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I: Motivation
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Scattering amplitude is one fundamental concept in the
QFT. It connects the theoretical description and the
experimental data.
The well known standard method for the computation of
scattering amplitudes is the Feynman diagrams. It has very
nice physical picture, but when deal with theories with
gauge symmetry, its practice faces a lot of challenge.
In last twenty years, a big progress for its computation has
been made, which is now called the On-shell program.
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One of the on-shell frame is the CHY-frame by Cachazo, He
and Yuan in 2013:

An =

∫ (∏n
i=1 dzi

)
dω

Ω(E) I

[ Freddy Cachazo, Song He, Ellis Ye Yuan , 2013, 2014]
In this frame:

Each particle is represented by a puncture in Riemann
sphere,i.e., a complex number zi

The expression holds for general D-dimension
The box part is universal for all theories
The CHY-integrand I determines the particular theory
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For the universal part,

Ω(E) ≡
′∏
a

δ (Ea) = zijzjkzki
∏

a 6=i,j,k

δ (Ea)

provides the constraints:

Scattering equations are defined

Ea ≡
∑
b 6=a

2ka · kb

za − zb
= 0, a = 1,2, ...,n

Only (n − 3) of them are independent by SL(2,C)
symmetry∑

a

Ea = 0,
∑

a

Eaza = 0,
∑

a

Eaz2
a = 0,
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Universal part: (n − 3) integrations with (n − 3) delta-functions,
so the integration becomes the sum over all solutions of
scattering equations ∑

z∈Sol

1
det′(Φ)

I(z)

where det′(Φ) is the Jacobi coming from solving Ea

Φab =
∂Ea

∂zb
=

{ sab
z2

ab
a 6= b

−
∑

c 6=a
sac
z2

ac
a = b

,
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The integrand I depends on the specific theory. So far, all
physical theories have the form I = IL × IR. For example

PTn(α)Pf′Ψn, Pf′Ψn(ε)Pf′Ψn(ε̃), PTr (α)PfΨn−r (ε)Pf′Ψn(ε̃)

for YM, gravity, and single trace EYM.

The Parke-Taylor factor PTn(α) is defined by

PTn(α) =
1

σα1α2σα2α3 · · ·σαnα1

.

The reduced Pfaffian Pf′Ψn is

Pf′Ψn = 2
(−1)i+j

σij
Pf(Ψij

ij ).
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The 2n × 2n anti-symmetric matrix is

Ψ =

(
A −CT

C B

)
,

where

Aab =

{
ka·kb
σab

a 6= b,
0 a = b,

Bab =

{ εa·εb
σab

a 6= b,
0 a = b,

and

Cab =

{
εa·kb
σab

a 6= b,
−
∑

c=1,c 6=a
εa·kc
σac

a = b.
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If we view the frame in a more abstracted way, CHY-frame
defines a mapping from rational functions of zα’s to another
rational function of ki , εi ’s. Such a mapping can be summarized
by the "integration rule":

For each subset, we define the pole index of each subset
Ai ⊂ {1,2, ...,n} is defined as

χ(Ai) ≡ L[Ai ]− 2(|Ai | − 1) , (1)

For a given subset A with the pole index χ[A] ≥ 0, the
amplitude could have terms with poles like 1

s
χ[Ai ]+1
Ai

, where

sAi = (
∑
a∈Ai

ka)2 = (
∑
b∈Ai

kb)2 . (2)

By considering compatible conditions with (n − 3) poles ,
we get a possible term in the Feynman diagrams.

