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Motivation and Background

It is generally known that Lovelock gravity is a natural generalization of general
relativity to higher dimensions and only includes second order derivatives. If string
theory is the correct candidate of quantum gravity, it must have Lovelock gravity as a
descendant somehow.

In 1985, Barton Zwiebach proved that the first-order α′ correction of string theory can
be transformed to a Gauss-Bonnet term which matches the quadratic term of
Lovelock gravity.

There is no further progress during 35 years. People began to believe that these two
theories are different.

Difficulties：

It is difficult to obtain higher order α′ corrections of string theory.

The higher order α′ corrections include higher order derivatives of a metric, which
breaks a requirement of Lovelock gravity.
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Motivation and Background

Consider Einstein’s gravity in D = 4 dimensions

IEinstein =

∫
dDx

√
−g̃
(
−2Λ + R̃

)
,

where we set 16πGD = c = 1 for simplicity and a notation ”tilde” indicates the
Einstein frame.

For arbitrary D dimensions, if we require a gravitational theory to be ghost free, or
equivalently saying its Einstein tensor Gµν satisfies following conditions:

The tensor is symmetric,

It is a function of a metric and its first two derivatives (no ghosts),

It is free of the divergence: ∇µGµν = 0.

The modified gravitational theory is unique that is constructed by dimensionally
extended Euler densities, say Lovelock gravity.
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Motivation and Background

The action of Lovelock gravity is

ILove =

∫
dDx

√
−g̃

[
D−1

2

]∑
k=0

αkλ
2k−2Lk,

=

∫
dDx

√
−g̃
(
α0λ
−2 + α1R̃+ α2λ

2(R̃2 + R̃αβµνR̃
αβµν − 4R̃µνR̃

µν) + ...
)
,

Lk ≡
1

2k
δ
µ1···µkν1···νk
ρ1···ρkσ1···σk R̃

ρ1σ1
µ1ν1

· · · R̃ ρkσk
µkνk ,

where [(D − 1) /2] denotes the integer part of (D − 1) /2. αk are dimensionless and λ
has a length scale. The action only has a finite number of terms for k < D/2. Terms
for k > D/2 vanish identically, and the term k = D/2 is a topological invariant. To
match the Einstein-Hilbert action, we have α0λ−2 = −2Λ and α1 = 1.

The term of α2 is the Gauss-Bonnet.
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Motivation and Background

For example

When D = 2

ILove =
∫
dDx
√
−g̃ (−2Λ+ R̃ + · · · ) .

topological do not contribute
invariant to the EOM

When D = 4

ILove =
∫
dDx
√
−g̃
(
−2Λ + R̃+ α2λ2

(
R̃2 + R̃αβµνR̃

αβµν − 4R̃µνR̃µν
)

topological
invariant

+ · · · ) .
do not contribute
to the EOM
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Motivation and Background

To see it more clearly, let us utilize FLRW cosmological background:

ds2 = −dt2 + ã (t)2 dxidx
i,

Lovelock action becomes

ILove =

∫
dtãD−1

[
D−1

2

]∑
k=0

(
−

1

2k − 1

)
αkλ

2k−2 (D − 1)!

(D − 2k − 1)!
H̃2k

=

∫
dtãD−1

[
α0λ
−2 + α1 (D − 1) (D − 2) H̃2

−
1

3
α2λ

2 (D − 1) (D − 2) (D − 3) (D − 4) H̃4 + . . .

]

This is why recent work on the 4D Gauss-Bonnet solution can be obtained by the
following replacement:

α2 →
α2

D − 4
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Motivation and Background

On the other hand, as early as the mid-1980s, it has been speculated that Lovelock
theory might be derived from string theory. If string theory is as powerful as claimed,
this should be true.

Consider the tree-level low energy effective action of closed string

I
(0)
string =

∫
dd+1x

√
−ge−2φ(R+ 4(∂φ)2 −

1

12
H2),

with massless string fields:
gµν , bµν , φ,

is valid only in the perturbative regime:

gs = e2φ << 1 and |R|α′ << 1

The first condition gs = e2φ << 1 concerns quantum/loop/topology corrections.

Since α′ ∼ `2string, the second condition |R|α′ << 1 concerns the classical
stringy correction. This means we have not really included “string” effects!
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Motivation and Background

Beyond the perturbative regime, the tree level string effective action receives two kinds
of corrections:

Classical stringy effects, namely the higher-derivative expansion, controlled by α′.

