Lyapunov exponent in entanglement renormalization

Xing Huang

Northwest University

Nov 27th @ USTC

Introduction •	Entanglement Renormalization	Chaos and OTOC	Radial OTOC 00000	

Outline

- Geometry from entanglement renormalization
- Maximal chaos, a signal of gravity
- Exponential growth of renormalized operator

$$S_{\rm EE}(A) = {{\rm Area}(\gamma_A)\over 4G}, \quad \partial \gamma_A = \partial A$$

 $CFT_d \leftrightarrow string theory in AdS_{d+1}$

Question: What entanglement?

 λ_L in entanglement renormalization

Multi-scale entanglement renormalization ansatz

Tensors (disentangler, isometry) modify the entanglement structure

MERA version of RT-formula

 $S_A \leq \#(\text{LUs cut})$

figures courtesy of arXiv:1209.3304

 λ_I in entanglement renormalization

figures courtesy of arXiv:1208.3469

Chaos and OTOC

Network of perfect tensors

Holographic hexagon state

- A toy model of (discretized) AdS using perfect tensors
 Pastawski etal arXiv:1503.06237
- A perfect tensor guarantees maximal entanglement for subsystems

$$T = \frac{1}{3} (|0000\rangle + |0111\rangle + |0222\rangle + |1012\rangle + |1120\rangle + |1201\rangle + |2021\rangle + |2102\rangle + |2210\rangle)$$

 spacetime emerges via an error correction code

figures courtesy of arXiv:1503.06237

 λ_I in entanglement renormalization

Surface/state correspondence

Miyaji & Takayanagi arXiv:1503.03542 Surface in bulk $\Sigma \leftrightarrow$ State $|\Psi(\Sigma)\rangle$ in the CFT

- Continuous version of MERA, *i.e.*, CMERA
- Pure states |Ψ(Σ)) related by unitary transformation
- Trivial state has no spatial entanglement

Entanglement Renormalization	Chaos and OTOC ●00	Radial OTOC 00000	

Chaos

 Chaotic behavior is very common. It tells the system is highly sensitive to the initial condition

$$|\delta x(t)| \sim e^{\lambda_L t} |\delta x(0)|$$

 Definition of quantum chaos is less clear. OTOC provides a way to diagnose chaos.

λ_L in entanglement renormalization

A bound on Lyapunov exponent

Maldacena, Shenker & Stanford arXiv:1503.01409

Quantum mechanically, the dependence on initial condition is characterized by the commutator

$$C(t)=-Z^{-1}\mathrm{Tr}[e^{-\beta H}[W(t),V(0)]^2]$$

Roughly speaking $C(t) \sim c_0 - F(t - i\beta/4) - F(t + i\beta/4)$. The early time behavior of F(t) goes like

$$F(t) = \operatorname{Tr}[yV(0)yW(t)yV(0)yW(t)] \sim f_0 - f_1 e^{\lambda_L t}$$

where $y^4 = Z^{-1}e^{-\beta H}$ A bound on the Lyapunov exponent is conjectured

$$\lambda_L \leq \frac{2\pi}{\beta}$$

Entanglement Renormalization	Chaos and OTOC 00●	Radial OTOC 00000	

Holographic computation

The bound is saturated for holographic CFT

$$F(t) = f_0 - \frac{f_1}{N^2} e^{\frac{2\pi}{\beta}t} + \mathcal{O}(N^{-4})$$

OTOC can be checked gravitationally by the scattering of shock waves

Shenker & Stanford arXiv:1306.0622, arXiv:1412.6087

figures courtesy of arXiv:1412.6087

CMERA from path integral

Question: What if W(t) is evolved radially

CMERA is realized by Euclidean PI Takayanagi arXiv:1808.09072

$$e^{C(M_{\Sigma})} \cdot \Psi_{\Sigma}[\varphi_0(x)] = \int \left[\prod_{y \in M_{\Sigma}} D\varphi(y)\right] e^{-S_{M_{\Sigma}}^{CFT}[\varphi]} \prod_{x \in \Sigma} \delta(\varphi(x) - \varphi_0(x)),$$

The evolution is generated by the same Hamiltonian and hence it is natural expect the same chaotic behavior

Entanglement Renormalization	Chaos and OTOC	Radial OTOC 0●000	

Random unitary circuit

Keselman, Nie and Berg arXiv:2009.10104

V(0), W(0) are single-bit Pauli operators. W(t) is evolved by randomly applying SWAP and CNOT gates

The integrated OTOC

$$f(t) = \sum_{j} C_{i,j}(t) = -\sum_{j} \langle [W_i(t), V_j(0)]^2 \rangle$$

is found to grow exponentially

figures courtesy of arXiv:2009.10104

 λ_I in entanglement renormalization

MERA network as a random circuit

XH w/ Binchao Zhang, work in progress

MERA tensor network is formulated in terms of random unitary circuit. The evolution from IR to UV

 CNOT gates are replaced by the (dis)entanglers (blue boxes), whose number increases at every time step

$$\begin{split} |00\rangle &\rightarrow \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right), \quad |11\rangle \rightarrow \frac{1}{\sqrt{2}} \left(|00\rangle - |11\rangle \right) \\ |01\rangle &\rightarrow \frac{1}{\sqrt{2}} \left(|01\rangle + |10\rangle \right), \quad |10\rangle \rightarrow \frac{1}{\sqrt{2}} \left(|01\rangle - |10\rangle \right) \end{split}$$

OTOC of renormalized operators

ITensor package, Fishman, White, & Stoudenmire arXiv:2007.14822

$$N = 16, V(0) = \sigma_y, W(0) = \sigma_x, p = 0.9, r = 2^{t-9}$$

Exponential growth of iOTOC is obtained

$$f(t) \sim e^{\lambda_L t}, \quad \lambda_L \sim 0.6$$

Entanglement Renormalization	Chaos and OTOC	Radial OTOC 0000●	

Discussions

- Exponential growth could be trivial since it is quite universal
- Temperature is not well defined in the current scenario. It is not clear how the bound is imposed, if there is one
- Reproduce RT formula
- Other tensor networks like those made by perfect tensor

Entanglement Renormalization	Chaos and OTOC	Radial OTOC 00000	Summary ●

Summary

- Spacetime geometry emerges from entanglement renormalization
- Chaotic behavior shall leave its signature in the radial evolution of entanglement structure
- Preliminary numerical result supports the exponential growth of OTOC