[ Baadsgaard, Bjerrum-Bohr, Bourjaily and Damgaard, 2015] [ Cardona,
Feng, Gomez, Huang, 2016 ]
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Example of 6-point

 

Simple poles sA with with χ[A] = 0,

s12 s23 s45 s123

Maximum compatible combinations with m = n − 3 = 3

{s12 , s45 , s123} {s23 , s45 , s123}
The scalar propagator

1
s12s45s123

+
1

s23s45s123
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Among them, one of theory, the Bi-Adjoint scalar theory is
defined as

I = PT(α)PT(β)

has played very important role:
It is the simplest theory in CHY frame.
It is also the basis for all other theories, since it provides
the skeleton of Feynman diagrams. Any other theories, can
be written as the linear combination of bi-adjoint scalars.
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One way to deal with it is given by CHY:
[ Freddy Cachazo, Song He, Ellis Ye Yuan , 2013, 2014]

The cubic Feynman diagrams of I[(12345678)|(12673458)]

1
s128

1
s345

1
s67

(
1

s12
+

1
s18

)(
1

s34
+

1
s45

)
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Recently, in 1708.08701 Gao, He and Zhang have given a new
class of weight two CHY-integrands (the so called "Cayley
functions"), which largely generalized the Parke-Taylor factor.

1 2

3

4 5

[X. Gao, S. He, and Y. Zhang]
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The Cayley functions Tn−1 could be understood better in
the gauge fixed form zn →∞. With this gauge fixing, each
Cayley function is mapped to a labelled tree graph with
(n − 1)-nodes 1,2, ...,n − 1 and (n − 2) edges connecting
these nodes.
From a Cayley tree, we can read out the corresponding
weight two CHY-integrand as

Cn(Tn−1) :=
1∏

{i,j}∈Edges(Tn−1)
(zi − zj)

(3)

or the SL(2,C) covariant form

Cn(Tn−1) :=

∏
k∈Vertexes(Tn−1)

(zk − zn)vk−2∏
{i,j}∈Edges(Tn−1)

(zi − zj)
(4)
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In 1708.08701 the iterative construction of cubic Feynman
diagrams of CHY-integrands (Cn(Tn−1))2 with Cn(Tn−1) defined
by Cayley tree’s has been given by a recursive method.

Fey(Tn−1) =
⊔

Tl  Tr = Tn−1

{
 

| t1 ∈ Fey(Tl), t2 ∈ Fey(Tr )

}

 

[X. Gao, S. He, and Y. Zhang]
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Examples
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Examples
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Examples

[X. Gao, S. He, and Y. Zhang]
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For arbitrary Cayley tree’s, the number of Feynman
diagrams depends on all its subdivisions.

‖Fey(Tn−1)‖ =
∑

Tl  Tr = Tn−1

‖Fey(Tl)‖ ‖Fey(Tr )‖

When the topology of Cayley tree is simple (such as a line
or star), the corresponding Feynman diagrams has a
symmetry feature.
For complicated Cayley tree’s, there are a lot of Feynman
diagrams, thus a good way to organize these diagrams will
be very useful for our further understanding of various
questions related to these theories.
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We will show that they can be re-organized to some much
simpler effective Feynman diagrams, for complicated cubic
tree Feynman diagrams produced by "Labelled tree
graphs".
Using these effective Feynman diagrams, it is much easier
to capture the theory, since the pole structure will be much
more clear and organized and the connection to geometric
picture (i.e., the combinatoric polytope) will be more
transparent.
For generalization of the bi-adjoint theory, we have
suggested an algorithm to pick out terms with a given pole
structure.
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II:Effective Feynman diagrams
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Among all Cayley tree’s, there are two special types, for which
the pole structures are clear.

The first one is just a line, for example, the Cayley tree T4
with edge-list {{1,3}, {3,4}, {4,2}}.

When rewriting into the SL(2,C) covariant form, it is
nothing but the familiar Parke-Taylor graph.
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Since we know the pole structure of these Feynman diagrams,
we can compactly represent them by "an effective Feynman
vertex" VC , which is defined as

VC(α) ≡ {the sum of all α color ordered cubic Feynman diagrams} (5)

(The expansion of the effective vertex VC(1,3,4,2,n = 5))
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The second type is is the star graph (node), where among
(n − 1)-points, (n − 2) of them connect to the remaining
point.