Quantum loop corrections, controlled by the string coupling gs = e2φ.

Ignoring matter sources, the most general perturbative form of the string effective
action has the following structure

Istring =

∫
dd+1x

√
−ge−2φ

{
[
(R+ 4(∂φ)2 −

1

12
H2) +

α′

4
(RµνσρR

µνσρ + · · · ) +O(α′2)
]

+ e2φ
[
(c1RR+ c1φ(∂φ)2 + c1HH

2) + α′(c1α′RRµνσρR
µνσρ + · · · ) +O(α′2)

]
+ e4φ

[
(c2RR+ c2φ(∂φ)2 + c2HH

2) + α′(c2α′RRµνσρR
µνσρ + · · · ) +O(α′2)

]
+ · · ·

}
,

with unknown ci
[··· ].
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Motivation and Background

Here, we only consider the closed string’s low energy effective action with first-order α′

Istring =

∫
dDx
√
−ge−2φ

[(
R+ 4 (∂φ)2

)
+ α′λ0 (RµνσρR

µνσρ) +O
(
α′2
)]
.

By using field redefinitions φ→ φ+α′kδφ, gµν → gµν +α′kδgµν , the action becomes

Istring =

∫
dDx
√
−ge−2φ

[(
R+ 4 (∂φ)2

)
+α′λ0

(
RµνσρR

µνσρ + a1RµνR
µν + a2R

2 + a3R
µν∂µφ∂νφ+ a4R (∂φ)2

+a5R�φ+ a6 (�φ)2 + a7�φ (∂φ)2 + a8 (∂φ)4
)

+O
(
α′2
)]
.

Unambiguous coefficients λ0: Independent of the field redefinitions.

Ambiguous coefficients ai: Transform under the field redefinitions. These
coefficients do not affect the S-matrix.

When the curvature grows, we need to consider the α′ corrections to all orders in
a non-perturbative way. Therefore, the ghost problem exists in higher-order.
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Motivation and Background

However, it is difficult to obtain the higher-order Lovelock gravity from string theory
due to following reasons:

The higher order α′ corrections are obtained by the Sigma model Weyl anomaly
coefficients or ”β-functions”, it is difficult to obtain results beyond two-loops.

The higher order α′ corrections include higher order derivatives of the metric.

Thanks to recent developments on classification of α′ corrections, the higher-order α′

corrections only include first two derivatives of the FLRW metric, which meets the
requirements of Lovelock gravity. It is therefore possible to compare these two kinds of
theories.
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Hohm-Zwiebach action

Classification of α′ corrections

Zeroth order
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Hohm-Zwiebach action

It is well known that for the time-dependent background, the tree level action can be
recast in an O(d, d) covariant form [Veneziano 1991]. To this end, it is convenient to
set bij = 0 and write the fields in the form

gµν =

(
−n (t)2 0

0 Gij (t)

)
.

The action can be rewritten as

I
(0)
string =

∫
dtne−Φ

[
− (DΦ)2 −

1

8
Tr
(

(DS0)2
)]
, D ≡

1

n (t)

∂

∂t
,

where S0 is the standard form of O(d, d) matrix

S0 =

(
B0G

−1
0 G0 −B0G

−1
0 B0

G−1
0 −G−1

0 B0

)
,

√
ge−2φ = e−Φ,

This action is manifestly invariant under the O (d, d) transformations

Φ→ Φ, S0 =

(
0 G0

G−1
0 0

)
→ S̃0 =

(
0 G−1

0
G0 0

)
,

or equivalently,

Φ→ Φ, G0 → G−1
0 .
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Hohm-Zwiebach action

T-duality Scale-factor duality

World-sheet theory Low energy effective theory

Compactified background Non-compactified background

Discrete O (d, d;Z) group Continuous O (d, d;R) group

R←→ α′/R a2 ←→ 1/a2
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Hohm-Zwiebach action

First order
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Hohm-Zwiebach action

Let us recall the first order α′ correction:

Istring =

∫
dDx
√
−ge−2φ

[
R+ 4 (∂φ)2

+
1

4
α′
(
−R2

GB + 16

(
Rµν −

1

2
gµνR

)
∂µφ∂νφ

−16�φ (∂φ)2 + 16 (∂φ)4
)]
,

which can be rewritten as

Istring =

∫
dtne−Φ

[
− (DΦ)2 −

1

8
Tr
(

(DS0)2
)

