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Motivation and Background

Figure: Interstellar: Murphy wrote down the gravity theory based on the information sent by
Cooper from the black hole.
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Motivation and Background

For bosonic closed string theory, the tree level string effective action of the massless
sector is

I0 =

∫
dd+1x

√
−ge−2φ(R+ 4(∂φ)2 −

1

12
H2),

where φ is the dilaton and Hµνρ = 3∂[µbνρ] is the field strength of the antisymmetric
Kalb-Ramond field bµν . For simplicity, we always set bµν = 0 here. Many
non-perturbative progresses in last two decades are based on this (SUSY-) action.

There are some long-standing unsolved problems:

No de Sitter (dS) or anti-de Sitter (AdS) vacua (different from Einstein gravity).

The big-bang singularity (same as Einstein gravity).

· · ·

The first one leads to severe harms to the foundation of string theory itself and many
popular applications such as (Bosonic) AdS/CFT, AdS/QCD, AdS/CMT, cosmology...
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Motivation and Background

To see the problems clearer, we focus on the FLRW background

ds2 = −dt2 + a2(t)δijdx
idxj ,

Define

H(t) =
ȧ(t)

a(t)
=

d

dt
log a(t) (Hubble parameter), e−Φ =

√
−ge−2φ (O(d, d) dilaton)

The EOM (Friedmann equations) are

Ḣ − Φ̇H = 0,

Φ̇2 − dH2 = 0,

Φ̈− dH2 = 0,

There is a remarkable duality, the scale-factor duality:

a(t) →
1

a(t)
⇐⇒ H(t)→ −H(t),

Φ(t) → Φ(t)⇐⇒ φ(t)→ φ(t)− log
√
−g,

which turns out to be a special case of a more general symmetry: O(d, d) symmetry.
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Motivation and Background

ds2 = −dt2 + e2
∫ tH(τ)dτ δij dx

idxj ,

The EOM

Ḣ − Φ̇H = 0,

Φ̇2 − dH2 = 0,

Φ̈− dH2 = 0,

To have dS vacua, there must be H(t) = H0 > 0, which is not possible from the
EOM.

The evolutionary solutions are

H± (t) =
ȧ±

a±
= ±

1
√
d |t|

, Φ = − ln

∣∣∣∣ tt0
∣∣∣∣ ,

singular at t = 0.
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Motivation and Background

Note the scale-factor duality combined with time reversal t→ −t introduces a
pre-bing-bang phase, which is different from the Einstein cosmology.

H+
(0)

H-
(0)

I

IIIII

IV

t

H

Figure: The evolutions of the Hubble parameters of four solutions (we set d = 3 in this plot).
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Motivation and Background

How to resolve these problems?

Adding matter sources? compactification? quantization? ....?

(!!) Do not forget the tree level theory

I0 =

∫
dd+1x

√
−ge−2φ(R+ 4(∂φ)2 −

1

12
H2),

is valid only in the perturbative regime:

gs = e2φ << 1 and |R|α′ << 1

The first condition gs = e2φ << 1 concerns quantum/loop/topology corrections.

Since α′ ∼ `2string, the second condition |R|α′ << 1 concerns the classical
stringy correction. This means we have not really included “string” effects!
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Motivation and Background

Beyond the perturbative regime, the tree level string effective action receives two kinds
of corrections:

Classical stringy effects, namely the higher-derivative expansion, controlled by α′.

Quantum loop corrections, controlled by the string coupling gs = e2φ.

Ignoring matter sources, the most general perturbative form of the string effective
action has the following structure

I =

∫
dd+1x

√
−ge−2φ

{
[
(R+ 4(∂φ)2 −

1

12
H2) +

α′

4
(RµνσρR

µνσρ + · · · ) +O(α′2)
]

+ e2φ
[
(c1RR+ c1φ(∂φ)2 + c1HH

2) + α′(c1α′RRµνσρR
µνσρ + · · · ) +O(α′2)

]
+ e4φ

[
(c2RR+ c2φ(∂φ)2 + c2HH

2) + α′(c2α′RRµνσρR
µνσρ + · · · ) +O(α′2)

]
+ · · ·

}
,

with unknown ci
[··· ].

9 / 36



Motivation and Background

The loop (quantum) corrections have no help on the vacuum (classical) problem, but
indeed could smooth out the singularity, by implementing some non-local dilaton
potentials.