12

3

4

(Star graph of n = 5)
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The "shuffle" algebra.
For a two ordered sets, their shuffle is defined as

α� ∅ = α, ∅� β = β,

α� β = {α1, {α2, ..., αm}� β}+ {β1, α� {β2, ..., βk}} (6)

Using this notation, all Feynman diagrams coming from the star
graph can be summarized as (a1; {a2}� {a3}...� {an−1}; an),
which will be the sum of sequences of the form

(a1; a2,a3, ...,ak ; an)→ 1∏n−2
t=2 sa1a2...at

(7)

Because the pattern for the star graph, we can compactly
represent them by another "effective Feynman vertex" VP
,where the subscript P means the P-type vertex (the
permutation type vertex).
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Example: VP(1; {2}� {3}� {4}; 5)

The VP(1; {2}� {3}� {4}; 5) vertex contains three parts: the
starting external leg 1, the ending external leg n = 5 and the
middle sequence coming from shuffle algebra.

12

3

4 1 5

2 3 4

S4 permutations︷ ︸︸ ︷

Bo Feng Note on the Labelled tree graphs



Bo Feng Note on the Labelled tree graphs



These two special Cayley tree’s correspond to the line and
vertex (with multiple branches) structures in the general tree
graphs respectively. Thus it is very natural to guess that there
should be able to properly combine about two special
structures of Feynman diagrams to compactly represent all
Feynman diagrams of a given arbitrary Cayley tree.
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Now, we use next-to-Star graph of n = 6 as examples to
demonstrate the idea, especially the algorithmic way to read
out all effective Feynman diagrams.

(A) At the first step, choose a marked node, for example, k .

1 2

3

4 5 1 2

3

4 5

(B) Then remove all edges connecting to the marked node
k . Now the Cayley tree is separated to node k and several
subgraphs, which we can denote as K1,K2, ..,Kt .
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(C) For each subgraph Ki , we need to consider its all
substructures by all possible contractions of edges in the
subgraph. For a given contraction, we will generate
following data:

(1) First we shrink all contracted edges in the subgraph Ki
(so nodes at the two ends of the edge will be merged to a
single node) to generate a new graph K̃i ;
(2) Secondly, all edges having been contracted will become
several disconnected sub-Cayley tree, which we will denote
as Ki,j .

1 2

3

P45 1 2

3

4 5
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(D) Having data from the step (C), now we have an
effective vertex VP , which is given by reconnecting the
node k with all K̃i . The roughly expression will be

VP(k ; K̃1 � K̃2 � ...� K̃t ; n) (8)

where for each K̃i in the shuffle algebra.

1 2

3

4 5

1

n2

3 4 5

S4 permutations keep (4,5) order︷ ︸︸ ︷

4 ≺ 5

VP (2; {1}� {3}� {4, 5}; n = 6)
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1 2

3

P45 2 n

1 3

S3 permutations︷ ︸︸ ︷
P45

VP (2; {1}� {3}� {P45}; n = 6)

(E) For each sub-Carley tree Ki,j , we can repeat the steps
from (A) to (D) to get the corresponding effective vertex
VKi,j .

2 n

1 3

S3 permutations︷ ︸︸ ︷
P45

4

5

P45

VP (2; {1}� {3}� {P45}; n = 6) and VC ({4, 5, P45})
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(F) Then we connect vertex VKi,j to the merged node in K̃i
by corresponding propagator to construct the effective
Feynman diagram.

2 n

1 3

S3 permutations︷ ︸︸ ︷
4

5

VP (2; {1}� {3}� {P45} ; n = 6) 1
P2

45
VC ({4, 5, P45})

(G) Iterating above steps, we will arrive effective Feynman
diagrams for any Cayley tree.

1

n2

3 4 5

S4 permutations keep (4,5) order︷ ︸︸ ︷

4 ≺ 5 2 n

1 3

S3 permutations︷ ︸︸ ︷
4

5
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In above construction of effective Feynman diagrams, we have
used the node 2 as the starting (marked) point. In general, we
can choose any point to start with the whole construction.

