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 Recent developments suggest 

Gravitation Path Integrals (GPI) computes quantities in Ensemble Averaged Theories 

(e.g.   Jackiw-Teitelboim gravity is dual to random matrix theories )

 E.g.   Spectral 2-point function                                            ( Saad, Shenker, Stanford, 2018 )
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(Figures from SSS2018)



 Recent developments suggest 

Gravitation Path Integrals (GPI) computes quantities in Ensemble Averaged Theories 

(e.g.   Jackiw-Teitelboim gravity is dual to random matrix theories )

 E.g.  A topological model of  “Baby universes”                               ( Marolf, Maxfield, 2020 )

3

(Figures from MM2020)
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 Recent developments suggest 

Gravitation Path Integrals (GPI) computes quantities in Ensemble Averaged Theories 

 Other discussions about ensemble averages

 Pollack, Rozali, Sully and Wakeham 2002.02971

 McNamara and Vafa 2004.06738

 Afkhami-Jeddi,  Cohn,  Hartman and  Tajdini 2006.04839             

 Maloney and Witten                           2006.04855

 Belin and de Boer           2006.05499

 Cotler and Jensen             2006.08648

 Bousso and  Wildenhain 2006.16289

 Stanford                                   2008.08570

 …



 Questions:  

How should we understand the ensemble average of random theories ?

No such averages in familiar examples, don’t know how to quantize

here any way to connect them precisely?Is
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Microscopic models

Pseudo-randomness

True randomness

 Idea: 

 Models with true randomness

 Microscopic model that display 

pseudo-randomness after coarse graining

 The true randomness is an analogue

of the pseudo-randomness

 Emergent pseudo-randomness and emergent gravity



 Previous analyses focus on Gaussian distributions

 Simple 

 Well studied

 We consider discrete Poisson distributions

 Quantum theories have discrete Hilbert space

 Discrete distributions could appear in GPI                                     (Marolf, Maxfield 2020 )

 Under control 
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 In practice, we consider                                   where  

 𝐽0(𝑥) a classical source    

 𝐽1(𝑥) a random source

 Integrate over the random source to get an effective action

 Questions:

 What set of theories/sources to be included ?

 What is the measure for the average ?
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 A sensible choice is ( the physical description ):

where   Pois and                                                

 Properties:

 The distribution is local (x-dependent)

 The discretization 𝑑𝑉(𝑥) enters the probability distribution

 The “fluxes” obey the discrete distribution

 Shape of the distribution measured by 8
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 A sensible choice is ( the physical description ):

where   Pois and                                                

 Properties:

 The distribution is local (x-dependent)

 The discretization 𝑑𝑉(𝑥) enters the probability distribution

 The “fluxes” obey the discrete distribution 

 “Shape” of the distribution measured by 9
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 Averaging over the random source with this measure leads to 

 Adding back the other terms gives the effective action 

Generalized Liouville theory
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 The sign of the potential term is “wrong”

 To cure this we consider instead the integration measure

 This leads to the averaged action

 Is there a more accurate description of what we did?
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 Consider the same theory, now reconsider it in terms of the Poisson Process.

Definition:  Poisson process    

A random countable subset       on a given carrier space      , s.t.

 For disjoint subsets              , the random variable                                  

are mutually independent

 satisfies the Poisson distribution Pois

with

 Mean measure         ,  determined by the intensity function 
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 Consider the same theory, now reconsider it in terms of the Poisson Process.

Definition:  Poisson process    

A random countable subset       on a given carrier space      , s.t.

