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Black holes are there!!



Is that all?

• As a classical solution of Einstein’s equation, BH is described
by 3 parameters

• A black hole will eat entropy, which will violate 2nd law

• Consider two black holes form a bigger one, the horizon
area increases

• It is likely black hole has entropy, proportional to its horizon
area



Bekenstein’s discovery



Hawking radiation



Introduction
• Quantum gravity is the key to understand the origin of our 

universe

• A simpler object involving quantum gravity is black hole. 
They have a temperature that leads to Hawking radiation.

• Black holes also have entropy, given by the Area of the 
horizons.

• The question is whether black holes behave like ordinary 
quantum systems. People believe they do (string theory, 
AdS/CFT) but do not know how.



• Importantly, there is a paradox if they do: consider a black 
hole formed by a pure state, after evaporation it becomes a 
thermal state (according to Hawking)-> information is lost

• You may argue that strange things can happen at the end of 
the evaporation. But the paradox already shows up near the 
middle age of BH.

• To understand this, we first introduce 2 different notions of 
entropy: fine-grained entropy and coarse-grained entropy.



Fine-grained < coarse-grained
• 1st : Fine-grained entropy is simply the von Neumann entropy. It 

is Shannon’s entropy with distribution replaced by density 
matrix. It is invariant under unitary time evolution.

• 2nd: Coarse-grained entropy is defined as follows. We only 
measure simple observables . And consider all possible 
density matrices which give the same result as our system.

We then choose the maximal von Neumann entropy over all 
possible density matrices . It increases under unitary time 
evolution. -> entropy in thermodynamics.

One big piece of evidence was the computation of black hole entropy for special extremal

black holes in supersymmetric string theories [52]. In these cases one can reproduce the

Bekenstein-Hawking formula from an explicit count of microstates. These computations

match not only the area formula, but all its corrections, see e.g. [53]. Another piece of

evidence comes from the AdS/CFT correspondence [54–56], which is a conjectured relation

between the physics of AdS and a dual theory living at its boundary. In this case, the black

hole and its whole exterior can be represented in terms of degrees of freedom living at the

boundary. There is also evidence from matrix models that compute scattering amplitudes

in special vacua [57]. We will not discuss this further in this review, since we are aiming to

explain features which rely purely on gravity as an e↵ective field theory.

4 Fine-grained vs coarse-grained entropy

There are two notions of entropy that we ordinarily use in physics and it is useful to make

sure that we do not confuse them in this discussion.

The simplest to define is the von Neuman entropy. Given the density matrix, ⇢, describing

the quantum state of the system, we have

SvN = �Tr[⇢ log ⇢] (4.1)

It quantifies our ignorance about the precise quantum state of the system. It vanishes for a

pure state, indicating complete knowledge of the quantum state. An important property is

that it is invariant under unitary time evolution ⇢ ! U⇢U
�1.

The second notion of entropy is the coarse-grained entropy. Here we have some density

matrix ⇢ describing the system, but we do not measure all observables, we only measure a

subset of simple, or coarse-grained observables Ai. Then the coarse-grained entropy is given

by the following procedure. We consider all possible density matrices ⇢̃ which give the same

result as our system for the observables that we are tracking, Tr[⇢̃Ai] = Tr[⇢Ai]. Then we

compute the von Neumann entropy S(⇢̃). Finally we maximize this over all possible choices

of ⇢̃.

Though this definition looks complicated, a simple example is the ordinary entropy used

in thermodynamics. In that case the Ai are often chosen to be a few observables, say the

approximate energy and the volume. The thermodynamic entropy is obtained by maximizing

the von Neumann entropy among all states with that approximate energy and volume.

Coarse-grained entropy obeys the second law of thermodynamics. Namely, it tends to

increase under unitary time evolution.

Let us make some comments.

• The von Neumann entropy is sometimes called the “fine-grained entropy”, contrasting

it with the coarse-grained entropy defined above. Another common name is “quantum

16

One big piece of evidence was the computation of black hole entropy for special extremal

black holes in supersymmetric string theories [52]. In these cases one can reproduce the

Bekenstein-Hawking formula from an explicit count of microstates. These computations

match not only the area formula, but all its corrections, see e.g. [53]. Another piece of

evidence comes from the AdS/CFT correspondence [54–56], which is a conjectured relation

between the physics of AdS and a dual theory living at its boundary. In this case, the black

hole and its whole exterior can be represented in terms of degrees of freedom living at the

boundary. There is also evidence from matrix models that compute scattering amplitudes

in special vacua [57]. We will not discuss this further in this review, since we are aiming to

explain features which rely purely on gravity as an e↵ective field theory.

4 Fine-grained vs coarse-grained entropy

There are two notions of entropy that we ordinarily use in physics and it is useful to make

sure that we do not confuse them in this discussion.

The simplest to define is the von Neuman entropy. Given the density matrix, ⇢, describing

the quantum state of the system, we have

SvN = �Tr[⇢ log ⇢] (4.1)

It quantifies our ignorance about the precise quantum state of the system. It vanishes for a

pure state, indicating complete knowledge of the quantum state. An important property is

that it is invariant under unitary time evolution ⇢ ! U⇢U
�1.

The second notion of entropy is the coarse-grained entropy. Here we have some density

matrix ⇢ describing the system, but we do not measure all observables, we only measure a

subset of simple, or coarse-grained observables Ai. Then the coarse-grained entropy is given

by the following procedure. We consider all possible density matrices ⇢̃ which give the same

result as our system for the observables that we are tracking, Tr[⇢̃Ai] = Tr[⇢Ai]. Then we

compute the von Neumann entropy S(⇢̃). Finally we maximize this over all possible choices

of ⇢̃.

Though this definition looks complicated, a simple example is the ordinary entropy used

in thermodynamics. In that case the Ai are often chosen to be a few observables, say the

approximate energy and the volume. The thermodynamic entropy is obtained by maximizing

the von Neumann entropy among all states with that approximate energy and volume.

Coarse-grained entropy obeys the second law of thermodynamics. Namely, it tends to

increase under unitary time evolution.

Let us make some comments.

• The von Neumann entropy is sometimes called the “fine-grained entropy”, contrasting

it with the coarse-grained entropy defined above. Another common name is “quantum

16

One big piece of evidence was the computation of black hole entropy for special extremal

black holes in supersymmetric string theories [52]. In these cases one can reproduce the

Bekenstein-Hawking formula from an explicit count of microstates. These computations

match not only the area formula, but all its corrections, see e.g. [53]. Another piece of

evidence comes from the AdS/CFT correspondence [54–56], which is a conjectured relation

between the physics of AdS and a dual theory living at its boundary. In this case, the black

hole and its whole exterior can be represented in terms of degrees of freedom living at the

boundary. There is also evidence from matrix models that compute scattering amplitudes

in special vacua [57]. We will not discuss this further in this review, since we are aiming to

explain features which rely purely on gravity as an e↵ective field theory.