However, there is not much progress with α′ corrections,

I =

∫
dd+1x

√
−ge−2φ

[
(R+ 4(∂φ)2 −

1

12
H2) +

α′

4
(RµνσρR

µνσρ + · · · ) +O(α′2)
]

The main reason is that, the higher-derivative α′ corrections usually would change the
order of the differential equations in the equations of motion (EOM). At the tree level,
the EOM are second order differential equations; at the first order in α′, the EOM
become fourth order differential equations; and so on.

It seems hopeless...
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The Hohm-Zwiebach action and dS/AdS vacua

It is well known that for FLRW metric, the tree level action can be recast in an
O(d, d) covariant form [Veneziano 1991]. To this end, it is convenient to choose the
gauge b0i = 0 and write the fields in the form

gµν =

(
−1 0
0 Gij (t)

)
, bµν =

(
0 0
0 Bij (t)

)
.

The action can be rewritten as

I0 =

∫
dte−Φ

[
−Φ̇2 −

1

8
Tr
(
Ṡ2
)]
,

where S is the standard form of O(d, d) matrix

S =

(
BG−1 G−BG−1B
G−1 −G−1B

)
,

This action is manifestly invariant under the O (d, d) transformations

Φ −→ Φ, S −→ S̃ = ΩTSΩ,

where Ω is a constant matrix, satisfying

ΩT ηΩ = η, η =

(
0 I
I 0

)
.

η is the invariant metric of the O (d, d) group.
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The Hohm-Zwiebach action and dS/AdS vacua

Sen [1991,1992] proved that, to all orders in α′, for configurations independent of m
coordinates, the action possesses an O(m,m) symmetry. In particular for FLRW
metric which depends on t only, the symmetry is O(d, d). The standard form of
O(d, d) matrix receives higher order corrections.

Scorrected =

(
BG−1 G−BG−1B
G−1 −G−1B

)
+ α′

(
α β
γ δ

)
+O(α′2),

Meissner [1996] demonstrated that to the first order in α′, the O(d, d) matrix can
maintain the standard form in term of α′ corrected fields,

I1 =

∫
dte−Φ

{
−Φ̇2 −

1

8
TrṠ2 + α′λ0

[
1

16
TrṠ4 +

1

96

(
TrṠ2

)2
]}

.
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The Hohm-Zwiebach action and dS/AdS vacua

Based on a reasonable assumption that, to all orders in α′, the standard O(d, d)
matrix can be maintained by field redefinitions, Hohm and Zwiebach [Hohm:2019ccp,
Hohm:2019jgu] proved that, for FLRW background

I =

∫
dDx
√
−ge−2φ

(
R+ 4 (∂φ)2 +

1

4
α′ (RµνρσRµνρσ + . . .) + α′2(. . .) + . . .

)
,

=

∫
dte−Φ

(
−Φ̇2 +

∞∑
k=1

(
α′
)k−1

cktr
(
Ṡ2k

))

=

∫
dte−Φ

(
−Φ̇2 + g(H)−Hf(H)

)
,

where bµν = 0 and

f (H) = d
∞∑
k=1

(
−α′

)k−1
22(k+1)kckH

2k−1 = −2dH − 2dα′H3 +O
(
α′2
)
,

g (H) = Hf(H)−
∫ H

0
dxf(x) = −dH2 −

3

2
dα′H4 +O

(
α′2
)
.

Hitherto, we only know c1 = − 1
8

and c2 = 1
64

for the bosonic string theory (c2 = 1
128

for heterotic string and c2 = 0 for type II strings) and ck≥3 are undetermined.
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The Hohm-Zwiebach action and dS/AdS vacua

f (H) = d
∞∑
k=1

(
−α′

)k−1
22(k+1)kckH

2k−1 = −2dH − 2dα′H3 +O
(
α′2
)
,

g (H) = d
∞∑
k=1

(
−α′

)k−1
22k+1 (2k − 1) ckH

2k = −dH2 −
3

2
dα′H4 +O

(
α′2
)
.