−
1

4
α′
(

1

16
Tr (DS0)4 −

1

64

(
Tr (DS0)2

)2

−
1

4
(DΦ)2 Tr (DS0)2 −

1

3
(DΦ)4 + F (G0,Φ)

)]
F (G0,Φ) does not belong to the O (d, d) invariants.
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Hohm-Zwiebach action

Istring =

∫
dtne−Φ

[
− (DΦ)2 −

1

8
Tr
(

(DS0)2
)

−
1

4
α′
(

1

16
Tr (DS0)4 −

1

64

(
Tr (DS0)2

)2

−
1

4
(DΦ)2 Tr (DS0)2 −

1

3
(DΦ)4 + F (G0,Φ)

)]
Meissner proved that there existed a field redefinition [Meissner,1997]:

S(
BG−1 G−BG−1B
G−1 −G−1B

) =

S0(
B0G

−1
0 G0 −B0G

−1
0 B0

G−1
0 −G−1

0 B0

) +
α′
(

α β
γ δ

)
The action becomes O (d, d) invariant

Istring =

∫
dtne−Φ

[
− (DΦ)2 −

1

8
Tr
(

(DS)2
)

−
1

4
α′
(

1

16
Tr (DS)4 −

1

64

(
Tr (DS)2

)2

−
1

4
(DΦ)2 Tr (DS)2 −

1

3
(DΦ)4

)]
18 / 47



Hohm-Zwiebach action

All orders in α′
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Hohm-Zwiebach action

Sen proved that, to all orders in α′, for configurations independent of m coordinates,
the action possesses an O(m,m) symmetry [Sen, 1991,1992]。 In particular for a
time-dependent metric which depends on t only, the symmetry is O(d, d).

First Blood

Based on Sen’s proof, Hohm and Zwiebach assumed that the terms of action which
break the O(d, d) invariance (cannot be written as S) can be absorbed by field
redefinitions to all orders in α′:

S =

(
BG−1 G−BG−1B
G−1 −G−1B

)
+ α′

(
α β
γ δ

)
+O(α′2),

Therefore, the higher-order α′ corrections can be constructed by the O(d, d) invariant
terms: S, Φ and their higher-order derivatives. It would be described as

I
(k)
string = α′k

∫
dtne−ΦX ({DΦ} , {S}) ,

where X is a function of DΦ, D2Φ,. . . and S, DS, D2S,. . . as well as their miexd
terms.
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Hohm-Zwiebach action

The aim here is to simplify the action further:

I
(k)
string = α′k

∫
dtne−ΦX ({DΦ} , {S}) ,

Double Kill

Based on the definition of S, we can prove:

Tr (S) = Tr (DS) = Tr
(
D2S

)
= · · · = 0,

Tr
(

(DS)2k+1
)

= 0, Tr
(
S (DS)k

)
= 0.

Triple Kill

Using a series of field redefintions:

Φ → Φ + α′kδΦ,

gij → gij + α′kδgij .

This step removes any function of Φ, and higher-derivatives of DS.
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Hohm-Zwiebach action

The result gives

I
(k)
string = α′k

∫
dtne−ΦX (DS) .

In other words, the most general action takes the following form

Istring =

∫
dtne−Φ

(
L0 + α′L1 +

(
α′
)2
L2 +

(
α′
)3
L3 + · · ·

)
,

where

L1 = a1Tr (DS)4 + a2

[
Tr (DS)2

]2
,

L2 = b1Tr (DS)6 + b2Tr (DS)4 Tr (DS)2 + b3
[
Tr (DS)2

]3
,

L3 = c1Tr (DS)8 + c2
[
Tr (DS)4

]2
+ c3Tr (DS)6 Tr (DS)2

+c4Tr (DS)4
[
Tr (DS)2

]2
+ c5

[
Tr (DS)2

]4
.
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Hohm-Zwiebach action

Quadra Kill

Using lapse redefinitions:

n→ n+ α′kδn, δn = nβX2k (DS) ,

where β is an undetermined constant, and X2k denotes a term with 2k derivatives
which is constructed by the products of traces of powers of DS. It implies any term
with a Tr (DS)2 can be set to 0,

Then, the action becomes

Istring =

∫
dtne−Φ

(
L0 + α′L1 +

(
α′
)2
L2 +

(
α′
)3
L3 + · · ·

)
,

where

L1 = a1Tr (DS)4 ,

L2 = b1Tr (DS)6 ,

L3 = c1Tr (DS)8 + c2
[
Tr (DS)4

]2
.
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Hohm-Zwiebach action

Penta Kill

Utilizing FLRW metric

ds2 = −n (t)2 dt2 + a (t)2 dxidx
i.