4 Fine-grained vs coarse-grained entropy

There are two notions of entropy that we ordinarily use in physics and it is useful to make

sure that we do not confuse them in this discussion.

The simplest to define is the von Neuman entropy. Given the density matrix, ⇢, describing

the quantum state of the system, we have

SvN = �Tr[⇢ log ⇢] (4.1)

It quantifies our ignorance about the precise quantum state of the system. It vanishes for a

pure state, indicating complete knowledge of the quantum state. An important property is

that it is invariant under unitary time evolution ⇢ ! U⇢U
�1.

The second notion of entropy is the coarse-grained entropy. Here we have some density

matrix ⇢ describing the system, but we do not measure all observables, we only measure a

subset of simple, or coarse-grained observables Ai. Then the coarse-grained entropy is given

by the following procedure. We consider all possible density matrices ⇢̃ which give the same

result as our system for the observables that we are tracking, Tr[⇢̃Ai] = Tr[⇢Ai]. Then we

compute the von Neumann entropy S(⇢̃). Finally we maximize this over all possible choices

of ⇢̃.

Though this definition looks complicated, a simple example is the ordinary entropy used

in thermodynamics. In that case the Ai are often chosen to be a few observables, say the

approximate energy and the volume. The thermodynamic entropy is obtained by maximizing

the von Neumann entropy among all states with that approximate energy and volume.

Coarse-grained entropy obeys the second law of thermodynamics. Namely, it tends to

increase under unitary time evolution.

Let us make some comments.

• The von Neumann entropy is sometimes called the “fine-grained entropy”, contrasting

it with the coarse-grained entropy defined above. Another common name is “quantum

16

[Review: arXiv:2006.06872]



Information paradox
• Bekenstein-Hawking entropy is coarse-grained entropy.

• Hawking radiation comes from separating entangled outgoing 
Hawking quanta and interior partner. 

• As the entropy of radiation gets bigger and bigger, we run into trouble 
because, the entangled partners in black hole should have the same 
entropy (for an initial pure state), which exceeds the horizon entropy.

• In fact, the constantly increasing result was made by Hawking. Page 
suggested that the outgoing radiation entropy should follow Page 
curve



Page curve

Figure 7: Schematic behavior of the entropy of the the outgoing radiation. The precise shape
of the lines depends on the black hole and the details of the matter fields being radiated.
In green we see Hawking’s result, the entropy monotonically increases until tEnd, when the
black hole completely evaporates. In orange we see the thermodynamic entropy of the black
hole. If the process is unitary, we expect the entropy of radiation to be smaller than the
thermodynamic entropy. If it saturates this maximum, then it should follow the so called
“Page” curve, denoted in purple. This changes relative to the Hawking answer at the Page
time, tPage, when the entropy of Hawking radiation is equal to the thermodynamic entropy
of the black hole.

This is not relevant since the conflict with the central dogma appeared at the Page

time, when the black hole was still very big.

• The argument is very robust since it relies only on basic properties of the fine-grained

entropy. In particular, it is impossible to fix the problem by adding small corrections

to the Hawking process by slightly modifying the Hamiltonian or state of the quantum

fields near the horizon [62–64]. In other words, the paradox holds to all orders in

perturbation theory, and so if there is a resolution it should be non-perturbative in the

gravitational coupling GN .

• We could formulate the paradox by constantly feeding the black hole with a pure

quantum state so that we exactly compensate the energy lost by Hawking radiation.

Then the mass of the black hole is constant. Then the paradox would arise when this

process goes on for a su�ciently long time that the entropy of radiation becomes larger

than the entropy of the black hole.

• One could say that the gravity computation only gives us an approximate description
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[Fig from arXiv:2006.06872]



How to derive Page curve?



gravity. See [60] for a recent discussion on the fine-grained gravitational entropy.
Specifically, the fine-grained entropy of AdS black hole surround by matter is given
by the generalized entropy of QES,

SB = extQ

⇢
Area(Q)

4GN
+ S(⇢̃B)

�
, (4.6)

where Q is the quantum extremal surface, and B is the region between Q and AdS
boundary. For a quantum system coupled to gravity, such as the CFT bath in the
recent 2d JT gravity+CFT model of black hole evaporation, the von Neumann
entropy of bath CFT is given by

S(⇢R) = extI

⇢
Area(@I = Q)

4GN
+ S(⇢̃R[I)

�
. (4.7)

Importantly, an island contribution has to be included, which can be derived by
the gravitational path integral calculation of the von Neumann entropy [11, 61].
If there is more than one extremum, then Q is the surface with minimal entropy.
Notice that trivial island is always an extremal solution for (4.7), where

S(⇢R) = S(⇢̃R) , (4.8)

therefore the island solution is preferred only if the entropy with island is less than
the one without island.

The formula (4.6) can be considered as the black hole version of the original
QES and (4.7) can be considered as the radiation version of QES. Since reflected
entropy can always be realized as the entanglement entropy in a canonically pu-
rified state, it is tempting to find similar generalizations of QECS for reflected
entropy. In the following section we will derive some generalizations of QECS by
looking into the two-dimensional eternal black hole + 2d CFT model of black hole
evaporation. The reason is that this model has a left/right Z2 symmetry and the
right half can be considered as the canonical purification of the left. The eter-
nal black hole + 2d CFT model provides a natural framework to establish the
generalizations of QECS.

5 Reflected entropy in 2d Eternal black hole +
CFT model

In this section we consider a model where a two-side eternal black hole with Jackiw-
Teitelboim gravity is coupled to a bath CFT. The model was analyzed in great
detail in [11] for the purpose of resolving the black hole information paradox.
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Entropy formula for BH [Penington; Almheiri-Engelhardt-Marolf-Maxfield, 2019]

• The fine-grained entropy of black hole surround by quantum
fields is given in terms of semiclassical entropy by

gravity. See [60] for a recent discussion on the fine-grained gravitational entropy.
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�
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Island formula for radiation [Almheiri-Mahajan-Maldacena-Zhao, 2019]

• Similarly, the fine-grained entropy of radiation is given in
terms of semiclassical entropy by

gravity. See [60] for a recent discussion on the fine-grained gravitational entropy.
Specifically, the fine-grained entropy of AdS black hole surround by matter is given
by the generalized entropy of QES,

SB = extQ

⇢
Area(Q)

4GN
+ S(⇢̃B)

�
, (4.6)

where Q is the quantum extremal surface, and B is the region between Q and AdS
boundary. For a quantum system coupled to gravity, such as the CFT bath in the
recent 2d JT gravity+CFT model of black hole evaporation, the von Neumann
entropy of bath CFT is given by

S(⇢R) = extI

⇢
Area(@I = Q)

4GN
+ S(⇢̃R[I)

�
. (4.7)