1 2

3

4 5

The node 4 as the marked point
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5

n4

2 1 3

S4 permutations keep (2,3) (2,1) order︷ ︸︸ ︷

2 ≺ 1 2 ≺ 3

5

n4

3

S3 permutations keep (P12,3) order︷ ︸︸ ︷
2

1

P12 ≺ 3

5

n4

1

S3 permutations keep (P23,1) order︷ ︸︸ ︷
2

3

P23 ≺ 1

4 n

5

S2 permutations︷ ︸︸ ︷
2

1 3

4 n

5

S2 permutations︷ ︸︸ ︷
1

3
2

The Effective Feynman diagram representation from node 4
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Enumerate Feynman diagrams from effective
Feynman diagram

Each effective Feynman diagram will code several cubic
Feynman diagrams, thus the counting of these cubic Feynman
diagrams is a very important check for this algorithm.

For an effective Feynman diagram, its counting NF is given
by

NF =
t∏

i=1

ni (9)

where t is the number of effective vertexes in the diagram
and for each effective vertex, ni is the number of its
expansion to cubic Feynman sub-diagrams.
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The effective vertex can only be two types, i.e., either the
P-type or the C-type.

For the C-type effective vertex, the |VC{(l1, l2, ..., ln)}|
enumerates all the cubic Feynman trees respecting the
colour order of the list {(l1, l2, ..., ln)}. It is the n-th Catalan
number Catn, which is given directly in terms of binomial
coefficients by

Catn =
1

n + 1

(
2n
n

)
=

(2n)!

(n + 1)!n!
=

n∏
k=2

n + k
k

for n ≥ 0(10)

Cat2 = 1, Cat3 = 2, Cat4 = 5, Cat5 = 14, (11)

Cat6 = 42, Cat7 = 132, Cat8 = 429 (12)

Bo Feng Note on the Labelled tree graphs



For the P-type vertex, two arbitrary ordering list
α = {α1, α2, ... , αm} and β = {β1, β2, ... , βn}. The shuffle
α� β contains all possible permutations of the list α ∪ β,
which preserve the relative ordering in α and β
respectively. Thus the counting is given by

|α� β| =
(m + n)!

m!n!
, (13)

This counting can be easily generalized to multiple lists,
thus we have

|VP(o;α1 � α2 � ...� αk ; n)| =
(
∑k

i=1 |αi |)!∏k
j=1 |αj |!

(14)

when all list αi ’s do not have substructure.
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When the VP has some substructures, we could recursively
count the number. For example

VP(1; {2,3� 4}� {5,6� 7}; 8)

there are two levels of shuffle algebra.

The first layer {2,3� 4}� {5,6� 7}, using the formula,
we get the counting

(3 + 3)!

3!3!
= 20

.
The second shuffle layer, i.e., {3� 4} and {6� 7}, each of
them gives the number

(1 + 1)!

1!1!
= 2

.

Putting them together, we get the counting 20× (2× 2) = 80.
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For the example with mixing VC and VP types, its expression is
given by

2

1

8
≺

9

10P345 ≺ P6789

3

6

5

7

8

9

4

VP(1; {2}� {P345,P6789}; 10)
1

P345
VC({3,4,5,P345}) (15)

1
P6789

VP(6; {7}� {8,9}; P6789) (16)

and the counting is given by

(1 + 2)!

2
× 1

2 + 1

(
4
2

)
× (1 + 2)!

2
= 18 (17)
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More examples

The effective Feynman diagrams can very compactly encode all
cubic Feynman diagrams coming from a given Cayley tree,
especially this Cayley tree has symmetric structure.

3

1

4 107

2

8 9

6 5

C11{{1, 2}, {1, 3}, {1, 4}, {3, 7}, {3, 8}, {2, 5}, {2, 6}, {4, 9}, {4, 10}}
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These 32 diagrams can be divided into ten types:
(1) one without any contraction;
(2) six of one contraction;
(3) twelve of two contractions at the different branches;
(4) three of two contractions at the same branch;
(5) twelve of three contractions at the two different
branches;
(6) eight of three contractions at the three different
branches;
(7) twelve of four contractions at the three different
branches;
(8) three of four contractions at the two different branches;
(9) six of five contractions at the three different branches;
(10) one of six contractions.
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These effective diagrams have coded 40416 cubic Feynman
diagrams
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Application of effective Feynman diagrams

The first application is to a geometric object, the so called
"Polytope of Feynman diagrams", which is defined for a
collection of cubic Feynman diagrams of n points as following

