EXOTIC CONSISTENT (1+1)D ANOMALIES : A GHOST STORY

11/27 第一届全国场论与弦论学术研讨会, USTC WORK WITH YING-HSUAN LIN (HARVARD) ARXIV:2009.07273

CHI-MING CHANG (YMSC, TSINGHUA)

- The study of anomalies has a long history.
- An important milestone: Wess-Zumino consistency ['71]. — Anomalous transformation is compatible with the symmetry algebra.
- equations and a cohomological classification of perturbative anomalies.

ANOMALIES (TRADITIONAL)

• Together with the "local" properties of anomalies led to the descent

[Lectures: Stora'77, Stora'84, Zumino'85, Stora'86] [TASI Lectures Harvey'03]

CONSEQUENCES OF ANOMALOUS WARD IDENTITIES

ANOMALIES (TRADITIONAL)

J. WESS

- CERN, Geneva, Switzerland and
- University of Karlsruhe, Karlsruhe, Germany

and

B. ZUMINO

- CERN, Geneva, Switzerland
- Received 7 September 1971

ANOMALIES (MODERN)

- Inflow paradigm: [Callan-Curtis-Harvey'85]
 - Anomaly in D dimensions is the inflow of a classical action in D+1 dimensions.
- Can we classify anomalies using inflow? [Wen'13, ...]
 - Inadequate for e.g. Conformal/Weyl anomalies.
 - Assumed to be okay for 't Hooft anomalies (of internal symmetry or spacetime symmetry).

- 't Hooft anomaly is a controlled breaking of symmetries in QFT
- The partition function on a background Φ (e.g. metric, gauge field, ...) transforms under the background transformation Λ (e.g. diffeomorphism, gauge, ...) with an **anomalous phase**

• Inflow paradigm: $\exists D+1$ dimensional bulk classical action $S_{\text{bulk}}[\Phi]$

• Bulk + boundary is free from anomaly.

'T HOOFT ANOMALIES

 $Z[\Phi^{\Lambda}] = Z[\Phi] \exp(i\alpha[\Phi, \Lambda])$

- $Z_{\text{bulk}}[\Phi] = \exp(-S_{\text{bulk}}[\Phi]), \quad Z_{\text{bulk}}[\Phi^{\Lambda}] = Z_{\text{bulk}}[\Phi] \exp(-i\alpha[\Phi, \Lambda])$

ANOMALIES (MODERN)

- Classification of D+1 dimensional bulk phases:
 - In D + 1 = 1, 2, 3 dimensions, bulk phases are classified by group cohomology.

- In $D + 1 = 1, \dots, 6$ dimensions, bulk phases are classified by cobordism (Some results assume bulk reflection-positivity).
- [Kapustin'14, Freed-Hopkins'16, Yonekura'18, ...] • With topological order. (partition function transforms more generally)

[Chen-Gu-Liu-Wen'11, Hung-Wen'12, Wen'13, ...]

[Kong-Wen'14, Lan-Wang-Wen'14, Witten'15, Ji-Wen'19, ...]

(1+1)D QFT WITH U(1) SYMMETRY

• Restrict to QFTs defined on Riemannian geometry. (Non-spin QFT) **Partition functions are scalars under the symmetries.**

- (1+1)D anomalies are inflowed by bulk (2+1)D Chern-Simons actions
 - Gravitational anomaly: $S_{\text{bulk}} = \frac{i\kappa_{R^2}}{81\pi} \left[CS(\omega), \quad CS(\omega) = \omega d\omega + \frac{2}{3}\omega^3 \right].$

U(1) anomaly:
$$S_{\text{bulk}} = \frac{i\kappa_{F^2}}{4\pi} \int C$$

 Φ : g, ω , R, A, F.

CS(A), $CS(A) = AdA + \frac{2}{2}A^{3}$.

(1+1)D QFT WITH U(1) SYMMETRY

- For Chern-Simons actions to be well-defined, levels are quantized.
- Translates to quantization of anomaly coefficients in (1+1)D
 - $\kappa_{R^2} \in 8\mathbb{Z}$ and $\kappa_{F^2} \in 2\mathbb{Z}$
- In CFT, the anomaly coefficients are related to *T* × *T* and *J* × *J* OPE coefficients

$$\kappa_{R^2} = c_- = c - \bar{c}$$

and
$$\kappa_{F^2} = k_- = k - \bar{k}$$

HOLOMORPHIC bc GHOSTS

- Some basics of the holomorphic *bc* system:
 - Free Grassmann fields: b, c.

