

# Reflected entropy for an evaporating black hole

Yang Zhou

Based on arXiv:2006.10846 (JHEP) with Tianyi Li and Jinwei Chu

第一届全国场论与弦论学术研讨会

#### Introduction

- Quantum gravity is the key to understand the origin of our universe
- A simpler object involving quantum gravity is black hole. They have a temperature that leads to Hawking radiation.
- Black holes also have entropy, given by the Area of the horizons.
- The question is whether black holes behave like ordinary quantum systems. People believe they do (string theory, AdS/CFT) but do not know how.

- Importantly, there is a paradox if they do: consider a black hole formed by a pure state, after evaporation it becomes a thermal state (according to Hawking)-> information is lost
- You may argue that strange things can happen at the end of the evaporation. But the paradox already shows up near the middle age of BH.

• To understand this, we first introduce 2 different notions of entropy: fine-grained entropy and coarse-grained entropy.

# Fine-grained < coarse-grained [Review: arXiv:2006.06872]

- 1<sup>st</sup>: Fine-grained entropy is simply the von Neumann entropy. It is Shannon's entropy with distribution replaced by density matrix. It is invariant under unitary time evolution.
- $2^{nd}$ : Coarse-grained entropy is defined as follows. We only measure simple observables  $A_i$ . And consider all possible density matrices which give the same result as our system.

$$Tr[\tilde{\rho}A_i] = Tr[\rho A_i]$$

We then choose the maximal von Neumann entropy over all possible density matrices  $S(\tilde{\rho})$ . It increases under unitary time evolution. -> entropy in thermodynamics.

### **Information paradox**

- Bekenstein-Hawking entropy is coarse-grained entropy.
- The thermal aspect of Hawking radiation comes from separating entangled outgoing Hawking quanta and interior Hawking quanta.
- As the entropy of radiation gets bigger and bigger, we run into trouble because, the entangled partners in black hole should have the same entropy, which exceeds the horizon entropy.
- In fact, the constantly increasing result was made by Hawking. Page suggested that the outgoing radiation entropy should follow Page curve



Entropy of outgoing radiation



#### How to reproduce Page curve?

# QES formula for BH [Penington, Almheiri-Engelhardt-Marolf-Maxfield]

,

 The fine-grained entropy of black hole surround by quantum fields is given in terms of semiclassical entropy by

$$S_B = \operatorname{ext}_Q \left\{ \frac{\operatorname{Area}(Q)}{4G_N} + S(\tilde{\rho}_B) \right\}$$

#### Island formula for radiation [Almheiri-Mahajan-Maldacena-Zhao]

 Similarly, the fine-grained entropy of radiation is given in terms of semiclassical entropy by

$$S(\rho_R) = \operatorname{ext}_I \left\{ \frac{\operatorname{Area}(\partial I = Q)}{4G_N} + S(\tilde{\rho}_{R \cup I}) \right\}$$

# Quantum extremal surface [Engelhardt-Wall,RT,HRT]

• QES origins from holographic entanglement entropy in AdS/CFT with bulk matter

$$S(A^{*}) = \operatorname{ext}_{Q} \left\{ \frac{\operatorname{Area}(Q)}{4G_{N}} + S^{\operatorname{bulk}}(a^{*}) \right\}$$

$$A \left( \begin{array}{c} a \\ \checkmark \end{array} \right) B$$

#### Motivations

- So far we only consider BH + radiation is pure, but what if BH + radiation is a mixed state?
- Are there other quantities which can have island formula?
- Can we read more information about the island?
- Can we compute the correlation between Hawking radiation A and B?

# Von Neumann entropy vs Reflected entropy

(See also arXiv:2006.10754 by V.Chandrasekaran, M.Miyaji, P.Rath)

#### Outline

• Reflected entropy and the holographic dual

• Quantum extremal cross section

Gravitational reflected entropy

• Eternal black hole + CFT model

# Canonical purification [Dutta-Faulkner]

- Consider a mixed state on a bipartite Hilbert space  $\rho_{AB}$
- Flipping Bras to Kets for the basis

 $\left|i\right\rangle \left\langle j
ight| \implies \left|i\right\rangle \otimes \left|j
ight
angle$ 

• A canonical purification

 $\left|\sqrt{\rho_{AB}}\right\rangle \in \left(\mathcal{H}_A \otimes \mathcal{H}_A^{\star}\right) \otimes \left(\mathcal{H}_B \otimes \mathcal{H}_B^{\star}\right)$  $\operatorname{Tr}_{\mathcal{H}_A^{\star} \otimes \mathcal{H}_B^{\star}} \left|\sqrt{\rho_{AB}}\right\rangle \left\langle\sqrt{\rho_{AB}}\right| = \rho_{AB}$ 

$$\rho_{AB} = \frac{1}{2} (|\uparrow\uparrow\rangle\langle\uparrow\uparrow|_{AB} + |\downarrow\downarrow\rangle\langle\downarrow\downarrow|_{AB})$$

$$\sqrt{\rho_{AB}} = \frac{1}{\sqrt{2}} (|\uparrow\uparrow\uparrow\uparrow\rangle_{AA'BB'} + |\downarrow\downarrow\downarrow\downarrow\rangle_{AA'BB'})$$

Reflected entropy

 $S_R(A:B) \equiv S(AA^{\star})_{\sqrt{\rho_{AB}}}$ 

# **Reflected entropy**

• Properties

pure state :  $S_R(A:B) = 2S(A)$ ,

factorized state :  $S_R(A:B) = 0$ , bounded from below :  $S_R(A:B) \ge I(A:B)$ , bounded from above :  $S_R(A:B) \le 2\min\{S(A), S(B)\}$ 