(1) Each vertex of this polytope corresponds to a cubic
Feynman diagrams (so there are (n − 3) poles).
(2) Two vertexes will be connected by an edge when and
only when they share same (n − 4) poles.
(3) All vertexes on a surface share same (n − 5) poles.
(4) In general, vertexes of a dimension r surface share
same (n − 3− r) poles.
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Above construction of polytope has used the bottom-up
approach. Our definition of effective vertexes has used an
opposite approach, i.e., the top-down method. For example,
for the CHY-integrand (PT({1,2, ...,n}))2, all cubic Feynman
diagrams are represented by a single effective vertex
VC({1,2, ...,n}). This single vertex corresponds the
(n − 3)-dimension polytope, the so called "associahedron".
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Associahedron of (PT({1, 2, 3, 4, 5, 6}))2
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Its codimension one boundary correspond to fix a givenpole,
which corresponds to split the single VC-type effective vertex to
two VC-type effective vertexes connected by this given pole, i.e,

VC({1,2,3,4,5,6})

→



VC({1,2,P12}) 1
s12

VC({P12,3,4,5,6})
6 cases :s12, s23, s34, s45, s56, s61

VC({1,2,3,P123}) 1
s123

VC({P123,4,5,6})
3 cases :s123, s234, s345

(18)

Thus there are 9 faces. By counting each effective Feynman
diagram, we see that 6 faces have five edges and five vertexes
while 3 faces have four edges and four vertexes. We can split
effective vertex further to get the representation of edges, such
a picture has been discussed in arXiv:1801.08965.
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The same splitting picture holds for the VP-type effective vertex.
For next-to-Star graph,

1 2

3

4 5

the whole polytope is given by two effective Feynman diagrams:

FA = VP(2; {1}� {3}� {P45}; n)
1

P2
45

VC({4,5,P45})

FB = VP(2; {1}� {3}� {4,5}; n) (19)
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the effective diagram FA has the fixed pole s45, it defines a
two-dimension surface.
For the effective diagram FB, when considering the relative
orderings we have following types of splitting

FB = VP(2; {1}� {3}� {4,5}; n)

→



VP(2; {1}; P12) 1
s12

VP(P12; {3}� {4,5}; n}
3 cases :s21, s23, s24

VP(2; {1}� {3}; P123) 1
s123

VP(P123; {4,5}; n}
4 cases :s213, s214, s234, s245

VP(2; {1}� {3}� {4}; P1234) 1
s1234

VP(P1234; {5}; n)

3 cases :s2134, s2145, s2345

(20)

Bo Feng Note on the Labelled tree graphs



Adding together, we find the polytope has 11 two-dimension
surfaces. Each surface is defined by an effective Feynman
diagram. Counting the effective Feynman diagrams, we can
find that there are 4 surfaces with four edges, 5 surfaces with
five edges and 2 surfaces with six edges. Which two surfaces
share an edge can also be easily identified.
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The polytope of the Next-to-Star graph with n=6
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III: Pick up Poles
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For a bi-adjoint scalar theory defined by two PT-factors, there is
a way to extract a subset of all Feynman diagrams containing a
particular pole structure. It is given by using following
cross-ratio factor

Pac
bd :=

[ac][bd ]

[ad ][bc]
, [ab] := zab (21)

[B. Feng„ 2016]
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For example, with the CHY-integrand

1
z2

12z2
23z2

34z2
45z2

56z2
61

we produce following fourteen Feynmann diagrams up to a sign

1
s12s34s56

+
1

s12s56s123
+

1
s23s56s123

+
1

s12s34s126
+

1
s16s34s126

+

1
s16s23s156

+
1

s16s34s156
+

1
s23s56s156

+
1

s34s56s156
+

1
s16s23s45

+

1
s12s123s45

+
1

s23s123s45
+

1
s12s126s45

+
1

s16s126s45
.