The EOM of the Hohm-Zwiebach action are given by

Φ̈ +
1

2
Hf (H) = 0,

Φ̇2 + g (H) = 0,

d

dt

(
e−Φf (H)

)
= 0,

Now, if f(H0) = g(H0) = 0 have solutions for some H0 > 0, there are dS vacua,

ds2 = −dt2 + e2H0tdx2
i , Φ = Φ0.
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The Hohm-Zwiebach action and dS/AdS vacua

For instance, if

f(H) = −
2d
√
α′

sin(
√
α′H),

g(H) = Hf(H)−
∫ H

0
dxf(x) = −

2dH
√
α′

sin(
√
α′H) +

2d

α′
(1− cos(

√
α′H))

dS vacua are

H0 =
1
√
α′

2nπ, n > 0,

which is non-perturbative since H0 ∼ 1√
α′

and cannot be obtained unless all α′

corrections are included.
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The Hohm-Zwiebach action and dS/AdS vacua

To investigate if nonperturbative AdS vacua are also allowed, an appropriate ansatz is
crucial. The usual AdS metric form would make the derivation too complicated. So,
We take the ansatz [arXiv:1906.09650]

ds2 = dx2 + a2 (x)
(
−dt2 + dy2 + dz2 + . . .

)
.

We proved for this metric, Meissner’s argument also applies and

I =

∫
dDx
√
−ge−2φ

(
R+ 4 (∂φ)2 +

1

4
α′ (RµνρσRµνρσ + . . .) + α′2(. . .) + . . .

)
,

=

∫
dxe−Φ

(
Φ′2 + ḡ(H̄)− H̄f̄(H̄)

)
,

H̄ (x) =
a′ (x)

a (x)
,

f̄
(
H̄
)

= d
∞∑
k=1

(
−α′

)k−1
22(k+1)kc̄kH̄

2k−1,

ḡ
(
H̄
)

= d
∞∑
k=1

(
−α′

)k−1
22k+1 (2k − 1) c̄kH̄

2k.

It turns out that

c̄2k−1 = c2k−1, c̄2k = −c2k, for k = 1, 2, 3 . . .
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The Hohm-Zwiebach action and dS/AdS vacua

The EOM are

Φ′′ +
1

2
H̄f̄

(
H̄
)

= 0,

d

dx

(
e−Φf̄

(
H̄
))

= 0,

(Φ′)2 + ḡ
(
H̄
)

= 0,

So, if f̄(H̄0) = ḡ(H̄0) = 0 have solutions for some H̄0 > 0, there are AdS vacua,

ds2 = dx2 + e2H̄0x
(
−dt2 + dy2 + dz2 + . . .

)
.

To see this more clearly, we apply the transformation x→ − log[H̄0ξ]/H̄0 and recover
the familiar Poincare coordinate

ds2 =
1/H̄2

0

ξ2

(
− dt2 + dξ2 + dy2 + dz2 + . . .

)
.
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Mutual exclusion of dS and AdS vacua?

An intriguing fact is that, since

c̄2k−1 = c2k−1, c̄2k = −c2k, for k = 1, 2, 3 . . .

if in dS case f(H) ∼ sin(
√
α′H), there must be f̄(H̄) ∼ sinh(

√
α′H̄) in AdS case, or

vice versa. But the sinh function has no nontrivial zero. So, for this trial function,
AdS or dS vacua cannot coexist and only one of them survives.
This looks like merely a coincidence. But we have some reasons to conjecture that by
plugging the dS (AdS) metric into the yet unknown infinite α′ expansion, one could
sum the series into an expression including a factor that is very close to this trial
function.
To see this explicitly, in [arXiv:1703.05217], we showed that, for the nonlinear sigma
model of string theory

S = −
1

4πα′

∫
Σ
gij(X)∂αX

i∂αXj ,

we can expand Xi at some point x̄, say, Xi (τ, σ) = x̄i +
√
α′Yi (τ, σ), where the

Yi’s are dimensionless fluctuations. Locally around any point, one can always pick the
Riemann Normal Coordinates (RNC)

gij (X) = ηij +
`2s
3
RikljYkYl +

`3s
6
DkRilmjYkYlYm

+
`4s
20

(
DkDlRimnj +

8

9
RiklpR

p
mnj

)
YkYlYmYn + . . . .
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Mutual exclusion of dS and AdS vacua?

When the background is maximally symmetric, the expansion is greatly simplified and
can be summed into a closed form. For dS, we have

SdS = −
1

4π

∫
Σ
∂Yi∂Yj

 sin2
(√

α′
RdS

W
)

(√
α′

RdS
W
)2


a

i ηaj ,
(
W2
)a

b
≡ δabY

2 − YaYb.

If the background is AdS, we get

SAdS = −
1

4π

∫
Σ
∂Yi∂Yj

 sinh2
( √

α′
RAdS

W
)

( √
α′

RAdS
W
)2


a

i ηaj ,
(
W2
)a

b
≡ δabY

2−YaYb.