Importantly, an island contribution has to be included, which can be derived by
the gravitational path integral calculation of the von Neumann entropy [11, 61].
If there is more than one extremum, then Q is the surface with minimal entropy.
Notice that trivial island is always an extremal solution for (4.7), where

S(⇢R) = S(⇢̃R) , (4.8)

therefore the island solution is preferred only if the entropy with island is less than
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entropy can always be realized as the entanglement entropy in a canonically pu-
rified state, it is tempting to find similar generalizations of QECS for reflected
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Entanglement entropy [Engelhardt-Wall,RT,HRT]

• QES origins from holographic entanglement entropy in
AdS/CFT with bulk matter

(SAA⇤ = SBB⇤), one obtains 4

S(AA⇤) =
1

4GN
hA[m(AA⇤)]i+ Sbulk(aa⇤) +O(GN) , (4.2)

where aa⇤ is the entanglement wedge for AA⇤ and Sbulk(aa⇤) is the von Neumann
entropy for the bulk density matrix. The Z2 symmetry ensures

hA[m(AA⇤)]i = 2hA[@a \ @b]i

and the double replica of the bulk tells that

Sbulk
R (a : b) = Sbulk(aa⇤) . (4.3)

Therefore FLM of the double replica gives the quantum corrected reflected entropy
formula.

Notice that FLM formula only computes the first two orders as an approxima-
tion. Engelhardt and Wall proposed that holographic entanglement entropy can
be calculated exactly [10] in bulk Plank constant using the so called “quantum ex-
tremal surface (QES)” which extremizes the generalized entropy (which coincides
with FLM if evaluated on the classical minimal surface). 5 Given that reflected
entropy can be realized as the entanglement entropy on canonically purified state
in the level of exact density matrix, it is tempting to find a “quantum extremal
cross section (QECS)” which can provide exact result for reflected entropy. Again
we first write down the QES formula for the entanglement entropy of S(AA⇤)

S(AA⇤) = extQ

⇢
Area(Q)

4GN
+ Sbulk(aa⇤)

�
. (4.4)

Reduced to the single replica, this becomes the extremization formula for reflected
entropy

SR(A : B) = extQ0

⇢
2Area(Q0 = @a \ @b)

4GN
+ Sbulk

R (a : b)

�
, (4.5)

where the quantum extremal cross section is denoted by Q0. This is our main
proposal in this section.

Recently it has been proposed that QES formula can compute the fine-grained
entropy not only for subregions of holographic CFT states but also for general
gravitational systems including black holes and quantum systems coupled with

4Through this paper we use S to denote von Neumann entropy and SR to denote reflected
entropy.

5See [59] for further discussions.

21

B"

B" B"

(SAA⇤ = SBB⇤), one obtains 4

S(AA⇤) =
1

4GN
hA[m(AA⇤)]i+ Sbulk(aa⇤) +O(GN) , (4.2)

where aa⇤ is the entanglement wedge for AA⇤ and Sbulk(aa⇤) is the von Neumann
entropy for the bulk density matrix. The Z2 symmetry ensures

hA[m(AA⇤)]i = 2hA[@a \ @b]i

and the double replica of the bulk tells that

Sbulk
R (a : b) = Sbulk(aa⇤) . (4.3)

Therefore FLM of the double replica gives the quantum corrected reflected entropy
formula.

Notice that FLM formula only computes the first two orders as an approxima-
tion. Engelhardt and Wall proposed that holographic entanglement entropy can
be calculated exactly [10] in bulk Plank constant using the so called “quantum ex-
tremal surface (QES)” which extremizes the generalized entropy (which coincides
with FLM if evaluated on the classical minimal surface). 5 Given that reflected
entropy can be realized as the entanglement entropy on canonically purified state
in the level of exact density matrix, it is tempting to find a “quantum extremal
cross section (QECS)” which can provide exact result for reflected entropy. Again
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Area(Q)
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+ Sbulk(aa⇤)

�
. (4.4)

Reduced to the single replica, this becomes the extremization formula for reflected
entropy
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2Area(Q0 = @a \ @b)

4GN
+ Sbulk

R (a : b)

�
, (4.5)

where the quantum extremal cross section is denoted by Q0. This is our main
proposal in this section.

Recently it has been proposed that QES formula can compute the fine-grained
entropy not only for subregions of holographic CFT states but also for general
gravitational systems including black holes and quantum systems coupled with

4Through this paper we use S to denote von Neumann entropy and SR to denote reflected
entropy.

5See [59] for further discussions.
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The setup for our theory is a single 3-brane with a posi-
tive tension, embedded in a five-dimensional bulk space-
time. In order to carefully quantize the system and treat
the non-normalizable modes which will appear in the
Kaluza-Klein reduction, we choose to first work in a finite
volume by introducing another brane at a distance prc
from the brane of interest, and taking the branes to be the
boundaries of a finite fifth dimension. We will eventu-
ally take this second brane to infinity, thereby removing it
from the physical setup. The associated action is

S ! Sgravity 1 Sbrane 1 Sbrane0 ,

Sgravity !
Z

d4 x
Z

dy
p

2G !2L 1 2M 3 R" , (3)

Sbrane !
Z

d4 x
p

2gbrane !Vbrane 1 Lbrane" ,

where R is the five-dimensional Ricci scalar made out of
the five-dimensional metric, GMN . The coupling to the
branes and their fields and the related orbifold boundary
conditions are described in Ref. [2]. (The new coordinate
y is rcf in the coordinates of Ref. [2].)
The solution to Einstein’s equations was derived in

Ref. [2] and we quote it here:

ds2 ! e22kj yjhmndxmdxn 1 dy2, (4)

where 0 # y # prc is the extra-dimensional coordinate
and rc is essentially a compactification “radius.” This is
just a slice of the symmetric space, AdS5 . The solution
holds only when the boundary and bulk cosmological
terms are related by

Vbrane ! 2Vbrane0 ! 24 M 3 k, L ! 224 M 3 k2, (5)

which we hereby take to be the case. Notice that in the
solution here, we have reversed the roles of the “visible”
and “hidden” branes relative to Ref. [2]. Whereas in the
solution to the hierarchy problem proposed in Ref. [2] the
massless graviton wave function is biggest on the hidden
brane, in the scenario considered here it is critical that the
graviton is “bound” to the visible brane.
We now remind the reader of the derivation of the

four-dimensional effective Planck scale, MPl. The four-
dimensional graviton zero mode follows from our solution,
Eq. (4), by replacing the Minkowski metric by a four-
dimensional metric, gmn#x $. It is described by an effective
action following from substitution into Eq. (3),

Seff .
Z

d4 x
Z prc

0
dy 2M 3 rce22kj yjR , (6)

where R denotes the four-dimensional Ricci scalar made
out of gmn#x $, in contrast to the five-dimensional Ricci
scalar, R, made out of GMN #x , y$. Because the effective
field is four-dimensional, we can explicitly perform the y
integral to obtain a purely four-dimensional action. From

this we derive

M2
Pl ! 2M 3

Z prc

0
dy e22kj yj !