The action for the higher-order correction takes a form

L ∝ (−1)k 22k+1ckdH
2k (t) + (−1)k ck,l2

2k+12d2H2k (t) ,

where H (t) ≡ ȧ(t)
a(t)

is Hubble parameter, and we can redefine the coefficients:

ck → ck + 2dck,l.

Finally, we will get

Hohm-Zwiebach action

IHZ =

∫
dte−Φ

(
−

1

n
Φ̇2 − d

∞∑
k=1

(−α′)k−1

n2k−1
22k+1ckH

2k

)
,

where c1 = − 1
8

, c2 = 1
64

and ck ≥ 3 are undetermined constants for the bosonic
string theory. It is worth noting that this action is non-perturbative in α′, since we do
not require α′ → 0.
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From Hohm-Zwiebach action to Lovelock action

To compare Hohm-Zwiebach action with Lovelock action, we need to transform
Hohm-Zwiebach action into the Einstein frame at first:

gµν = exp

(
4 (φ− φ0)

D − 2

)
g̃µν , φ̃ = φ− φ0,

Setting ñ = 1 and φ̃ = 0, Hohm-Zwiebach action becomes

Hohm-Zwiebach action

ĨHZ = e−2φ0

∫
dtãD−1

∞∑
k=1

(−1)k 22k+1 (D − 1) ck

(√
α′
)2k−2

H̃2k.

Lovelock action in the FLRW metric gives

Lovelock action

ILove =

∫
dtãD−1

[
D−1

2

]∑
k=0

(
−

1

2k − 1

)
(D − 1)!

(D − 2k − 1)!
αkλ

2k−2H̃2k.
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From Hohm-Zwiebach action to Lovelock action

However, a conceptual mismatch exists: for a particular dimension D = d+ 1,
Lovelock gravity has finite terms but α′ corrections are infinitely many. Lovelock
theory is an unique ghost free gravitational theory.

Let us recall the low energy effective actions:

Istring =

∫
dDx
√
−ge−2φ

[(
R+ 4 (∂φ)2

)
+
α′

4
(RµνσρR

µνσρ) + . . .

]
.

Istring =

∫
dDx
√
−ge−2φ

[(
R+ 4 (∂φ)2

)
+
α′

4

(
R2 +RαβµνR

αβµν − 4RµνR
µν
)

+ . . .

]

The mismatch comes from the field redifitions!
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From Hohm-Zwiebach action to Lovelock action

Now, let us try to get the field redefinition δk=2I
(0)
string at first-order. Recall the low

energy effective action and Hohm-Zwiebach action at first order. There exists a series
of field redefinitions, the results are given by:

I
(1)
string = α′

∫
dDx
√
−ge−2φ

(
−R2

GB + 16

(
Rµν −

1

2
gµνR

)
∂µφ∂νφ

−16�φ (∂φ)2 + 16 (∂φ)4
)]

= α′e−φ0

∫
dtãD−1

[
25c2 (D − 1)

(
−

1

6
(D − 4) (D − 3) (D − 2)

)
H̃4

]
,

I
(1)
HZ = α′e−2φ0

∫
dtãD−1

[
25c2 (D − 1) H̃4

]

Therefore,

δk=2I
(0)
string = I

(1)
HZ − I

(1)
string

= −α′e−2φ0

∫
dtãD−125c2 (D − 1)×(

−
1

6
(D − 4) (D − 3) (D − 2)− 1

)
H̃4.
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From Hohm-Zwiebach action to Lovelock action

δIk=2Ĩ
(0)
string =

(
−α′

)2−1
e−2φ0

∫
dtãD−125c2 (D − 1)×(

−
1

6
(D − 4) (D − 3) (D − 2)− 1

)
H̃4.

↓
(D − 2)!

(D − 2k − 1)!
= (D − 2k) . . . (D − 3) (D − 2)

δIk≥2Ĩ
(0)
string =

(
−α′

)k−1
e−2φ0

∫
dtãD−122k+1ck (D − 1)×(

(−)k−1 1

(k + 1)!

(D − 2)!