Noting that H0 ∼ 1/RdS and H̄0 ∼ 1/RAdS , the results strongly suggest that the
beta functions or EOMs of these two actions SdS and SAdS may behave very similarly

to f (H) ∼ sin
(√

α′H
)

and f̄
(
H̄
)
∼ sinh

(√
α′H̄

)
, or, equivalently speaking, there

are nonperturbative dS vacua but not nonperturbative AdS vacua, or vice versa.
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Resolution of the singularity

The Hohm-Zwiebach action also sheds light on the resolution of the big-bang
singularity. This is conceivable since, say, the divergence of the electron self-energy is
basically caused by the pointlike model.
However, straightforward perturbative calculation does not work. In the perturbative
regime |t| → ∞ (α′ → 0), the EOM

Φ̈ +
1

2
Hf (H) = 0,

Φ̇2 + g (H) = 0,

d

dt

(
e−Φf (H)

)
= 0,

f (H) = d
∞∑
k=1

(
−α′

)k−1
22(k+1)kckH

2k−1 = −2dH − 2dα′H3 +O
(
α′2
)
,

g (H) = d
∞∑
k=1

(
−α′

)k−1
22k+1 (2k − 1) ckH

2k = −dH2 −
3

2
dα′H4 +O

(
α′2
)
.

can be solved iteratively to arbitrary order in
√
α′
t

,
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Resolution of the singularity

H (t) =

√
2

√
α′

[
t0

t
− 160c2

t30
t3

+
256

(
770c22 + 19c3

)
3

t50
t5

−
2048

(
88232c32 + 4644c3c2 + 41c4

)
5

t70
t7

+O
(
t90
t9

)]
, t0 ≡

√
α′
√

2d

Φ (t) = −
1

2
log

(
β2 t

2

t20

)
− 32c2

t20
t2

+
256

(
44c22 + c3

)
3

t40
t4

−
2048

(
6976c32 + 352c3c2 + 3c4

)
15

t60
t6

+O
(
t80
t8

)
,

where β is an integration constant, and we used the universal c1 = − 1
8

. This solution
is obviously singular around the big-bang region t = 0. But only c1 = −1/8 and
c2 = 1/64 are known.
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Resolution of the singularity

To construct non-singular solutions of the EOM

Φ̈ +
1

2
Hf (H) = 0,

Φ̇2 + g (H) = 0,

d

dt

(
e−Φf (H)

)
= 0,

two constraints must be respected by such cosmological solutions:

a. As α′ → 0 or |t| → ∞, the solutions must exactly match the the perturbative
solution.

b. The constructed solution is anticipated to be regular everywhere.

However, it is far from easy to look for such solutions. As an illustration, one can first
make an ansatz for f(H), whose first two terms of the expansion in α′ agree with the

perturbative results (easy). Then we have g(H) = Hf(H)−
∫H
0 f(x) dx (might be

solvable). The insurmountable barrier is to solve H(t) and Φ(t) by substituting f(H)
and g(H) into the nonlinear EOM.
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Resolution of the singularity

In recent works [arXiv:1909.00830, 1910.05808], we have constructed two
non-perturbative non-singular solutions:
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Resolution of the singularity

Solution A:

Φ(t) =
1

2
log

( ∞∑
k=1

λk

1 + τ2k

)
, τ ≡

t

t0
=

√
2d
√
α′
t,

H(t) =

( ∞∑
k=1

λk

τ2k+1

) ∞∑
k=1

(
8k2λkτ

4k−2

(τ2k+1)3
− 2k(2k−1)λkτ

2k−2

(τ2k+1)2

)
−
( ∞∑
k=1

2kλkτ
2k−1

(τ2k+1)2

)2

√
2
√
α′β

( ∞∑
k=1

λk

τ2k+1

)5/2
,

f(H(t)) = −
2
√

2βd
√
α′

√√√√ ∞∑
k=1

λk

τ2k + 1
, g(H(t)) = −

2d

(∑∞
k=1

kλkτ
2k−1

(τ2k+1)2

)2

α′
(∑∞

k=1
λk

τ2k+1

)2
.