(22)
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To pick out all items containing s123.
First we split the whole set into the pole set A = {1,2,3}
and its complement A = {4,5,6}
Define the set Links[A,A] as the collections of lines
connecting the set A and A. Each line will be represented
by two nodes: one is in A and another one, in A
Furthermore, we should distinguish the solid
line(corresponding the factor [ab] in the denominator) and
dashed line(corresponding the factor [ab] in the numerator)
by {a,b} and {a,b} respectively.

Now using the pair in the Links set, we can construct a single
cross-ratio P16

34 = z16z34
z14z36

.
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=⇒

 

Links[{1, 2, 3}, {4, 5, 6}] of integrand 1
z2
12z2

23z2
34z2

45z2
56z2

61
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One can easily check that by multiplying such cross-ratio factor
to the original CHY-integrand

1
z2

12z2
23z2

34z2
45z2

56z2
61
P16

34 =
1

z2
12z14z16z2

23z34z36z2
45z2

56
(23)

produce only four terms all containing the pole s123

1
s12s45s123

+
1

s23s45s123
+

1
s12s56s123

+
1

s23s56s123
(24)
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=⇒

 

Links[{1, 2, 3}, {4, 5, 6}] of integrand 1
z2
12z2

23z2
34z2

45z2
56z2

61
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In many situations, such as the soft limitand collinear limit, we
want to know the singular behavior of a given amplitude. These
singular behaviors are connected with particular poles, thus
how to isolating contributionsfrom these poles becomes
important to many studies.

By removing these singularcontributions, the two-loop
CHY-integrand of the planar bi-adjoing scalar theory has
beenconstructed.

[B. Feng , 2016,2014]

The technique of picking poles has been used to study the
symmetryproperties of different PT-integrands.

[R. Huang, F. Teng, and B. Feng, 2018]

The same technique has been used to thecontraction of
the one-loop CHY-integrand for general bi-adjoing scalar
theory

[ B. Feng and C. Hu, 2019]
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Another interesting point of picking pole technique is
following. In the previous part,we have talked about the
effective Feynman diagrams and the corresponding
geometric picture, i.e., polytope. For the square Cayley
integrand, all Feynman diagrams constitute a
high-dimensional polytope. The process of picking out a
particular pole corresponds precisely to the operation of
projecting from a high-dimensional volume onto a specific
face.

In these mentioned applications, the pole picking is constraint
to the CHY-integrandsof two PT-factors. We will give an
algorithm to pick up aparticular pole for the most general
CHY-integrands, which do not contain any higher order poles.
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The General algorithm

Unlike the bi-adjoint scalar theory, the general
CHY-integrand of weight four contain both denominators
and numerators and in general, amplitudes will depend on
both, so the constructed cross-ratio factor of picking pole
should depend on both too.
Another important fact is that the index of a given pole is
determined by links inside these nodes, thus the
cross-ratio factor should not affect the index, which means
lines used in the construction should come from these
lines connecting the set A and its complement A.
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The General algorithm

In general case, there are two types of linking lines. Thus when
we construct the cross-ratio factor, we should put their role into
count.

In the first situation where both linking lines are solid lines,
for example, {a, c} and {b,d}, we will call them pure
primary cross-ratio factor.

Pac
bd :=

[ac][bd ]

[ad ][bc]
, [ab] := zab (25)

In the second situation where both linking lines are dashed
lines, for example, {a, c} and {b,d}, which we will write as
a inverse

P̄ac
bd ≡

zadzbc

zaczbd
= (Pac

bd )
−1 (26)
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The General algorithm

The third situation is most tricky one, where one linking line
is solid and another one, dashed, for example, {a,b} and
{e, f}. However, using this pair, it is impossible to reach the
goal. A way to solve the difficulty is to involve another
linking line, for example, {c,d} and define following
combination

Pab
ef ;cd ≡ P

ab
cd P̄

cd
ef =

zabzcd

zadzcb

zedzcf

zef zcd
=

zabzedzcf

zef zadzcb
(27)

We will call Pab
ef ;cd

the mixed rimary cross-ratio factor.
There is another possibility, i.e., involving {c,d}. We must
point out, although the line {c,d} acts as an intermediate
variable, we do need to impose the condition a 6= c, e 6= c
and b 6= d , f 6= d .
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The General algorithm