(D − 2k − 1)!
− 1

)
H̃2k.
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From Hohm-Zwiebach action to Lovelock action

Finally, we will get the suitable Hohm-Zwiebach action by the field redefinitions:

I′HZ = IHZ −
∞∑
k=2

δk≥2I
(0)
string .

Hohm-Zwiebach action

I′HZ =

∫
dtãD−1

[
D−1

2

]∑
k=1

(
−

1

2k − 1

)
βk

(√
α′
)2k−2 (D − 1)!

(D − 2k − 1)!
H̃2k,

Lovelock action

ILove =

∫
dtãD−1

[
D−1

2

]∑
k=0

(
−

1

2k − 1

)
αkλ

2k−2 (D − 1)!

(D − 2k − 1)!
H̃2k.

where βk = e−2φ0 2k−1
(k+1)!

22k+1ck and c1 ≡ −2 (c1) = 1
4

.

29 / 47



From Hohm-Zwiebach action to Lovelock action

These field redefinitions are not trivial due to the following reasons:

We cannot absorb (k)-th order into (k − 1)-th order by a field redefinition. It is
because Hohm-Zwiebach action is not perturbative in α′ and the modification of
ck and ck−1 will change the results of S-matrix.

One might think the cosmological background is very special and the higher-order
effects can be absorbed into the tree-level action by the field redefinitions. Let us
look at a counterexample. Considering Witten’s 2D black hole
(ds2 = −dx2 + a (x)2 dt2), which can be obtained from the beta function to the
lowest order. On the other hand, Witten’s solution is the leading term of the
α′-corrected solutions, say DVV’s black hole solution. However, it is impossible
to obtain the DVV’s black hole solution from the lowest order beta function by
the field redefinitions [Grumiller,2005]. It was also clarified by Tseytlin in the
three-loop approximation [Tseytlin,1991].1

1We thank H. Lü for raising this question.
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From Hohm-Zwiebach action to Lovelock action

Then, the relation is very clear

αk =
2k − 1

(k + 1)!
22k+1ck.

where we set φ0 = 0 for satisfying α1 = 1. Moreover, we will get α2 = 1/4 which
agrees with known results.

It implies all orders coupling constants αk of Lovelock gravity are uniquely
determined by the coefficients ck of closed string theory.

Based on our derivation, it is possible to ask whether different kinds of generalizations
of gravity could be related to Hohm-Zwiebach action by appropriate field redefinitions.
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From Hohm-Zwiebach action to Lovelock action

For example, quasi-topological gravity gives a similar action in the cosmological
background:

IQuasi =

∫
dtãD−1

K∑
k=1

(
−

1

2k − 1

)
µkγkH̃

2k

=

∫
dtãD−1

(
−µ1γ1H̃

2 −
1

3
µ2γ2H̃

4 −
1

5
µ3γ3H̃

6 −
1

7
µ4γ4H̃

8 + . . .

)
,

where a dimension of µk is l2k−2 and:

γ1 = (D − 1) (D − 2) ,

γ2 = (D − 1) (D − 2) (D − 3) (D − 4) ,

γ3 =
(D − 1) (D − 2) (D − 3) (D − 6)

(
3D2 − 15D + 16

)
8 (2D − 3)4

,

γ4 = (D − 1)2 (D − 2)2 (D − 3)2 (D − 4) (D − 8)×(
D5 − 20D4 + 142D3 − 472D2 + 743D − 436

)
.
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From Hohm-Zwiebach action to Lovelock action

It looks like we can identify two theories directly:

IQuasi = IHZ =∫
dtãD−1× e−2φ0

∫
dtãD−1 ×(

−µ̄1H̃
2

(
− (D − 1) (D − 2) H̃2

−
1

3
µ̄2l

2H̃4 + (D − 1) 25c2α
′H̃4

−
1

5
µ̄3l

4H̃6 − (D − 1) 27c3α
′2H̃6

+ · · · ) , + · · · ) .
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From Hohm-Zwiebach action to Lovelock action

However, the O(d, d) invariant field redefinitions, only can provide following terms to
modify ambiguous coefficients in the low energy effective action:

δk≥2Ĩ
(0)
string = (−)k−1

(√
α′
)2k−2

e−2φ0

∫
dtãD−122k+1ck (D − 1)×(

(−)k−1 1

(k + 1)!

(D − 2)!