One of the big advantages of this solution is that as long as Φ(t) is non-singular, H(t)
is guaranteed to be non-singular. We therefore only need to care about the singularity
of Φ(t). Another advantage is that every individual term inside log is non-singular, in
contrast to the perturbative solution where all terms are singular. Singularities appear
if and only if

∞∑
k=1

λk

1 + τ2k
= 0,

has real roots.
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Resolution of the singularity

In the perturbative regime t→∞ (α′ → 0), Φ(t) is expanded as,

Φ(t) =
1

2
log

( ∞∑
k=1

λk

1 + τ2k

)
=

1

2
log

(
λ1

τ2

)
+

1

2
log

( ∞∑
k=1

1

τ2k−2

λk/λ1

1 + 1/τ2k

)

→ −
1

2
log

(
τ2

λ1

)
+
λ2 − λ1

2λ1

1

τ2
+
λ2

1 + 2 (λ2 + λ3)λ1 − λ2
2

4λ2
1

1

τ4
+ · · · ,

which has exactly the same pattern as the perturbative solution. Matching the
coefficients of the perturbative solution fixes λi:

λ1 =
1

β2
, λ2 = 0, λ3 =

4 + 512c3

3β2
, λ4 =

−4

15β2
(31 + 6272c3 + 3072c4), · · ·

Using H(t) produces the same λi. The solution is non-perturbative in the sense that
it is defined in the whole regime t ∈ (−∞,∞) and α′ does not need to approach zero.

Up to any order n, though λk≤n are fixed by the (in the future) known ck≤n, one
always has freedom to choose λk>n as any real value to violate the singular condition.
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Resolution of the singularity

Suppose the coefficients ck≤n are known and N ≥ n− 1, solution B is:

Φ(t) = −
1

2N
log

[
N∑
k=0

ρkτ
2k

]
, τ ≡

t

t0
=

√
2d
√
α′
t,

H(t) =
−
(∑N

k=0 ρkτ
2k
)∑N

k=0 2k(2k − 1)ρkτ
2k−2 +

(∑N
k=0 2kρkτ

2k−1
)

2

√
2
√
α′βN

(∑N
k=0 ρkτ

2k
)

2− 1
2N

,

f(H(t)) = −
2
√

2βd
√
α′

(
N∑
k=0

ρkτ
2k

)− 1
2N

, g(H(t)) = −
d
(∑N

k=0 2kρkτ
2k−1

)2

2α′N2
(∑N

k=0 ρkτ
2k
)2
.

Similar as solution A, matching the coefficients of the perturbative solution in the
perturbative regime t→∞ (α′ → 0) fixes ρi:

ρN = β2N , ρN−1 = Nβ2N , ρN−2 =
β2N

12

(
6N2 + 11 + 4c3

)
, · · ·

It should be noted that only ρN , ρN−1 · · · ρN−n+1 are fixed by the known coefficients
c1, c2 · · · cn. Other parameters ρ0, ρ1 · · · ρN−n can take any real numbers to violate
the singular condition

N∑
k=0

ρkτ
2k = 0,

In particular, we should set ρ0 > 0 to avoid t = 0 becoming a singularity. 26 / 36



A map between α′ corrected EOM and loop corrected EOM

Since
ġ(H) = g′(H)Ḣ(t) = Hf ′(H)Ḣ(t) = Hḟ(H),

The α′ corrected EOM

Φ̈ +
1

2
Hf (H) = 0,

Φ̇2 + g (H) = 0,

d

dt

(
e−Φf (H)

)
= 0,

can be recast as

2Φ̈− 2df(H)2 +
d

dt

[
g(H) + df(H)2

] f(H)

ḟ(H)
= 0,

Φ̇2 − df (H)2 +
[
g (H) + df (H)2

]
= 0,

ḟ (H)− f (H) Φ̇ = 0. (1)
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A map between α′ corrected EOM and loop corrected EOM

It was discovered long time ago that the big-bang singularity could be regularized by
loop corrections. In the context of discussing singularity resolution, it is sufficient to
implement some effective dilaton potentials to stand for loop corrections. A
phenomenological loop corrected effective theory then is

ILoop =

∫
dd+1x

√
−ge−2φ

[
R+ 4 (∂µφ)2 − V

(
e−Φ(x)

)]
,

FLRW
=====

∫
dte−Φ

[
− Φ̇ + dH2 − V (e−Φ)

]
,

where in the second line, we applied the FLRW background.
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A map between α′ corrected EOM and loop corrected EOM

The EOM is,

2Φ̈− 2dH2 −
∂V

∂Φ
= 0,

Φ̇2 − dH2 − V = 0,

Ḣ −HΦ̇ = 0.

Using the third equation, we have

∂V

∂Φ
=
dV (Φ)

dt

1

Φ̇
=
dV

dt

H(t)

Ḣ(t)
.