• Action:
$$S = \frac{1}{2\pi} \int d^2 z \, b \bar{\partial} c.$$

- (Holomorphic) conformal weights:
- U(1) ghost number symmetry: J =: bc :.
- Ghost number / U(1) charge: $q_b =$
- Stress tensor: $T = (1 \lambda) : (\partial b)c : -\lambda : b\partial c :$

$$h_b = \lambda, \quad h_c = 1 - \lambda.$$

$$= -1, \quad q_c = +1.$$

HOLOMORPHIC bc GHOSTS

- When $\lambda \in \mathbb{Z}$, b and c have integer spins, and can be defined on
- Central charge: $c_{-} = 1 3(2\lambda 1)^2 \in -2 + 24\mathbb{Z}$.
- U(1) level: $k_{-} = 1$.
- - $c_{-} = c \overline{c} \in 8\mathbb{Z}$ and $k_{-} = k \overline{k} \in 2\mathbb{Z}$.

arbitrary Riemann surfaces (without specifying the spin structure).

• Incompatible with the quantization of Chern-Simons levels. Recap:

- 1. Classify 't Hooft anomalies from purely (1+1)D perspective.
- 2. Verify that the holomorphic bc ghost's anomalies fit in.
- 3. Discussion & future directions

PLAN

Let us go back to our traditional roots and study the Wess-Zumino consistency condition.

FINITE WESS-ZUMINO CONSISTENCY

• Anomalous phase:

 $Z[\Phi^{\Lambda}] = Z[\Phi] \exp(i\alpha[\Phi, \Lambda]).$

• Diagram on the right commutes:

 $\alpha[\Phi, \Lambda_2\Lambda_1] - \alpha[\Phi^{\Lambda_1}, \Lambda_2] - \alpha[\Phi, \Lambda_1] \in 2\pi\mathbb{Z}.$

Infinitesimal Λ leads to original Wess-Zumino.
[Book: Azcarraga-Izquierdo'95]

LOCALITY

- 1. The anomalous phase $\alpha[\Phi, \Lambda]$ is a local functional of Φ .
- 2. For infinitesimal Λ , the anomalous phase $\alpha[\Phi, \Lambda]$ is a local functional of both Φ and Λ , and vanishes on the trivial background.
 - On trivial background, the current J^{μ} is conserved away from any other operator insertions. In correlation functions,

- Had locality been false, Ward identities would violate this structure.
- $\langle \nabla_{\mu} J^{\mu}(x) \cdots \rangle = \text{contact terms.}$

LOCALITY

- The two locality conditions can be stated more precisely as
 - \mathcal{G} : Space of background transformations Λ .
 - $\theta_i[\Phi,\Lambda] + \theta(n), \qquad \theta(0) = 0.$

 - \mathcal{G}_n : Connected components, \mathcal{G}_0 contains the trivial transformation. • $\mathcal{A}_i[\Phi,\Lambda]$: Basis of local functionals that vanish when $\Phi = 0$. • The anomalous phase admits an expansion in the basis $\mathcal{A}_i[\Phi, \Lambda]$ as

$$\alpha[\Phi,\Lambda] = \sum_{i} \kappa_{i}(n) \mathscr{A}_{i}$$

GRAVITATIONAL ÅNOMALY

- Consider CFT on flat torus. Large diffeomorphism: $SL(2,\mathbb{Z})$.
- By locality, the anomalous phases are constants. (No local functional $\mathscr{A}_i[\Phi, \Lambda]$ could be written down.)

$$Z\left(\frac{a\tau+b}{c\tau+d},\frac{a\bar{\tau}+b}{c\bar{\tau}+d}\right) = Z(\tau,\bar{\tau}) \ e^{i\theta(a,b,c,d)}.$$

 (Assume that the partition func torus moduli τ.)

(Assume that the partition function does not vanish identically for all

GRAVITATIONAL ANOMALY

Solutions to finite Wess-Zumino Consistency

- Solution corresponds to the generator of \mathbb{Z}_6 :
 - General anomalous phases $\theta(a, b, c, d)$ are determined by θ_S and θ_T

$$Z\left(-\frac{1}{\tau},-\frac{1}{\bar{\tau}}\right) = Z(\tau,\bar{\tau}) \ e^{i\theta_S}, \quad Z(\tau+1,\bar{\tau}+1) = Z(\tau,\bar{\tau}) \ e^{i\theta_T}$$

• $\theta_S = \pi \mod 2\pi$, $\theta_T = \frac{\pi}{2} \mod 2\pi$

= Group cohomology $H^1(PSL(2,\mathbb{Z}), U(1)) \cong \mathbb{Z}_6$.