(D − 2k − 1)!
− 1

)
H̃2k

=

∫
dtãD−1

[
2k−1∑
i=0

aiD
i

](√
α′
)2k−2

H̃2k,

where ai are arbitrary constants and Di denotes an i-th power of the spacetime
dimension D. It is worth noting that ai do not depend on spacetime.

Let us recall the cubic term of quasi-topological gravity:

I
(3)
Quasi =

∫
dtãD−1

(
−

1

5

(D − 1) (D − 2) (D − 3) (D − 6)
(
3D2 − 15D + 16

)
8 (2D − 3)4

µ3H̃
6

)

=

∫
dtãD−1

[
5∑
i=0

ai

2D − 3
Di

]
µ3H̃

6.

Therefore, we cannot reach the quasi-topological gravity by field redefinitions from
Hohm-Zwiebach action.
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2D regular black hole

Let us consider 1+1 dimensional low energy effective action with vanishing
Kalb-Ramond field:

S =

∫
d2x
√
−ge−2φ

(
R+ 4 (∇φ)2 + λ2

)
,

where λ2 = − 2(D−26)
3α′ . The black hole solution is given by [Mandal,Sengupta,Wadia,

1991]:

ds2 = −
(

1−
M

r

)
dt2 +

(
1−

M

r

)−1 1

λ2r2
dr2,

φ = −
1

2
ln

(
2

M
r

)
.

However,this solution is only valid as long as the curvature is small enough. Is there a
way to figure out an exact solution of the full action?

α′-corrected low energy effective action: Unknown

SL (2, R) /U (1) gauged WZW model: X
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2D regular black hole

In the semiclassical limit k →∞ (k ∼ 1/α′ is the Kac–Moody level), Witten find a
2D black hole solution [Witten, 1991].

ds2 = − tanh2

(
λ

2
x

)
dt2+dx2, Region I

ds2 = −dx2+tan2

(
λ

2
x

)
dt2, Region II

ds2 = − coth2

(
λ

2
x

)
dt2+dx2, Region IV

Region I and Region IV are T-dual solutions.
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2D regular black hole

For general k, Dijkgraaf, Verlinde and Verlinde discovered the exact 2D string black
hole (DVV’s black hole) [Dijkgraaf, Verlinde, Verlinde, 1992].

ds2 = −
tanh2

(
λ
2
x
)

1− α′λ2

2+α′λ2 tanh2
(
λ
2
x
)dt2+dx2, Region I

ds2 = −dx2+
tan2

(
λ
2
x
)

1+ α′λ2

2+α′λ2 tan2
(
λ
2
x
)dt2, Region II

It is believed to be valid to all orders in α′.

When k →∞ or α′ → 0, it reduces to the previ-
ous Witten’s black hole.
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2D regular black hole

Problems of this solution:

It has been verified that this solution is the perturbative solution of the
β-function equations up to three loops [Tseytlin, 1991].

There still exists a disjoint region which possesses the naked singularity.

It is difficult to generate new solutions.

Thanks to the recent progress on classifying all orders α′ corrections of the low energy
effective action, it is possible to re-study the exact 2D string black hole systematically.
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2D regular black hole

Let us recall Witten’s 2D black hole solution:

ds2 = −dx2 + tan2

(
λ

2
x

)
dt2

The ansatz therefore is

ds2 = −dx2 + a (x)2 dt2.

Based on this ansatz, the Hohm-Zwiebach action can be written as

IHZ =

∫
d2x
√
−ge−2φ

(
R+ 4 (∂φ)2

+
1

4
α′ (RµνρσRµνρσ + . . .) + α′2 (. . .) + . . .

)
,

=

∫
dxe−Φ

(
−Φ̇2 −

∞∑
k=1

(
−α′

)k−1
22k+1ckH

2k

)
,

where dot denotes as ḟ (x) ≡ ∂xf (x), H (x) ≡ ȧ(x)
a(x)

, c1 = − 1
8

, c2 = 1
64

, c3 = − 1
3.27 ,

c4 = 9
65536

− 1
2048

ζ (3) and ck>4’s are unknown coefficients for a bosonic case.
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2D regular black hole

The corresponding EOM are given by:

Φ̈ +
1

2
Hf (H) = 0,

d

dx

(
e−Φf (H)

)
= 0,

Φ̇2 + g (H) + λ2 = 0,

where

f (H) =
∞∑

k=1

(
−α′

)k−1
22(k+1)kckH

2k−1 = −2H − α′2H3 + · · · ,

g (H) =
∞∑

k=1

(
−α′

)k−1
22k+1 (2k − 1) ckH

2k = −H2 − α′
3

2
H4 + · · · .

Therefore, our aim is to figure out the solutions of these EOM.