M 3

k
%1 2 e22krcp& . (7)

We see that there is a well-defined value for MPl, even
in the rc ! ` limit. This is a clue that one can get a
sensible effective four-dimensional theory, with the usual
Newtonian force law, even in the infinite radius limit, and
provides a sharp contrast to the product-space expectation
that M2

Pl ! M 3 rcp .
Clearly, there is no problem with taking the rc ! `

limit of the background metric given above. This will re-
move the “regulator” brane from the setup. However, we
still need to determine whether the spectrum of general
linearized fluctuations GMN ! e22kj yjhmn 1 hmn#x , y$ is
consistent with four-dimensional experimental gravity.
This requires an understanding of all modes that appear
in the assumed four-dimensional effective theory. We
therefore perform a Kaluza-Klein reduction down to four
dimensions. To do this, we need to do a separation of
variables; we write h#x , y$ ! c# y$eip?x , where p2 ! m2

and m2 permits a solution to the linearized equation of
motion for tensor fluctuations following from Eq. (3)
expanded about Eq. (4):

∑

2m2

2
e2kj yj 2

1
2

≠2
y 2 2kd# y$ 1 2k2

∏

c# y$ ! 0 ,

(8)

where our boundary conditions tell us to consider only
even functions of y, describing the infinite half-line. The
effect of the regulator brane will be considered later; here it
has been taken to infinity. The mn indices are the same in
all terms if we work in the gauge where ≠mhmn ! h

m
m ! 0,

so they are omitted. Here m is the mass of the KK
excitation.
It is more convenient to put the above equation into

the form of an analog nonrelativistic quantum mechanics
problem by making a change of variables, z ' sgn# y$ 3
#ekj yj 2 1$(k, ĉ#z$ ' c# y$ekj yj(2, ĥ#x , z$ ' h#x , y$ 3
ekj yj(2. Equation (8) then reads

∑

2
1
2

≠2
z 1 V #z$

∏

ĉ#z$ ! m2ĉ , (9)

where

V #z$ !
15 k2

8 #kjzj 1 1$2 2
3 k
2

d#z$ . (10)

Much can be understood from the general shape of this
analog nonrelativistic potential.
First, the d function supports a single normalizable

bound state mode; the remaining eigenstates are contin-
uum modes. Furthermore, since the potential falls off to
zero as jzj ! `, there is no gap, and the continuum modes
asymptote to plane waves. These plane waves decay sub-
asymptotically, corresponding to their tunneling through
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ekj yj(2. Equation (8) then reads

∑

2
1
2

≠2
z 1 V #z$

∏
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Conventional wisdom states that Newton’s force law implies only four noncompact dimensions. We

demonstrate that this is not necessarily true in the presence of a nonfactorizable background geometry.
The specific example we study is a single 3-brane embedded in five dimensions. We show that even
without a gap in the Kaluza-Klein spectrum, four-dimensional Newtonian and general relativistic gravity
is reproduced to more than adequate precision.

PACS numbers: 11.10.Kk, 04.50.+h

There exists evidence that convinces us that we live in
four noncompact dimensions. Certainly standard model
matter cannot propagate a large distance in extra dimen-
sions without conflict with observations. As has recently
been emphasized, this can be avoided if the standard
model is confined to a !3 1 1 "-dimensional subspace, or
“3-brane,” in the higher dimensions [1,2]. However, this
solution will not work for gravity, which necessarily propa-
gates in all dimensions as it is the dynamics of spacetime
itself. The experimental success of Newton’s 1 #r 2 law and
general relativity then seems to imply precisely four non-
compact dimensions. Additional dimensions are nonethe-
less acceptable, but they should be compact and smaller
than a millimeter so that they would not have been resolved
in our shortest distance tests of gravity. One further piece
of evidence is that if there are n extra compact dimensions,
the Planck scale is related to the higher-dimensional scale
of gravity, M, through the relation M 2

Pl ! M 2 nVn, where
Vn is the extra-dimensional volume.
The point of this Letter is to argue that none of the

statements about gravity in the previous paragraph is nec-
essarily true. The previous conclusions rely on a factoriz-
able geometry, namely, the metric of the four familiar
dimensions is independent of position in the extra di-
mensions. The story can change significantly when this
assumption is violated. Perhaps the most dramatic conse-
quence is that we can live in 4 1 n noncompact dimen-
sions, in perfect compatibility with experimental gravity.
We will give an example where n ! 1 . We will show
that MPl is determined by the higher-dimensional curva-
ture rather than the size of the extra dimension. This cur-
vature is not in conflict with four-dimensional Poincaré
invariance. Earlier work on noncompact extra dimensions
focused on trapping matter [3] or on finite-volume dimen-
sions [4].
The reason the above statements can be true is that a

curved background can support a “bound state” of the
higher-dimensional graviton, which is localized in the extra

dimensions. This can be understood as follows. Small
gravitational fluctutations satisfy a wave equation of the
form

$≠m≠m 2 djdj 1 V !zj"%ĥ!xm, zj" ! 0 , (1)

with a nontrivial “potential,” V , arising from the curvature.
(We have dropped Lorentz indices on the fluctuations here
for simplicity.) General fluctuations can be written as
superpositions of eigenmodes, ĥ ! eip?x ĉ!z", where

$2djdj 1 V !z"%ĉ!z" ! 2m2 ĉ!z" , (2)

and p2 ! m2 . This implements the Kaluza-Klein (KK)
reduction of the higher-dimensional gravitational fluctua-
tions in terms of four-dimensional KK states, with the mass
squared m2 given by the eigenvalues of Eq. (2), and with
fixed wave function in the extra dimension, ĉ!z". It is
useful to note that Eq. (2) takes the form of an analog non-
relativistic quantum mechanics problem.
If there is a zero mode (which is guaranteed if the back-

ground preserves four-dimensional Poincaré invariance)
that is also a normalizable state in the spectrum of Eq. (2),
it corresponds to a four-dimensional graviton. In addition
there exists a tower of higher KK modes. If there were
a gap, as is conventional in product space compactifica-
tions, one reproduces four-dimensional gravity up to the
scale determined by the gap. Instead, in our example be-
cause of a nontrivial potential we find a very interesting
situation where there is a single bound state of the analog
quantum mechanics problem corresponding to a massless
four-dimensional graviton, and whose extra-dimensional
wave function is centered on a 3-brane to which the stan-
dard model is confined. There is also a continuum KK
spectrum with no gap. We nonetheless reproduce New-
tonian gravity and other four-dimensional general rela-
tivistic predictions at low energy and long distance. The
example we give will be an effective four-dimensional
theory in five noncompact dimensions.
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Figure 1. Holographic dual of a BCFT2 defined on half space (x > 0).

where l is the AdS radius. The Poincare metric of AdS3 can be recovered by replacing the
coordinates ρ, y with x, z

z = −y/ cosh ρ

l
, x = y tanh ρ

l
. (2.4)

If the Q brane is at ρ = ρ0, where ρ0 is a positive constant, it is straightforward to calculate
that

Kab =
tanh

(ρ0
l

)

l
hab . (2.5)

Thus, by combining (2.2) with (2.5), one can determine the relation between the tension
and ρ0, i.e.