Based on examples, now we present our algorithm:
(1) Given a CHY-integrand, draw the corresponding
4-regular graph, where the factor in the denominator is
represented by solid line while the factor in the numerator
is represented by dashed line.
(2) To pick up the pole sA, we divide all nodes of the graph
into two subsets, i.e., the A and its complement A. Now
there are lines connecting the subset A and A. Collecting
them (by removing duplications) we form the linking set
Links[A,A].
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The partition of the CHY-integrand
z2
38z2

78
z2
17z2

18z2
23z2

28z2
35z2

37z2
46z2

48z2
58z2

67
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(3) From the linking set Links[A,A], we generate four
collections of primary cross-ratio factors:

(I) Using two solid lines according to the formula;

P18
23 =

z18z23

z12z38
P18

46 =
z18z46

z14z68
P23

46 =
z23z46

z26z34

P23
58 =

z23z58

z25z38
P46

58 =
z46z58

z45z68

(II) Using two dashed lines according to the formula;
(III) Using two solid lines and one dashed line according to
the formula.

P18
78;23 =

z18z27

z12z78
P23

38;46 =
z23z68

z26z38
P46

78;23 =
z27z38z46

z26z34z78

P23
78;46 =

z23z47z68

z26z34z78
P58

78;23 =
z27z58

z25z78
P18

38;46 =
z18z34

z14z38

P18
78;46 =

z18z47

z14z78
P58

38;46 =
z34z58

z38z45
P58

78;46 =
z47z58

z45z78

(IV) Using two dashed lines and one solid line according to
the inverse of the formula.
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(4)We need to have some criterions to see if it is the right
answer. The first criterion is that

Criterion I: The new CHY-integrand, i.e, the multiplication
of original CHY-integrand and the pick-factor, should not
contain any new poles or higher order poles comparing with
the original CHY-integrand.

It is worth to emphasize that when we say it does not
create new poles or higher poles, we are just calculate the
pole index of a subset Ai as χ(Ai) ≡ L[Ai ]− 2(|Ai | − 1) ,

Criterion II: The pick-factor should remove all incompatible
poles of the original integrand.

More explicitly, for each pick-factor in the list, we calculate
the remaining poles (by just calculating the pole index)
after multiplying it to the original CHY-integrand.
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(4)We need to have some criterions to see if it is the right
answer. The first criterion is that

Criterion I: The new CHY-integrand, i.e, the multiplication
of original CHY-integrand and the pick-factor, should not
contain any new poles or higher order poles comparing with
the original CHY-integrand.

It is worth to emphasize that when we say it does not
create new poles or higher poles, we are just calculate the
pole index of a subset Ai as χ(Ai) ≡ L[Ai ]− 2(|Ai | − 1) ,
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Now we use above four collections to construct the wanted
cross-ratio factor,which picks up a particular pole.

(7b) Secondly, we denote elements in the collection (III) by
ai , i = 1, ...,MIII .
(7c) Now we consider following combination

Ti;k
∏

1≤i1<...<im≤MIII

ai1 ...aim (28)

When searching through the combination, there are four
variables. The first one is the changing of the index i . The
second one is the changing of the index k . The third one is
the number m and the fourth one is the different choices of
a given number m. For the four nested loops. The outmost
loop is m = 1 to m = MIII . The next loop is from largest i to
smallest i . The third loop is the different choice of k and
the innermost loop is different combinations of ai1 ...aim with
given m.
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Now we use above four collections to construct the wanted
cross-ratio factor,which picks up a particular pole.

(5) First we collect all cross-ratio factors obtained from the
multiplication of the primary cross-ratio factors in the
collection (I), which satisfy the Criterion I. We denote them
as Ti;k where i is the number of primary cross-ratio factors
in the multiplication and k distinguishes different
combinations with same number i . The allowed choices of
k will be denoted as Ni .
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All the combinations without add new poles of
z2
38z2

78
z2
17z2

18z2
23z2

28z2
35z2

37z2
46z2

48z2
58z2

67
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Now we use above four collections to construct the wanted
cross-ratio factor,which picks up a particular pole.