[CC-Lin, also in Seiberg-Tachikawa-Yunikura'18]

$$\Rightarrow \quad c_{-} = -\frac{12}{\pi}\theta_{T} \in -4 + 24\mathbb{Z}.$$

GRAVITATIONAL ÅNOMALY

- For any odd element of \mathbb{Z}_6 $\theta_S \equiv \pi \mod 2$
- This implies that at the S-invariant point (square torus) $Z(\tau = i,$

$$c_{-} \in 8\mathbb{Z} + 4.$$

$$\bar{\tau}=-i)=0.$$

• The square torus is reflection symmetric. If the CFT is reflective positivity, the partition function on square torus is positive. Hence,

 $c_{-} \in 8\mathbb{Z}$ for reflection positive CFT.

GRAVITATIONAL ANOMALY

- What if the partition function vanishes identically for all τ ? Consider torus one-point function instead.
- The solution to the finite Wess-Zumino condition is given by the group cohomology

• For $c_{-} \in 4\mathbb{Z} + 2$, the CFT must contain Grasmann-valued operators.

- $H^1(\mathrm{SL}(2,\mathbb{Z}),\mathrm{U}(1))\cong\mathbb{Z}_{12}.$
- If at least one torus one-point function does not vanish identically, then
 - $c \in 2\mathbb{Z}$.

- Consider CFT on flat torus.
- Space of U(1) gauge transformations λ has many connected components, labeled by the winding numbers around the noncontractible cycles \mathscr{C}_i

 $\overrightarrow{m}[\lambda] = \frac{1}{2\pi} \int_{\overrightarrow{\varphi}} d\lambda.$

- By locality, the general form of the anomalous phase is $\alpha[A,\lambda] = -\frac{\kappa(\overline{m}[\lambda])}{4\pi} \int_{\Sigma} d\lambda A +$
- $f_i(\lambda)$ is a basis of periodic functions

+
$$\sum_{i} \frac{\kappa'_{i}(\vec{m}[\lambda])}{2\pi} \int_{\Sigma} f_{i}(\lambda) F + \theta(\vec{m}[\lambda]).$$

 $f_i(\lambda + 2\pi) = f_i(\lambda)$.

• Restrict to flat gauge orbits, F = 0, so that κ_i do not contribute.

• Finite Wess-Zumino:

$$-\frac{\kappa(\vec{m}_{12})}{4\pi}\int_{\Sigma} d(\lambda_1 + \lambda_2)A + \theta(\vec{m}_{12})$$

$$-\frac{\kappa(\vec{m}_2)}{4\pi}\int_{\Sigma} d\lambda_2 (A+d\lambda_1)+\theta(\vec{m}_2)$$

$$-\left[\frac{\kappa(\vec{m}_{1})}{4\pi}\int_{\Sigma}d\lambda_{1}A + \theta(\vec{m}_{1})\right] \equiv 0 \mod 0$$

• A bit of manipulation: $\left|-\pi\kappa(\vec{m}_2)\vec{m}_1\cdot\Omega\cdot\vec{m}_2+\theta(\vec{m}_{12})-\theta(\vec{m}_1)-\theta(\vec{m}_2)\right|$ $-\frac{\kappa(\vec{m}_{12}) - \kappa(\vec{m}_{1})}{4\pi} \int_{\Sigma} d\lambda_1 A$ $-\left|\frac{\kappa(\vec{m}_{12})-\kappa(\vec{m}_{2})}{4\pi}\int_{\Sigma}d\lambda_{2}A\right|\equiv 0 \mod 2\pi.$

• Ω is intersection matrix.

• $\kappa(\vec{m}) = \kappa_{F^2}$ is constant.

• We are left with

$$-\pi\kappa_{F^2}\vec{m}_1\cdot\Omega\cdot\vec{m}_2+\theta(\vec{m}_{12})$$

On a torus,

$$\overrightarrow{m} = (m_a, m_b),$$

• This can be explicitly solved: $\theta(m_a, m_b) = \theta(1, 0)m_a + \theta(0, 1)m_b - \pi \kappa_{F^2}m_a m_b,$

$(p) - \theta(\vec{m}_1) - \theta(\vec{m}_2) \equiv 0 \mod 2\pi.$

 $\Omega = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$

 $\kappa_{F^2} \in \mathbb{Z}$.