T = tanh
(ρ0

l

)

l
. (2.6)

It is also convenient to choose the polar coordinate θ with 1
cos(θ) = cosh(ρ

l ). Then, the
brane is located at θ0 = arccos(cosh ρ0

l ) > 0, as shown in figure 1.
For an interval I := [0, L] in BCFT, which contains the boundary, the entanglement

entropy can be calculated holographically using (H)RT formula. The minimal surface γI
terminates on the Q brane. The result is

SI = Area (γI)
4GN

= c

6 log 2L
ϵ

+ c

6 arctanh(sin θ0), (2.7)

where c is the CFT central charge and ϵ is the UV cut off. The RT surface is shown in
figure 1. The second term was interpreted as the boundary entropy of BCFT in [69]. We
will give this term an alternative interpretation in the following.
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From the boundary point of view, we have a gravity region glued to a QFT region
without gravity, where we can employ QES formula to compute the entanglement entropy
(fine grained entropy). We compare the results from two approaches and find that they
agree with each other precisely. We consider this agreement as strong evidence that the
DES formula is the holographic dual of the QES in the context of defect AdS/CFT. Notice
that a simple example of defect AdS/CFT is AdS/BCFT proposed by Takayanagi [69].
Above the original AdS/BCFT, we include QFT matter on the bulk brane and extend the
previous RT formula of holographic entanglement entropy by the defect version (1.1). We
also go beyond the boundary entropy interpretation of certain part of RT surface and treat
them generally as area terms in the gravity on the brane.

This paper is organized as follows. In section 2, we briefly review the setup of
AdS/BCFT proposed by Takayanagi [69]. In section 3, we propose a defect extremal
surface (DES) formula and apply it to calculate the entropy of intervals on the asymptoti-
cal boundary, including the contribution of the defect theory in the AdS bulk. In section 4,
we use QES formula to compute the entropy of the same intervals on the boundary. We
compare the result with that obtained by DES in section 3 and find precise agreement. We
conclude and discuss future questions in section 5.

Note added. While this paper was completed, [62] appeared in arXiv, which has some
overlap with our discussion on the brane world.

2 Review of AdS/BCFT

In this section,we briefly review the setup of AdS/BCFTmodel proposed byTakayanagi [69].
Consider a 2-dimensional BCFT defined on a half space (x ≥ 0). The holographic dual
of this BCFT in the large central charge limit is a part of a classical AdS3 geometry with
a boundary Q where the Neumann boundary condition was imposed. The bulk action is
given by [69]

I = 1
16πGN

∫

N

√
−g(R − 2Λ) + 1

8πGN

∫

Q

√
−h(K − T ) , (2.1)

where N stands for the bulk and Q the boundary. The Neumann boundary condition
demands a tension for the brane Q, which is denoted by a constant T . The Neumann
boundary condition reads

Kab = (K − T )hab , (2.2)

where hab is the induced metric and Kab is the extrinsic curvature of the Q brane. The
metric of AdS3 geometry can be written as

ds2 = dρ2 + cosh2 ρ

l
· ds2AdS2

= dρ2 + l2 cosh2 ρ

l
· −dt2 + dy2

y2
,

(2.3)
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cal boundary, including the contribution of the defect theory in the AdS bulk. In section 4,
we use QES formula to compute the entropy of the same intervals on the boundary. We
compare the result with that obtained by DES in section 3 and find precise agreement. We
conclude and discuss future questions in section 5.

Note added. While this paper was completed, [62] appeared in arXiv, which has some
overlap with our discussion on the brane world.

2 Review of AdS/BCFT

In this section,we briefly review the setup of AdS/BCFTmodel proposed byTakayanagi [69].
Consider a 2-dimensional BCFT defined on a half space (x ≥ 0). The holographic dual
of this BCFT in the large central charge limit is a part of a classical AdS3 geometry with
a boundary Q where the Neumann boundary condition was imposed. The bulk action is
given by [69]

I = 1
16πGN

∫

N

√
−g(R − 2Λ) + 1

8πGN

∫

Q

√
−h(K − T ) , (2.1)

where N stands for the bulk and Q the boundary. The Neumann boundary condition
demands a tension for the brane Q, which is denoted by a constant T . The Neumann
boundary condition reads

Kab = (K − T )hab , (2.2)

where hab is the induced metric and Kab is the extrinsic curvature of the Q brane. The
metric of AdS3 geometry can be written as

ds2 = dρ2 + cosh2 ρ

l
· ds2AdS2

= dρ2 + l2 cosh2 ρ

l
· −dt2 + dy2

y2
,
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Figure 1. Holographic dual of a BCFT2 defined on half space (x > 0).

where l is the AdS radius. The Poincare metric of AdS3 can be recovered by replacing the
coordinates ρ, y with x, z

z = −y/ cosh ρ

l
, x = y tanh ρ

l
. (2.4)

If the Q brane is at ρ = ρ0, where ρ0 is a positive constant, it is straightforward to calculate
that

Kab =
tanh

(ρ0
l

)

l
hab . (2.5)

Thus, by combining (2.2) with (2.5), one can determine the relation between the tension
and ρ0, i.e.

T = tanh
(ρ0

l

)

l
. (2.6)

It is also convenient to choose the polar coordinate θ with 1
cos(θ) = cosh(ρ

l ). Then, the
brane is located at θ0 = arccos(cosh ρ0

l ) > 0, as shown in figure 1.
For an interval I := [0, L] in BCFT, which contains the boundary, the entanglement

entropy can be calculated holographically using (H)RT formula. The minimal surface γI
terminates on the Q brane. The result is

SI = Area (γI)
4GN

= c

6 log 2L
ϵ

+ c

6 arctanh(sin θ0), (2.7)

where c is the CFT central charge and ϵ is the UV cut off. The RT surface is shown in
figure 1. The second term was interpreted as the boundary entropy of BCFT in [69]. We
will give this term an alternative interpretation in the following.
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Figure 3. Defect extremal surface in the disconnected phase.

For the disconnected phase, the DES terminates on the brane as shown in figure 3 and the
entanglement entropy of an interval [−a,−b] on the brane contributes. The generalized
entropy includes Sdefect given by (3.17) (note that the central charge c′ = c is large). When
the cross ratio on the brane η < 1,

Sgen(a, b) = SRT1 + SRT2 + Sdefect

= c

6

(

log a2 + L2 + 2aL sin θ0
(L+ a sin θ0)ϵ

+ arctanh L2 + 2aL sin θ0 − a2 cos 2θ0
L2 + 2aL sin θ0 + a2

+ log b2 +M2 + 2bM sin θ0
(M + b sin θ0)ϵ

+ arctanh M2 + 2bM sin θ0 − b2 cos 2θ0
M2 + 2bM sin θ0 + b2

+ log l2(a − b)2
abϵ2y cos2 θ0

)

.