Therefore, the EOM can be rewritten as

2Φ̈− 2dH2 −
dV

dt

H(t)

Ḣ(t)
= 0,

Φ̇2 − dH2 − V = 0,

Ḣ −HΦ̇ = 0. (2)

29 / 36



A map between α′ corrected EOM and loop corrected EOM

The loop corrected EOM

2Φ̈− 2dH2 −
dV

dt

H(t)

Ḣ(t)
= 0,

Φ̇2 − dH2 − V = 0,

Ḣ −HΦ̇ = 0.

and the α′ corrected EOM (1)

2Φ̈− 2df(H)2 +
d

dt

[
g(H) + df(H)2

] f(H)

ḟ(H)
= 0,

Φ̇2 − df (H)2 +
[
g (H) + df (H)2

]
= 0,

ḟ (H)− f (H) Φ̇ = 0.

We immediately identify a map,

α′ EOM Loop EOM

g (Hα′ ) + df (Hα′ )
2 ←→ −VL,

f (Hα′ ) ←→ HL,

Φα′ ←→ ΦL + Φ0, (3)

where Φ0 is a constant.
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A map between α′ corrected EOM and loop corrected EOM

We want to stress that this does not mean there must exist such a map between the
true complete loop corrections and complete α′ corrections, since they might not
share the same solution Φ(t) and the loop corrected action we used is a greatly
simplified model.
However, this phenomenological but instructive map is still very useful to mutually
generate new solutions for either of them. Especially the loop corrected solutions
generated from the α′ corrected solutions are more reasonable than those in literature.
We gave examples in the paper [arXiv:1909.00830].
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Derive Lovelock Gravity from String Theory

The most general metric theory of gravity leading to second order field equations in
D-dimensions, is given by the Lovelock gravity (Lovelock theorem), which is
constructed by the dimensionally extended Euler densities:

ILove =

∫
dDx

√
−g̃

[
D−1

2

]∑
k=0

αkλ
2k−2Lk,

=

∫
dDx

√
−g̃
(
α0 + α1R̃+ α2(R̃2 + R̃αβµνR̃

αβµν − 4R̃µνR̃
µν) +O(R̃3)

)
,

Lk ≡
1

2k
δ
µ1···µkν1···νk
ρ1···ρkσ1···σk R̃

ρ1σ1
µ1ν1

· · · R̃ ρkσk
µkνk ,

where [(D − 1) /2] denotes the integer part of (D − 1) /2. αk are dimensionless and λ
has a length scale. Notation “tilde” indicates the Einstein frame. The action (4) only
has a finite number of terms for k < D/2. Terms for k > D/2 vanish identically, and
the term k = D/2 is a topological invariant. To match the Einstein-Hilbert action, we
have α0 = −2Λ and α1 = 1.

The term of α2 is the Gauss-Bonnet.
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Derive Lovelock Gravity from String Theory

As early as the mid-1980s, it has been speculated that Lovelock theory might be
derived from string theory. If string theory is as powerful as claimed, this should be
true.

This has been done up to the linear α′ correction (Gauss-Bonnet).

However, The higher order α′ corrections include higher derivatives of the metric
and cannot be rewritten as higher order Lovelock gravity.

Moreover, a conceptual mismatch exists: for a particular dimension D = d+ 1,
Lovelock gravity has finite terms but α′ corrections are infinitely many.

In a coming paper, we will show that in cosmological background, Lovelock Gravity
indeed can be derived from string theory α′ corrections, with the coefficients identified
as

αk =
2k − 1

(k + 1)!
22k+1ck, (4)

where ck’s are the coefficient of k-th α′ corrections in the HZ action.
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Derive Lovelock Gravity from String Theory
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Summary and Discussions

The α′ corrections do permit dS/AdS vacua and provide possible resolutions for
the singularities.

A phenomenological map between the α′ corrected EOM and loop corrected
EOM is identified.

We addressed vacuum scenario and set bµν = 0. One might rotate time
dependent bµν(t) into the evolution to get some new features. Particularly, the
string coupling could be stabilized by some configurations of bµν(t) — work to
appear very soon.

With some subtleties, naked spatial singularity can also be resolved by α′

corrections — work to appear very soon.

With α′ corrections, exotic matter is not necessary to support traversable
Wormhole — work in progress.

Matter sources in an O(d, d) fashion are expected to lead to more realistic
configurations.

String cosmology can be reformulated in a solider manner!
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Thank you!
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