# Holographic reflected entropy [Dutta-Faulkner]



#### Multipartite reflected entropy $\Delta_W(A : B : C)$



[Chu-Qi-YZ,2019]

[Umemoto-YZ,2018]

# Replica trick

• Replica trick in canonical purifications

• Replica trick in Renyi index

$$\Delta_R(A:B:C) = \lim_{\substack{\boldsymbol{n}\to 1\\m\to 1}} S_{\boldsymbol{n}},$$

$$S_{\boldsymbol{n}} = \frac{1}{1-\boldsymbol{n}} \ln \frac{\operatorname{Tr}_{R}(\operatorname{Tr}_{L}\rho_{3}^{(m)})^{\boldsymbol{n}}}{(\operatorname{Tr}\rho_{3}^{(m)})^{\boldsymbol{n}}}$$

# Quantum corrected reflected entropy



$$S_R(A:B) = \frac{2\langle \mathcal{A}[\partial a \cap \partial b] \rangle_{\tilde{\rho}_{ab}}}{4G_N} + S_R^{\text{bulk}}(a:b) + \mathcal{O}(G_N)$$
[Dutta-Faulkner]

#### FLM on double replicas



$$S(AA^*) = \frac{1}{4G_N} \langle \mathcal{A}[m(AA^*)] \rangle + S^{\text{bulk}}(aa^*) + \mathcal{O}(G_N)$$
$$\langle \mathcal{A}[m(AA^*)] \rangle = 2 \langle \mathcal{A}[\partial a \cap \partial b] \rangle$$

$$S_R^{\text{bulk}}(a:b) = S^{\text{bulk}}(aa^*)$$

# Quantum extremal cross section [Li-Chu-YZ,2020]



$$S(AA^*) = \operatorname{ext}_Q \left\{ \frac{\operatorname{Area}(Q)}{4G_N} + S^{\operatorname{bulk}}(aa^*) \right\}$$

$$S_R(A:B) = \operatorname{ext}_{Q'} \left\{ \frac{2\operatorname{Area}(Q' = \partial a \cap \partial b)}{4G_N} + S_R^{\operatorname{bulk}}(a:b) \right\}$$

#### Eternal black hole + CFT

[Almheiri-Mahajan-Maldacena]

- AdS black holes do not evaporate.
- Information paradox can be realized in AdS spacetime joined to a Minkowski region, such that black hole can radiates into the attached Minkowski region
- Consider 2d Jackiw-Teiteboim gravity in AdS plus a CFT<sub>2</sub> (also in Minkowski), with a transparent boundary condition
- Explicit computations can be done in this model

$$I_{\text{total}} = -\frac{S_0}{4\pi} \left[ \int_{\Sigma} R + \int_{\partial \Sigma} 2K \right] - \int_{\Sigma} (R+2) \frac{\phi}{4\pi} - \frac{\phi_b}{4\pi} \int_{\partial \Sigma} 2K + S_{\text{CFT}}$$



#### QES for a single interval



$$ds_{
m in}^2 = rac{4\pi^2}{eta^2} rac{dydar y}{\sinh^2rac{\pi}{eta}(y+ar y)}, \qquad ds_{
m out}^2 = rac{1}{\epsilon^2} dydar y$$
  
 $y = \sigma + i au, \qquad ar y = \sigma - i au, \qquad au = au + eta \;.$   
 $S_{
m gen} = S_0 + \phi(-a) + S_{
m CFT}([-a,b])$ 

–a is determined following QES condition

$$\partial_a S_{\text{gen}} = 0 \quad \rightarrow \qquad \sinh\left(\frac{2\pi a}{\beta}\right) = \frac{12\pi\phi_r}{\beta c} \frac{\sinh\left(\frac{\pi}{\beta}(b+a)\right)}{\sinh\left(\frac{\pi}{\beta}(a-b)\right)}$$

#### Gravitational reflected entropy (B-R)



$$B_L) = \min \, \operatorname{ext}_{Q'} \left\{ \frac{2A(Q' = \partial \tilde{I}_L \cap \partial \tilde{B}_L)}{4G_N} + S_R(\tilde{\rho}_{R_L \cup \tilde{I}_L} : \tilde{\rho}_{\tilde{B}_L}) \right\}$$

#### $b = 0.01, \phi_r = 100, S_0 = c = 20000$ and $\epsilon_{UV} = 0.01$



#### **B-B reflected entropy**



$$b = 1, \phi_r = 100, S_0 = c = 1000$$



#### **R-R** reflected entropy



$$S_R(R_1:R_2) = \min \operatorname{ext}_{Q'} \left\{ \frac{2A(Q'=\partial \tilde{I}_1 \cap \partial \tilde{I}_2)}{4G_N} + S_R(\tilde{\rho}_{R_1\cup\tilde{I}_1}:\tilde{\rho}_{R_2\cup\tilde{I}_2}) \right\}$$

$$b_1 = 0.01, b_2 = 5, \phi_r = 10, S_0 = c = 2000$$
 and  $\epsilon_{UV} = 0.001$ 



#### Paradox for initial mixed state

• Von Neumann entropy contains redundancy

• Reflected entropy is good measure of information transfer

• The paradox  $S_R > 2 S_{BH}$ , Page time is defined at  $S_R = 2 S_{BH}$ 

• The island formula of reflected entropy resolved the paradox



- Reflected entropy curve is the analogy of Page curve for a globally mixed state
- Reflected entropy can be computed for R-R, B-B and B-R
- Reflected entropy has island cross-section as its area term
- Future direction: multipartite generalization (in progress)

# Thank You!