To obtain the non-singular solutions of the EOM, two constraints must be respected
by such black hole solutions:

a. As α′ → 0, the solutions must exactly match the the perturbative solution.
b. The constructed solution is anticipated to be regular everywhere.
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2D regular black hole

To calculate the perturbative solutions we introduce the variable

Ω ≡ e−Φ,

and using the new expansions:

Ω (x) = Ω0 (x) + α′Ω1 (x) + α′2Ω2 (x) + . . . ,

H (x) = H0 (x) + α′H1 (x) + α′2H2 (x) + . . . ,

the EOM can be solved iteratively to arbitrary order in α′.
The perturbative solution is

H (x) = λcsc (λx)−
λ2

4

cos (2λx)

sin (λx)
α′ + · · · ,

Ω (x) = sin (λx) +
λ3

4

(cos (2λx) + 4)

sin3 (λx)
α′ + · · · ,

It is ready to see that the first term of the Hubble parameter or the dilaton matches
the Witten’s 2D black hole solution.
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2D regular black hole

The general solution is

Φ (x) =
1

2
log

( ∑N
k=1

(
α′λ2

)k−1∑N
k=1 σk (λx, ck) (α′λ2)k−1

)
,

where σk’s are functions of λx and ck. After obtained regular Φ (x), the regular
solutions H (x), f (x) and g (x) can be simultaneously determined due to the EOM.
Moreover, in the perturbative regime α′ → 0, the general solution Φ (x) is expanded
as,

Φ (x) = −
1

2
log (σ1) +

(σ1 − σ2)

2σ1
α′λ2 +

(
σ2

1 − 2σ3σ1 + σ2
2

)
4σ2

1

(
α′λ2

)2
+ · · · .

To compare with the perturbative solution,

Φ (x) = − log (sin (λx))−
1

4

(
cot2 (λx)− 1

)
α′λ2 + · · · .

we can fix the functions σk’s.
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2D regular black hole

To cover the first two order corrections, we have σ1 = sin2 (λx),
σ2 = 1

2
sin2 (λx)

(
cot2 (λx) + 1

)
and N = 2. The non-perturbative solution is

Φ (x) = log

√
1 + α′λ2

sin2 (λx) + 1
2
α′λ2 sin2 (λx) (cot2 (λx) + 1)

,

H (x) = −
√

2λ
((
α′λ2 + 1

)
cos (2λx)− 1

)
(α′λ2 + 1)1/2 (α′λ2 + 1− cos (2λx))3/2

,

f (x) = −2
√

2λ

(
α′λ2 + 1

α′λ2 + 1− cos (2λx)

)1/2

,

g (x) =
λ2

(α′λ2 + 1− cos (2λx))2

(
−α′λ2

(
α′λ2 + 2

)
+2
(
α′λ2 + 1

)
cos (2λx)− 2

)
.
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2D regular black hole

In other words, the black hole solution is

ds2 = −dx2 + a (x)2 dt2,

where

a (x) = C exp
√

2

√α′λ2 + 1

α′λ2
F
(
xλ

∣∣∣∣− 2

α′λ2

)

−

√
α′λ2

α′λ2 + 1
E
(
xλ

∣∣∣∣− 2

α′λ2

)

−
sin (2λx)√

(α′λ2 + 1) (α′λ2 + 1− cos (2λx))

]
,

F (φ|m) and E (φ|m) are elliptic integrals of the first and second kinds, and the
physical dilaton is given by

φ (x) =
1

2
Φ (x) +

1

2
ln a (x) .
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2D regular black hole

To check its curvature singularity, we present Kretschmann scalar in our ansatz

RµνρσR
µνρσ =

1

2
RµνR

µν = R2 = 4
(
Ḣ +H2

)2
.

It is regular when α′λ2 > 0 which satisfies α′λ2 = − 2(D−26)
3

= 16.

R(x)

a(x)

ϕ(x)

0.5 1.0 1.5 2.0 2.5 3.0

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0
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Future works

Derive Lovelock gravity from string theory in the black hole spacetime.

Remove the singularities of D dimensional spherically symmetric black holes and
black p-branes.
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Thank you!

Author: Houwen Wu
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