(3.25)

By extremizing Sgen(a, b) with respect to a and b, we find that ∂bSgen(a, b) < 0 for any a

and b. Thus, there is no extremal solution. When η > 1,

Sgen(a, b) = SRT1 + SRT2 + Sdefect

= c

6

(

log a2 + L2 + 2aL sin θ0
(L+ a sin θ0)ϵ

+ arctanh L2 + 2aL sin θ0 − a2 cos 2θ0
L2 + 2aL sin θ0 + a2

+ log b2 +M2 + 2bM sin θ0
(M + b sin θ0)ϵ

+ arctanh M2 + 2bM sin θ0 − b2 cos 2θ0
M2 + 2bM sin θ0 + b2

+ 2 log 2l
ϵy cos θ0

)

.

(3.26)

By extremizing Sgen(a, b) with respect to a and b, i.e. ∂aSgen(a, b) = ∂bSgen(a, b) = 0, we
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3.3 Bulk DES: the proposal
In this subsection we propose a defect extremal surface (DES) formula for holographic
entanglement entropy. This is particularly useful if the AdS bulk contains a defect D.
Generally there is a quantum theory living on the defect, which is often called defect
theory. As emphasized before, the defect theory should be considered as part of the full
bulk theory since it is coupled to the bulk. We focus on the contribution to the holographic
entanglement entropy from the defect theory. This contribution is particularly interesting
when the classical Ryu-Takayanagi surface crosses the defect or terminates on the defect,
in which case the additional entanglement entropy coming from the defect theory can be
computed straightforwardly. Inspired by the quantum extremal surface proposal [10], we
would like to propose the entanglement entropy including defect contribution is given by
the defect extremal surface,

SDES = min
Γ,X

{
extΓ,X

[Area(Γ)
4GN

+ Sdefect[D]
]}

, X = Γ ∩ D , (3.18)

where Γ is co-dimension two surface in AdS and X is the lower dimensional entangling
surface given by the intersection of Γ and D. Notice that in general the defect can have
any dimension lower than the AdS bulk, but X should be co-dimension two on the defect.
In the present work we only focus on the case that D is the boundary of AdS, but the
formula (3.18) should be understood as the proposal for most general cases.

3.4 Bulk DES for an interval [0, L]
Now we perform the DES calculation for the holographic entanglement entropy corrected
by the brane matter in AdS/BCFT. In this case we can use the entanglement entropy on
the brane computed in section 3.1. Notice that if there is only one brane in the bulk, then
Sdefect is given by the brane contribution since the rest part is classical AdS without matter
field. Also note that when taking extremization, the shape of Γ will always be a part of
some circle (geodesics) which intersects with the EOW brane at A.

Depending on the matter distribution on the brane, the position of A can vary on
the brane. In general the new extremal surface following DES is not the previous Ryu-
Takayanagi surface. However, there is a convenient way to compute the area term since it
is still a part of some circle with center located at asymptotic boundary. One can treat the
new surface (after balance) as the RT surface in some new BCFT′ as shown in figure 2.

Let |OB| = L, |O′B| = L′ and |OA| = a, one can solve L′ and θ′ by simple geometric
relations,

{
a cos θ = L′ cos θ′

L′ − L = −L′ sin θ′ + a sin θ .
(3.19)

The result is
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L′ = a2 + L2 + 2aL sin θ

2(L+ a sin θ) ,

θ′ = arcsinL
2 + 2aL sin θ − a2 cos 2θ

L2 + 2aL sin θ + a2
.

(3.20)
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Figure 2. DES in original BCFT treated as the RT surface in BCFT′.

Then the two terms in (3.18) can be calculated as

Sgen(a) = SRT + Sdefect =
c

6 log 2L′

ϵ
+ c

6 arctanh(sin θ′
0) +

c′

6 log 2l
ϵy cos θ0

, (3.21)

where θ′
0 denotes the value of θ′ when taking θ = θ0 and we consider the defect entropy to

be the entanglement entropy of the interval y ∈ [−a, 0] on the brane.
By extremizing Sgen(a) with respect to a, i.e. ∂aSgen(a) = 0, we get the location of the

intersection point between defect extremal surface and EOW brane

a = L , (3.22)

which means that the extremal surface is the same as the RT surface. This is expected
because Sdefect coming from brane matter is a constant. The final result of the total
entanglement entropy is

SQES = c

6 log 2L
ϵ

+ c

6 arctanh(sin θ0) +
c′

6 log
(

2l
ϵy cos θ0

)

. (3.23)

3.5 Bulk DES for an interval [M,L] with M > 0
Now we consider an interval [M,L] which does not contain the boundary x = 0. In this
case, we can use the formula derived in section 3.2. For simplicity, we will choose to work
at c′ = c.

Note that there are two phases of the defect extremal surface, one is connected and
the other is disconnected. We will compute the entropy for the two phases respectively
and then compare them. For the connected phase, the extremal surface does not intersect
with the brane. Therefore, there is no Sdefect in this case and the entropy is given by the
area term, i.e.

SDES = c

3 log (L − M)
ϵ

. (3.24)
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Figure 4. Bulk decomposition by inserting an imaginary boundary Q′.

Figure 5. Effective description with Neumann boundary condition.

orthogonal to the asymptotic boundary), except for that now the boundary condition on
Q′ is transparent. Therefore we choose the dual description of W2 in terms of BCFT at
the half-space boundary, now with a transparent boundary condition. For W1 we employ
the brane world description.

4.1 Brane world

To find the 2d description of W1, one can use the brane world description, i.e. Randall-
Sundrum model [77–79]. Brane world description is stated as follows. Consider a Poincare
AdSd+1 with a brane. The Neumann boundary condition is imposed so that on the brane a
d dimensional gravity is localized. One can find the effective Newton constant on the brane
by doing a Randall-Sundrum reduction along the extra dimension. In our case the Randall-
Sundrum reduction is taken along ρ direction for wedge W1 [71], then the 2d gravity theory
on Q comes from the reduction of the 3d bulk. Together with the brane matter on Q, we get
the full 2d brane theory to be a gravity theory plus CFT on the brane. Now the boundary
condition between the brane theory and the half-space CFT should be transparent. This
boundary condition is essentially the dual of the bulk boundary condition along Q′. Putting
everything together, we get the 2d effective description as shown in figure 5.
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Figure 4. Bulk decomposition by inserting an imaginary boundary Q′.

