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General relativity is the most well know gravity theory under two principles:

1. Equivalence principle:

strong version and weak version;

2. General principle of relativity:

the physical laws take the same forms among all reference frames.



" The traditional metric approach:
{z" u=0,1,2,3} ds? = gupdxtdz” R, — %ng = 871,

Shortcoming:
(1) The metric tensor contains redundant frame information;

(2) It is not apparent which quantities can be treat as small when doing
perturbation;

(3) The equations of gauge invariant quantities should be derived from
the Einstein equation.



" The gauge theory approach:

» Gauge theory is built on a flat background spacetime;

> Gauge fields are introduced to maintain the position and orientation
invariant of physical laws.

Position gauge tield: h(CL)

Rotation gauge field: Q(CL)



* Geometric algebra:

» Geometric algebra is a covariant language for physics and geometry

» For two vectors a and b, the inner and outer products are defined in terms
of geometric product:

a-b = % (ab + ba) aAb = % (ab — ba)

» The geometric product for two vectors can be written as

ab=a-b+aNb



= Axiomatic development of the geometric algebra:

» In a vector space with any dimension, the geometric product obey three axioms:

(1) Associative: a(bc) = (ab)c = abc

(2) Distributive over addition: a(b+c) =ab+ac, (b+c)a=ba+ ca

(3) The square of any vector is a real scalar: 2cR



= Axiomatic development of the geometric algebra:

» By successively multiplying vectors together we can generate the complete

algebra: Un

» The elements of this algebra are called multivectors, which are linear
combinations of geometric products of vectors,

A:@(abc...)+ﬁ(€f...)+...7



» The outer product for vectors a1,Qa2, - ,Qr is a grade-r multivector:

1
axNag A Nap == (=1)%ag,ap, - a,

» An arbitrary multivector A can be decomposed into a sum fixed grade terms:

» The geometric product of a vector a and a grade-r multivector A:

aA, =a-A-+aANA,



= Reflections and rotations:

> The reflection of a vector a along a unit vector n with n? = 1
a=n‘a=n(n-a+nha)=a|+ayr a|=nn-a, a; =nnAa

/
a =ayl —aq =nn/ANa—nn-a

= —n-an —n/Nan

= —nan,




= Reflections and rotations:

» A rotation can be achieved by successive reflection in the hyperplane
perpendicular to two vectors:

a+— C = nmamn

» In geometric algebra, a rotation is generated

by a rotor R:
R=nm = e_B9/2

A mAmN
cos(/2) =m-n, B= Sn(6/2)

» Under rotation, any vector a transforms in the following way

a— a = RaR]



® | inear functions:

» In geometric algebra, we use a frame independent and index free linear
function instead of the tensors to describe the physical fields.

» A linear function F is a quantity which maps vectors to vectors linearly in the
same space:

F(\a + ub) = A\F(a) + uF(b)

FlaAnbA---ANc)=F(a) AF(b)A--- ANF(c)



= Spacetime algebra:

» The spacetime algebra is generated by four frame vectors {70, v1,72,73},
satistying the following algebraic relations

» In terms of geometric product, the frame vectors of the spacetime algebra
satisty

YuYv + VoV = 277;u/7 Nuy — diag{l, -1, -1, _1} Ey = v0717273

» The frame {v,} establish an basis for the spacetime algebra G(1,3):

L, {VI«L}7 {’YM A ’Yl/}v {Elm/l«b}v Ey.
1 scalar, 4 vectors, 6 bivectors, 4 trivectors, 1 volume element.




» Due to the universality of physics laws, the establishment of all physical
relations should be completely independent of where we choose I to place:

V(z) = J(2) = V(') = J()

» The orientation irrelevance requitres that if we rotate fields in W and J,
we will have

V(z)=J(zr) e= RU(z)R'= RJ(z)R!



= The position gauge tields:

» The physical quantity changes covariantly under displacement:

» The derivative has the following transformation under displacement

0 Vol () = lim & (6(f(z + ea)) — &(f(x)))

e—0 €

. 1 / / / T /
= lim = (¢(a' + ef(a)) = 6(2"))  mmm)  V,¢/(x) = F(V,y)o(2))

= f(a;z) - Vyo(2'),
fla;2) = a- Vi f()



= The position gauge tields:

» The position gauge field h(a;z) is introduced to make the derivative operator
covariant under displacement:

r— 2 = f(x)

h(a;z) — h'(a;2) = h(f (a); f(z))

h(va 37) — h(f_l(vx)§ f(:l?)) — E(Va:’§ 55,) A(x) — h(v¢(m))



= The rotation gauge fields:

» The partial derivative has the following transformation under local rotation
0,(RIR") = RO, JR" +2(8,RR") x (RTR")

> 'The covariant derivative is introduced to make the derivative operator covariant
under rotation:

D, (RJR") = RD,JR' D,, = 0, + Qe,)x

Qfa;z) — QUa;z) = RQ(a; 2)R" — 2a - VRR!
DJ = h(e")D,J



= The gravitational field equations:

» In gauge theory gravity, the dynamical gravitational fields h(a) and Q(a) are
introduced through gauge covariance.

