + 4™
A



A GR.

IVITY INTERPRETATION

!

= Comparing the actions, we find they are identical once we identify

QVINR, () =-3,(x),  4muyf[n]= %f)e

'hh*d,8, = 58,8,

= The last relation trivializes in the conformal gauge h,, =e”*5, , and the remaining two

relations become

uvI

Q5"0,0,p00=3,(),  4muer = e
= This gives the relation between the probabilistic measure A(X)
and the geometric measure o(X)

©



A GRAVITY INTERPRETATION

= Comments

1. This connection is only true if /o(x) correlates with A(X) according to

Jo(X) =Q5"9,0, log(A(x))
i.e. not all average of random theories have gravity descriptions

2. Curiously Jo(x) was introduced as a source of ¢(x): J,(X) =6*"0,0,4(X). Recall g™
is originally the Weyl factor in getting Liouville; this put A(x) and e’ on the same
footing, and confirms the geometric interpretation of A(X)

3. The parameter Q sets up a scale.

4. The gravity description only captures the “mean” probability measure A(X), but not
the details of the microscopic model. They could encode the information of the
quantum aspects of gravity?

()



SUMMAR}Y

= Quantum theories have discrete Hilbert spaces, so we consider

averaging over theories with discrete random variables.

= Suitable ensemble average of these discrete theories, with a

mathematically rigorous description in terms of Poisson processes.

= Averaged theories of this type have an equivalent description of
tracing over parts of the microstates in a single theory.

= The results from both approaches mirror Liouville gravity.
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