Figure 5. Effective description with Neumann boundary condition.
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4.2 Area term
When we do reduction along ρ direction, d+1-dimensional gravity on the wedge is reduced
to a d-dimensional gravity on the brane and we focus on the curvature term

Ieff ⊃ 1
16πGN

(
cosh ρ0

l

)2−d ∫ ρ0

0
dρ
(
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l

)d−2 ∫

Q

√
−g(d)R(d)

≡ 1
16πG(d)

N

∫

Q

√
−g(d)R(d) ,

(4.1)

where the superscript (d) denotes the quantities for the effective d-dimensional gravity
theory on the brane. One can thus find the effective d dimensional Newton constant to be

1
G(d)

N

= 1
GN

(
cosh ρ0

l

)2−d ∫ ρ0

0
dρ
(
cosh ρ

l

)d−2
. (4.2)

Note that in two dimensions, the area of a point can be determined by the coefficient in
front of the Einstein-Hilbert action [6]. Thus the area for a point on the brane in our case
is equal to 1, which gives

1
4G(2)

N

= ρ0
4GN

= c

6arctanh(sin θ0) . (4.3)

This was interpreted as boundary entropy in the original AdS/BCFT proposal [69]. Notice
that the area term on brane Q is independent of the position and therefore topological.

4.3 Boundary QES for an interval [0, L]
Given that the 2d effective description contains a brane theory glued with a flat space CFT,
now we compute the fine grained entropy from 2d perspective by employing the quantum
extremal surface (QES) advocated in [10] (we verify the QES formula for our set up in
appendix A). We stress that the 2d computation here is independent of holography. For
simplicity, we choose to work in the case c′ = c. We also rescale the flat region coordinates
following [12] so that the metric becomes ds2flat = −dx+dx−, where x± = t± x.

Due to the transparent boundary condition (see appendix B), the entanglement entropy
from CFT can be computed using formula [5, 12]

SCFT (x1, x2) =
c′

6 log
(

|x1 − x2|2

ϵ1,UV ϵ2,UV Ω (x1, x̄1)Ω (x2, x̄2)

)

, (4.4)

which is the formula for an interval [x1, x2] in the metric ds2 = Ω−2dxdx̄. The result for
the interval [−a, L] in our case is given by

Smatter([−a, L]) = c

6 log (L+ a)2l
a cos θ0ϵϵy

. (4.5)

Taking into account the area term (4.3), we obtain the generalized entropy,

Sgen(a) = Sarea(y = −a) + Smatter([−a, L])

= c

6 arctanh(sin θ0) +
c

6 log (L+ a)2l
a cos θ0ϵϵy

.
(4.6)
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[Deng-Chu-YZ,2020]

DES=QES!!



Derive Page Curve



Euclidean AdS/BCFT

2.2 Bulk DES

We consider the interval [�1,�x0
0] [ [x0

0,1] at ⌧ 0 = ⌧ 00 and use the DES formula
to calculate the entropy. The two endpoints (⌧ 00, x

0
0) and (⌧ 00,�x0

0) are mapped to
(⌧0, x0) and (⌧0,�x0) respectively by (2.2). There are two phases of the extremal
surface, one is connected and the other is disconnected, similar to []. In the former
phase, the extremal surface does not intersect with the EOW brane. Therefore, no
bulk term would be included, and the entropy is given by the RT surface, namely

SDES =
c

6


log(2x0)

2
� 2 log

4✏

(⌧ 00 + 1)2 + x02
0

�

=
c

3
log

2x0
0

✏
.

(2.4)

Figure 2.5: Connected phase.

In the disconnected phase, the extremal surfaces intersect with the brane at two
points A and B which are located at (�z1 tan ✓, x1, z1) and (�z1 tan ✓,�x1, z1) in
the coordinate system (⌧, x, z). Note that the two extremal surfaces are symmetric
with respect to the the ⌧ � z plane. The length of each extremal surface is given
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[Raamsdonk etc, 1910.12836]
[Chu-Deng-YZ,2021]



Euclidean AdS/BCFT

by

4GN

l
SRT1 =

4GN

l
SRT2

= log
(⌧0 + z1 tan ✓)2 + (x0 � x1)2 + z21p

(⌧0 + z1 tan ✓)2 + (x0 � x1)2

+ arctanh
(⌧0 + z1 tan ✓)2 + (x0 � x1)2 � z21
(⌧0 + z1 tan ✓)2 + (x0 � x1)2 + z21

� log
4✏

(⌧ 00 + 1)2 + x02
0

,

(2.5)

where the last term corresponds to the cut o↵.

Figure 2.6: Disconnected phase.

For the bulk term, namely the entropy of the interval with the endpoints at A
and B, we insert two twist operators. From the correlation function of the twist
operators, we get the entropy as follows.

Sbulk([A,B]) = lim
n!1

1

1� n
logh n(A) ̄n(B)iQ

=
c

3
min

⇢
log

2lx1

✏yz1
, log

2l

✏y cos ✓

�
.

(2.6)

Then, by combining the area terms (2.5) with the bulk term (2.6), we have the
generalized entropy

Sgen([A,B]) = SRT1 + SRT2 + Sbulk([A,B]) . (2.7)
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If x1 cos ✓ < z1, the first choice in (2.6) will picked. However, it turns out that
@Sgen

@x1
as well as @Sgen

@z1
never vanishes. In other words, there is no DES solution.

Nevertheless, when x1 cos ✓ > z1 in which case the second choice is picked we would
find that DES coincides with the RT surface since the bulk term is constant. More
specifically, the DES solution is

(
z1 = ⌧0 cos ✓

x1 = x0 .
(2.8)

And the restriction x1 cos ✓ > z1 becomes x0 > ⌧0, or

2x0
0 > x02

0 + ⌧ 020 � 1 (2.9)

in the coordinate system (⌧ 0, x0). We will see that this restriction are always
satisfied in the disconnected phase. Now, from the extremal condition we calculate
that the entropy is

SDES =
c

3

✓
log

x02
0 + ⌧ 020 � 1

✏
+ arctanh sin ✓ + log

2l

✏y cos ✓

◆
. (2.10)

By comparing (2.4) and (2.10), we can find that when the later is favored,

2x0
0 > (x02

0 + ⌧ 020 � 1)earctanh(sin ✓) 2l

✏y cos ✓
. (2.11)

Note that it is stronger than the restriction (2.9). Thus, in the disconnected phase
the extremal point does exist.

We summarize the result by writing the entropy in the coordinate system (T,X)

SDES =

(
c
3

�
log 2 coshT

✏ +X0

�
, T < TP

c
3

⇣
log e2X0�1

✏ + arctanh(sin ✓) + log 2l
✏y cos ✓

⌘
, T > TP .

(2.12)

The Page time is at

TP = arccosh

✓
sinhX0e

arctanh sin ✓ 2l

✏y cos ✓

◆
. (2.13)

As explicitly shown in Fig.2.7, the entropy follows a Page curve increasing at early
time and being constant after the Page time (2.13). We can also see that the Page
time is larger for larger angle ✓ of the brane.
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Lorentzian evolution



Why eternal black hole + CFT?