» Similar to the electromagnetism, the field equations can be constructed from an
action made by the field strength

Dy, Dy)M = R(a Ab)M

R(aNb) =a-VQO) —b-VQ(a)+ Q2a) x 2(b)



= The gravitational field equations:

» The field strength transforms according to

R(B:z) — R'(B;x) = R(f(B); ')

R(B) — R'(B) = RR(B)R!

> A covariant field strength therefore can be constructed:

Displacements : R (B;x) = R(B;2'),

R(B;z) = R(h(B);z) Rotations : R'(B) = RR(R'BR)R!



= The gravitational field equations:

» The analogue of Ricci tensor and scalar, and Einstein tensor can be formulated
with vector derivative inner product:

Ricci Tansor : R(b) =0, -R(aNb),
Ricci Scalar : R =0y-R(b),

1
Einstein Tensor : G(a) =R(a) — 5@72.

» The Ricci scalar is a good candidate for a Lagrangian density of the gravitational
gauge fields, since it 1s now displacement covariant and rotational invariant:

S = /d4xdet(h_1) (%R + A — H}ﬁm>



* The gravitational field equations:

» The variational principle leads to “Einstein equation” and “torsion equation”:
1 (R
oy (det(h™) (A =KL | ) =0 mmmm)  G(a) — Aa = kT (a)

Oy R — det(h)dy - V(dga) sRdet(h™)) = 260q(4) L,



= Black holes:

» The spherical symmetrical configuration in the absence of matter:

E(et) = fie' Q(h(er)) = Gerey
h(e') = gre” + g2€' Q(h(ey)) = Ferer
he))=e¢ Q(b(0)) = go/rbec + (g1 — 1)/re,0
(e”) =e Q1(8)) = garder + (g1 — 1)/resd
M = %’r(gg2 —g1° + 1)

M
fi=exp{[ —G/g1ds} R(B) = _273(B+3UTBUT)
Ligi = Gg2 Ly =¢e;-h(V) Op = €€
Lygo=Fg1 L,= er'ﬁ(v)




= Black holes:

» One specific gauge choice:
1/2
g1 =1 92:_\/2M/7° fi=1 G =10 F:—M :(M>

h(a) =a —/2M/ra-e, e

» Compere to the metric approach, the metric tensor can be recovered from

the position gauge field:

Juv = 4pu-gv — h—l(eu)'h_l(eu)

o\ ! /2 Painlevé
ds® = dt* — (dT + () dt) — TZ(dQQ T sin” (‘9) dCbZ) Gullstrand

r



= Black holes:

» Point particle trajectories:

v=h"1(&) =te + (E/2M /7 + 7)e, + Oeg —I—gbe(p

v? =1 EB:'”U°D’U=0 —>

a2 —1 72 M J?
= — Ve == —— _
2 g TV Ve r o (

» For out going photons:

k=h"'2) k=0 k=ve+e,)



e Gravitational waves with A=0

» In four dimensional space, denote the frame as {e;, e, ey, e.}, the gravitational
wave propagating in the z direction takes the form [A. Lasenby]

_ 1
h(a) =a — §Ha cepe. el =eite,

H(t,z,y,z) = G(t — z)f(x,y)
> 'The wave solution in flat spacetime contains two modes:

1
G(a) = —§(e+ -a)e,V°H =0 ‘ O H + 8§H =0

flz,y) = c1(z? — y°) + 2cazy



» Gravitational waves with A=0
» The polarizations of the wave can be found in the Weyl tensor:
W(anb) = R(aAb) — 3 (R(a)Ab+ aAR(b)) + 2aAbR

1
= —§€+V((a /\ b)VH)€_|_

—ia(t — 2 {aWT (aAb) + oW (a Ab)}

WT(B) = ey (exBe, — e,Be,) ey
W*(B) = e4 (exBe, + e, Bey) ey



e Gravitational waves with A=0

» The way of polarization is dictated in the “geodesic deviation™:

a =

v-D(v-Dn)