(6) Secondly, we denote elements in the collection (III) by
ai , i = 1, ...,MIII .
(7) Now we consider following combination

Ti;k
∏

1≤i1<...<im≤MIII

ai1 ...aim (29)

When searching through the combination, there are four
variables. The first one is the changing of the index i . The
second one is the changing of the index k . The third one is
the number m and the fourth one is the different choices of
a given number m. For the four nested loops. The outmost
loop is m = 1 to m = MIII . The next loop is from largest i to
smallest i . The third loop is the different choice of k and
the innermost loop is different combinations of ai1 ...aim with
given m.
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Since we can not find the right pick-factor from just the
collection (I) of z2

38z2
78

z2
17z2

18z2
23z2

28z2
35z2

37z2
46z2

48z2
58z2

67
. According to our

algorithm we need to included the collection (III) with following
9 primary cross-ratio factors

a1 ≡ P18
78;23 =

z18z27

z12z78
a2 ≡ P23

38;46 =
z23z68

z26z38

a3 ≡ P46
78;23 =

z27z38z46

z26z34z78
a4 ≡ P23

78;46 =
z23z47z68

z26z34z78

a5 ≡ P58
78;23 =

z27z58

z25z78
a6 ≡ P18

38;46 =
z18z34

z14z38

a7 ≡ P18
78;46 =

z18z47

z14z78
a8 ≡ P58

38;46 =
z34z58

z38z45

a9 ≡ P58
78;46 =

z47z58

z45z78

(30)
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There are 13’s Ti;k with i = 3,2,1 and N3 = 2,N2 = 6,N1 = 5
respectively. Searching along the nested loops, we find that

(1) With m = 1, we find all 13× 9 can not satisfy both
Criterion I and II at the same time.
(2) With m = 2, we find all 13× 36 can not satisfy both
Criterion I and II at the same time.
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Now we use above four collections to construct the wanted
cross-ratio factor,which picks up a particular pole.

(3) With m = 3, we tested all 13× 84 items.Twelve
combinations satisfy both Criterion I and II:
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All of above twelve combinations of primary cross-ratio
factors give the same pick-factor:

z2
18z2

23z27z46z47z2
58

z12z14z25z26z2
38z45z2

78
(31)

It gives a new integrand.

I ′8 =
z27z47

z12z14z2
17z25z26z2

28z2
35z2

37z45z46z2
48z2

67
(32)

The Feynman diagrams corresponding to this new
integrand contains the only s248 terms.
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IV: Final Remark
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In this talk, we have presented two results

The first result, base on the topological structure of the
Cayley tree graph, there are two types of primary effective
Feynman vertex: the colour ordered type VC corresponding
the line subgraph of Cayley tree and the permutation type
VP which corresponding to node with multiple legs.

For the VC-type effective vertex, the |VC{(l1, l2, ..., ln)}|
represents all the cubic Feynman diagrams respecting the
colour order of the list {(l1, l2, ..., ln)}.
For the P-type vertex VP(k ; K̃1 � K̃2 � ...� K̃t ; n), it
represents the DDM type of cubic Feynman graph diagrams
with ordering from the shuffle algebra.
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Second result is the construction of picking up factor for
general CHY-integrandscontaining only simple poles.
Unlike the situation of bi-adjoint theory where one needs
only a cross-ratio factor, for general CHY-integrand, we
need to construct all possible cross-ratio factors from the
linking set Links[A,A],including the denominators and
numerators. When multiplying them together, we need to
introduce two criteria to select the right combination.
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Based on results in this note, there are several interesting
directions one can investigate.

Since one can represent these diagrams using the
polytope, it is naturalto ask, could we using the geometric
picture, i.e., projecting from an dimension higherobject to
its specific face, to understand and construct the same
picking up factor?
For general theory, such as Gravity and Yang-Mills, the
CHY-integrands aregeneral. Thus one can try if it is
possible to construct the one-loop integrands for
thesegeneral theory by removing singular contribution
using the picking up factor developed inthis note.
If this picking pole factor provides another way to reduce
higher polesto lower poles?
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Thanks a lot for the
attension !!!
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