• AdS black holes do not evaporate

• Information paradox can be realized in AdS spacetime joined
to a Minkowski region, where black hole can radiate

• 2d AdS black hole is attached to a CFT in flat region, with a
transparent boundary condition

• Explicit computations can be done in this model

[Almheiri-Mahajan-Maldacena]



DES for Page curve
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[Chu-Deng-YZ,2021]

With a special conformal transformation

⌧ =
2(x02 + ⌧ 02 + z02 � 1)

(⌧ 0 + 1)2 + x02 + z02

x =
4x0

(⌧ 0 + 1)2 + x02 + z02

z =
4z0

(⌧ 0 + 1)2 + x02 + z02
,

(2.2)

the boundary is mapped to a circle x02 + ⌧ 02 = 1 and the EOW brane is mapped
to a part of sphere (z0 + tan ✓)2 + x02 + ⌧ 02 = sec2 ✓. The cut o↵ where the BCFT
lives is z0 = ✏. Note that it will not be a constant in the original coordinate system
(⌧, x, z) as will be seen in the last terms of (2.4)(2.5).

Figure 2.2: Holographic dual of a BCFT after the conformal transformation.

In this coordinate the brane has the structure of a horizon and is indeed a black
hole which can be seen by doing a wick rotation ⌧ 0 ! it0.

In the final result we will use the coodinate system (T,X) where the energy
density is constant with respect to time T , thus corresponding to an eternal black
hole. The coordinate transformation is given by

x0 = eX coshT, ⌧ 0 = ieX sinhT . (2.3)
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Figure 3.3: The entropy (in the unit of ld�1Ld�2

4G
(d+1)
N

) with respect to time T for d = 4,

X0 = 0.1 and ✓ = 0.159, 0.161, 0.163, 0.165. We also substract the constant term
2ld�1

d�2
Ld�2

✏d�2 .

3.3 Bulk DES: late-time phase with defect term

4 Page curve for an expanding black hole in BCFTd+1

4.1 A brief review of the system

Now we generalize the calculation to higher-dimensional cases. In particular, the
system is a d+ 1-dimensional BCFT defined on ⌧ � 0. The spacial coodinates in
the BCFT will be denoted as ~r = (x1, x2, · · · xd). Similarly, the holographic dual
of the BCFT is an AdSd+2 with an EOW located at ⌧ = �z tan ✓. With a special
conformal transformation

⌧ =
2(r02 + ⌧ 02 + z02 � 1)

(⌧ 0 + 1)2 + r02 + z02

~r =
4~r0

(⌧ 0 + 1)2 + r02 + z02

z =
4z0

(⌧ 0 + 1)2 + r02 + z02
,

(4.1)

the boundary is mapped to a d-sphere r02+ ⌧ 02 = 1 and the EOW brane is mapped
to a part of d + 1-sphere (z0 + tan ✓)2 + r02 + ⌧ 02 = sec2 ✓. The cut o↵ where the
BCFT lives is z0 = ✏. And finally we are supposed to use the coodinate system
(T, ~R) with the coordinate transformation given by

~r0 =
~R

R
eR coshT, ⌧ 0 = ieR sinhT . (4.2)
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Island formula for Page curve [Chu-Deng-YZ, 2021]Note that the last line corresponds to the cut-o↵s of the endponts (⌧0, x0) and
(⌧0,�x0). Now, if the first choice in the “min” is picked, the extremal condition
@x1Sgen(A,B) = c

3
1
x1

= 0 as well as @y1Sgen(A,B) = �
c
3

1
y1

= 0 has no solution. If
the second choice is picked, we can find that the extremization procedure gives

(
y1 = ⌧0
x1 = x0 .

(2.17)

Combined with the area term (2.15), it thus gives the formula of entropy, i.e.

SQES =
c

3
arctanh sin ✓ +

c

3
log

2(x0
0
2 + ⌧ 00

2
� 1)l

cos ✓✏✏y
. (2.18)

To summarize,

SQES =

(
c
3

�
log 2 coshT

✏ +X0

�
, T < TP

c
3

⇣
log e2X0�1

✏ + arctanh sin ✓ + log 2l
✏y cos ✓

⌘
, T > TP .

(2.19)

which is exactly the same as (2.12). And similarly, it can also be checked that the
second choice in (2.16) is indeed the minimum after the Page time.

3 Page curve for a two-side eternal black hole in
BCFTd+1

There is an alternative higher-dimension generalization, where the BCFTd+1 has a
cylinder-like boundary S⇥Rd�1. More specifically, the boundary is at x2

1+ ⌧ 2 = 1
with no restriction on xi, i = 2, · · · , d. The AdSd+2 dual to the CFT has an EOW
brane located at

(z + tan ✓)2 + x2
1 + ⌧ 2 = sec2 ✓ . (3.1)

The cut o↵ where the BCFT lives is z = ✏. And finally we are supposed to use the
coodinate system (T,R) with the coordinate transformation given by

x1 = eR coshT, ⌧ = ieR sinhT . (3.2)

We will consider a subregion bounded by (⌧, x1) = (⌧0, x0) and (⌧0,�x0), with the
other coordinates infinitely extended. To proceed the calculation of the entropy,
we will cut o↵ that �L/2 < xi < L/2, i = 2, · · · , d� 1.
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By comparing (2.4) and (2.10), we can find that when the later is favored,
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Note that it is stronger than the restriction (2.9). Thus, in the disconnected phase
the extremal point does exist.

We summarize the result by writing the entropy in the coordinate system (T,X)
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✏ + arctanh(sin ✓) + log 2l
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The Page time is at

TP = arccosh

✓
sinhX0e

arctanh sin ✓ 2l

✏y cos ✓

◆
. (2.13)

As explicitly shown in Fig.2.7, the entropy follows a Page curve increasing at early
time and being constant after the Page time (2.13). We can also see that the Page
time is larger for larger angle ✓ of the brane.

Figure 2.7: The entropy SDES (in the unit of c
3) with respect to time T for X0 = 1

and ✓ = ⇡
6 ,

⇡
4 ,

⇡
3 . We pick ✏ = 0.01, ✏y = 0.1 and l = 1.

2.3 Boundary QES

Now we rederive the entropy of the interval [�1,�x0
0] [ [x0

0,1] at ⌧ 0 = ⌧ 00 from
the boundary point of view. Similar to DES, there are two possible phases in the
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DES=QES, again!!



Higher dimensions
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to a part of d + 1-sphere (z0 + tan ✓)2 + r02 + ⌧ 02 = sec2 ✓. The cut o↵ where the
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Summary

• Defect extremal surface gives the island formula

• Page curve can be derived from Randall-Sundrum+AdS/CFT

• Future direction: our cosmology?
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Thank You!