= R(vAn)-v

(W(fu/\n) + %(R(v) An+vAR(Mn)) — év/\nR) =

W(vAn)- v

W (er Aeg) - ep o ey

W (et Ney) - er x e
1Yy

Wx(et YA\ 633)
Wx(et A\ ey)

c € OC €y




e Gravitational waves with A<0O

» For A<O0, the position gauge field takes the form [JX]

h(a) = %a, — 2%H(t — 2,%,Y)a - ey

» The Einstein tensor in this case can be figured out:

3 7 5 2
Q(a):—E—Qa—ﬁa-&r V H—|—Ee$-VH e

Gla) —Aa =0 > A= -3/0? V2H+%ex-VH:O



» The H equation also appears in Siklos spacetime when studying gravitational
pp wave 1n AdS. The solutions take the form

e )

ox T

» This wave solution is of Petrov type-N since W?(a A b) = 0. The Weyl tensor
is given by
2

W(a Ab) = —%&FV((CL AND)VH)e,



» The deviation acceleration now has contributions both from the Weyl tensot
and the cosmological constant:

a=1v-D(v-Dn)

_ (W(UA?’L)—F%(R(U)/\?’L—I—U/\R(?%))—%v/\nR) v
= W(wAn) - ’U—E%TL

> Some explicit solutions and the corresponding Weyl tensors:
2
Hiy = ci(t — Z)(g;‘z + y2) |:> W) = —c1— 172 et (exBey +eyBey)ey
2

_ o 3
Hy = co(t — z)x |:> Wo = —CQ Ve

erexBezey



e Polarizations

Hs = c3(t — 2)(3z* — 6%y — y*) #

Ws = —63?;—;;226+[(3I2 —y?)esBey — (z* +y?)e,Beyles
+ c3 3§2y6+(6xB6y +e,Beg)ey
Hy = cq(t — 2)a (2 — 5y?) »
Wy = —C4Z—§B+[(2x2 — 3y*)ey Be, — x°e,Beyley
+ ¢4 15I4ye+(exBey +e,Beg)ey

402



» 'To the first case,

CE‘Q

W1 =—c 4_€2€+(6$B6x + ey Bey)ey Wiler ANey)-er = Wiler Aey) - e =0

» 'To the second case,

3x?
Wy = _624—626+6$B€:€6—|— Whler Neg)-er o< ey, Waler Ney) - er o< ey

» 'To the third case,

32

Wy = —032—€26+[(3LL‘2 —y*)esBey — (% +y?)e,Beyles Wy = Wi + Wy

3z3y

‘|-63 62

ey (ezBe, + e, Beg)ey



» When the gravitational wave pass through a free falling particle, the change
in the velocity of that particle will record the wave information.

» Consider a massive particle free falling in the background of the gravitational
gauge field. The motion of the particle is governed by

v-Dv=20

» The covariant velocity is given by the inverse of the position gauge field:

A

v=h"(i) = St o H{E =2 y) (v E) 7



 Velocity memory effects

» Explicitly, the position vector & satisfies

r r. 1 : . :
=t 2od 4504 2)*VH — (vy - @) (VH - @)y

» In components

= 2-i, wp 0=k u=t—2z2
: 1 1 _
5= 220+ —u2d WH — —u(VH - 1), v=1+2
r 2 2
.2
. r r |
P =1 2——111,8[{

1
y = 2— y—ZUQ(’?H



» In terms of u, the equation of t’s and y’s components take the form

d?r 1 1

da? = g2~ oAy
d?y 1
du —ZayH(ua’f“, y)

» Consider the following impulsive gravitational wave

Aebu u >0
H = r3F(u F(u) = ’
() () {Aeb’“’, u < 0



 Velocity memory effects

» When A is small, the r-equation can be solved perturbatively:

r() = ro(1) — %An (1) + O(A2)

ro(u) = v/u? + 1/ (k2(?)

VU +1/(R202) (u—if (kL) [ > 272
() = Pl (g ) (o=t [« + Vi 17oema)

+ hermitian conjugate, 2)

0
Ooz—i/ e (s +i/(k0))?+/s2 + 1/(k202)ds
o



» Long after the impulsive wave left, the change in velocity along r-direction
can be written as

(dr) Vud +1/(k202) — g
ALY =
du Vud +1/(k202)

+00
—SkgARe (Cg—i/ (s 40/ (k) /52 +1/(k202)d )
0

where the particle is initially placed at r(uw) = Vu§ + 1/(k2£2) with velocity

dr UQ

@




In progress:

Thank you!