• Mixed fWZ of U(1) + modular transforms gives $\theta(1,0) = \theta(0,1) = \pi \kappa_{F^2}$.

CONCLUDING REMARKS

SUMMARY

- Inflow paradigm + Chern-Simons level quantization:
- Finite Wess-Zumino:

- reflection positive.

 $\kappa_{R^2} = c_- \in 8\mathbb{Z}, \qquad \kappa_{F^2} = k_- \in 2\mathbb{Z}.$

 $\kappa_{R^2} = c_- \in 2\mathbb{Z}, \qquad \kappa_{F^2} = k_- \in \mathbb{Z}.$

• Saturated by holomorphic bc. Can explicitly verify anomalous phases. • CFT with $c_{\perp} \notin 4\mathbb{Z}$ must include ghosts, and with $c_{\perp} \notin 8\mathbb{Z}$ cannot be

NEW (2+1)D CLASSICAL ACTION?

- anomalies $c_{-} = -2$ and $k_{-} = 1$?
- braided fusion categories by Kong-Wen shows that $c_{-} \in 2\mathbb{Z}$.
- realizes the minimal chiral central charge $c_{-} = \pm 2$.

• Is there a new (2+1)D classical action responsible for inflowing the

• A classification of (2+1)D non-spin invertible topological order using

• However, there is no know non-spin invertible topological order that

[Kong-Wen'14]

FINITE WESS-ZUMINO IN HIGHER D

- be nontrivial global U(1) anomaly.
- Odd D? fWZ for global U(1) anomaly?
- More general manifolds...

• T^D : mapping class group is $SL(D, \mathbb{Z})$. However, $H^1(SL(D, \mathbb{Z}), U(1))$ is trivial for all $D \ge 3$. No global gravitational anomaly. There could still

• S^D : There exist large diffeomorphisms in $D \ge 6$. For example, the mapping class group is \mathbb{Z}_{28} in D = 6. fWZ gives $H^1(\mathbb{Z}_{28}, U(1)) \cong \mathbb{Z}_{28}$ which agrees with the inflow by (6+1)D Chern-Simons [Witten'85].

MIXED GRAVITATIONAL ÅNOMALY

- The ghost number current *J* is not conserved nontrivial backgrounds: $\langle \nabla^{\mu} J_{\mu}(x) \rangle \supset \kappa_{FR} R.$
- Inflow by a mixed Chern-Simons action:

$$S_{\text{bulk}} = -\frac{2i\kappa_{FR}}{\pi} \int_{\mathcal{M}_3} A \wedge dA_R , \qquad A_R \Big|_{\mathcal{M}_2} = \frac{1}{4} \varepsilon^{ab} \omega_{ba} .$$

- A_R : (2+1)D SO(2) gauge field.
- CS level quantization: $\kappa_{FR} \in \frac{\mathbb{Z}}{4}$, saturated by holomorphic *bc*. fWZ quantization?

ISOTOPY ANOMALY

• From the current J^{μ} , construct U(1) symmetry defect by integration along a curve C

$$\mathscr{L}_{\eta}(\mathscr{C}) = : \exp\left[i\eta \oint_{\mathscr{C}} ds \, n_{\mu}\right]$$

- η labels U(1) elements, has periodicity 1.
- Deform $\mathscr{C} \to \mathscr{C}'$. Swipes over domain \mathscr{D} , $\partial \mathcal{D} = \mathcal{C}' - \mathcal{C}.$

ISOTOPY ANOMALY

• The deformation gives an anomalous phase:

$$: \exp\left[i\eta \oint_{\partial \mathcal{D} = \mathscr{C}' - \mathscr{C}} ds \, n_{\mu} J^{\mu}\right] :$$
$$= : \exp\left[i\eta \int_{\mathscr{D}} d^{2}x \sqrt{g} \, \nabla_{\mu} J^{\mu}\right] : \quad \text{(Diver}$$
$$= \exp\left[i\eta \kappa_{FR} \int_{\mathscr{D}} d^{2}x \sqrt{g} R\right] \quad \text{(Anomalow}$$

rgence theorem)

ous conservation)

ISOTOPY ANOMALY

• Anomalous phase: $\exp i\eta\kappa_{FR}\int d^2x\sqrt{gR}.$

- The defect line \mathscr{L}_{η} is topological on flat space but not on curved space, due to mixed gravitational anomaly κ_{FR} .
- This is the isotopy anomaly.