 For disjoint subsets              , the random variable                                  

are mutually independent

 satisfies the Poisson distribution Pois

with

 Mean measure         ,  determined by the intensity function 
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 In terms of  the Poisson processes, we reinterpret our computation as follows:

 The fluxes of the random source is identified with the random counting measure

For infinitesimal subset                 , we get 

 Average over the random source is identified with the Laplace functional
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 Generically, the Laplace functional of a test function         is 

 In our computation, we thus have 

 Same as the result we got previously

 Sign flip can be accomplished by an              factor 

or by modifying the measure  to 
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 What we have done is similar to the known example

SYK                                  effective action                                    Schwarzian/JT gravity

 We have demonstrated the importance of choosing 

 which set of theories to be averaged over  ( fluxes but not sources )

 what is an appropriate measure for the average  ( the             factor )
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Average over 

random couplings

Low energy limit

Average over random potentials
Our model                                                                     Liouville gravity

−1 ℱ



 Recap: 

the ensemble average of random potentials could be an analogue of some pseudo-
randomness originated from the ignorance of some microscopic structure

 We will 

 Construct a microscopic model

 Go to a special double scaled, low energy limit

 Illustrate how pseudo-randomness appears

 Demonstrate its equivalence to the type of true randomness we have discussed previously
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 A lattice, sites labelled by a position vector    

 On each site:   A complex fermion : 

A real boson:       

 The Hamiltonian of the system: 

 Prepare the system in the state

where           is the probability of fermionic excited state on site  
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 Consider the continuous limit:                            

where     is the lattice spacing,      is the number of site per unit volume

 In this limit, countable infinite lattice sites in each open set. 

 Further a double scaling limit: the number of sites (per unit volume) where 
fermionic d.o.f. is excited remains finite
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 The fermionic factor of the density matric in a small enough subset           is

 In the above limit,                 becomes 

a Poisson distribution with                             .
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 Next we get an effective action for the bosonic field         

 Integrating over the fermionic degrees of freedom

 Such a trace is chosen so that it is base free
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 Tracing over the fermions leads to

 Redefining                                                              ,

and adding back the pure bosonic terms, we get 
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 Take the low energy limit by focusing on the lowest few Fourier modes

 For simplicity, we choose

 The low energy effective theory is

where 
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 Can also integrate out the     field to get a quantum mechanical model of the fermions

where                                                            and leads to a nearest neighbor coupling.

 Expanding by number of derivatives, the only relevant piece of the  interaction is

 The range of parameter is 

 A branch cut at               , corresponding to integrating out a massless mode. 

24

x

eff ,

1 1
log( )

2 2

~
x x x x xy x x y y

x x x y

g dt i m g
dtL dtL

xe e e
       



 
   
  
 
  

  
1 2

, , 1, , 1 , 1 , 1xy x y x y x x y x x x y xg M t t   

       

 

2| | 2| | 1

1

, 1, , 1 , 1 , 1 , 2 , 2 12| | 2| | 12
2 2

2
2 2

2 2

1

4 4 41 1 1 1 1

p p

xy x y x x y x x x y x y x p y x pp p
p

t t

M M
g M t t

t t tM
MM M

    






      


   
   
       

   
       

   
   



2

2(1 ) 2
mM

t t


  

𝑚𝜙 = 0



 In previous analyses, probabilistic measures emerge.  Interpret it as a geometric 
volume measure in gravity ?

 This helps understand Gravitational Path Integral = Ensemble Average of Theories

 Recall our effective action 

and the Liouville gravity action
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 Comparing the actions, we find they are identical once we identify

 The last relation trivializes in the conformal gauge , and the remaining  two 
relations become

 This gives the relation between the probabilistic measure 

and the geometric measure
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)𝐽0(𝑥

 Comments

1. This connection is only true if           correlates with          according to

i.e.  not all average of random theories have gravity descriptions 

2. Curiously           was introduced as a source of        :                                   .  Recall                          

is originally the Weyl factor in getting Liouville; this put         and          on the same 

footing, and confirms the geometric interpretation of

3. The parameter     sets up a scale. 

4. The gravity description only captures the “mean” probability measure        , but not 

the details of the microscopic model. They could encode the information of the 

quantum aspects of gravity?
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Microscopic models

Pseudo-randomness

True randomness

 Quantum theories have discrete Hilbert spaces, so we consider 

averaging over theories with discrete random variables. 

 Suitable ensemble average of these discrete theories, with a 

mathematically rigorous description in terms of Poisson processes. 

 Averaged theories of this type have an equivalent description of 

tracing over parts of the microstates in a single theory. 

 The results from both approaches mirror Liouville gravity.




