Some progress on BPS spectrum of 5d/6d field theories

Strings and Related Physics at USTC/Peng Huanwu Center for Fundamental Theory

Sung-Soo Kim (UESTC)

2021-07-11

This talk is based on

[1908.11276] "Instantons from Blow-up"

[2101.00023] "Bootstrapping BPS spectra of 5d/6d field theories"

collaboration:

Hee-Cheol Kim (POSTECH, Korea) Joonho Kim (IAS, USA) Minsung Kim (POSTECH, Korea) Kihong Lee (KAIST, Korea) Kimyeong Lee (KIAS, Korea) Jaewon Song (KAIST, Korea)

Introduction

In this talk, we discuss N=1.5d / 6d field theories (gauge theories and non-Lagrangian theories).

In particular, I will talk about how to compute BPS spectrum: Nekrasov partition function on the Omega background (R⁴ x S¹)

There are many systematic ways of obtain the Z_{Nek} : ADHM, topological vertex, DIM algebra

Introduction

In this talk, we discuss N=1.5d / 6d field theories (gauge theories and non-Lagrangian theories).

In particular, I will talk about how to compute BPS spectrum: Nekrasov partition function on the Omega background (R⁴ x S¹)

There are many systematic ways of obtain the Z_{Nek} : ADHM, topological vertex, DIM algebra

They have been successful in computing the partition for some cases, but each has their own limitations:

- exceptional gauge groups,
- matter in higher dimensional representations,
- higher CS level,
- many 5-brane webs are still unknown.
- orientifold planes and refinements,

Introduction

Today, I will discuss yet another powerful way, which turns out a very powerful way:

Nakajima-Yoshioka Blowup equation

We devised a complete blowup formalism which enables one to compute BPS spectrum of *any* supersymmetric field theory (of UV completion) in 5d / 6d

Content

- N=1 SQFTs in 5d and geometric engineering
- Blowup equation
- Main conjecture
- Examples
- Conclusion

N=1 Supersymmetric QFTs in 5d

(including KK theories)

- 8 supercharges
- SU(2)_R symmetry
- particle content and moduli space
 - vector multiplet $(A_{\mu}, \phi) \rightarrow$ Coulomb branch (CB) G $\rightarrow U(1)^{r}$
 - hypermultiplet $q^{A=1,2} \rightarrow$ Higgs branch (HB)
- Instanton U(1) topological symmetry
- non-renormalizable \rightarrow CFT, UV fixed point

↓ RG 5d gauge

5d SCFTs

M-theory

CY3

theories

Geometric Engineering

M-theory on shrinkable CY3 engineers 5d SCFTs shrinkable means all holomorphic surfaces shrink to a point or non-compact 2-cycles

 \Rightarrow singular limit of CY3 \rightarrow SCFT at singularity

Hirzebruch surface: $\mathbb{F}_n \mathbb{P}^2$

- building blocks of shrinkable CY3
- -glue \mathbb{F}_n and their blowups \mathbb{F}_n^b

[Seiberg 96], [Intriligator, Morrison, Seiberg 97]

(geometric) classifications

[Jefferson, Katz, H.-C. Kim, Vafa 18], [Bhardwaj 19], [Bhardwaj, Zafrir 20], · · ·

Gauge theory		Geometry
SCFT	\longleftrightarrow	CY3
Coulomb Branch (CB)	\longleftrightarrow	Kahler cone
W-bosons	\longleftrightarrow	compact 4-cycles
Flavors	\longleftrightarrow	non-compact 4-cycles
BPS states	\longleftrightarrow	M2-brane wrapping compact 2-cycles
mass of BPS states	\longleftrightarrow	volume of 2-cycles
BPS charges	\longleftrightarrow	Intersection number between 2-cycles and 4 cycles

Partition function on the Ω deformed $\mathbb{R}^4 imes S^1$

Partition function here is the Witten index counting the BPS states, annihilated by supercharge Q and Q^{\dagger} .

$$Z(\phi, m; \epsilon_1, \epsilon_2) = \operatorname{Tr}\left[(-1)^F e^{-\beta \{Q, Q^\dagger\}} e^{-\epsilon_1 (J_1 + J_R)} e^{-\epsilon_2 (J_2 + J_R)} e^{-\phi \cdot \Pi} e^{-m \cdot H} \right]$$

This BPS partition function factorizes

$$Z = Z_{\text{pert}} \cdot Z_{\text{inst}}$$

$$Z_{\text{pert}} = Z_{\text{class}} \cdot Z_{1\text{-loop}}$$
$$= e^{\mathcal{E}} \cdot \text{PE} \left[-\frac{1+p_1 p_2}{(1-p_1)(1-p_2)} \sum_{e \in \mathbf{R}^+} e^{-e \cdot \phi} + \frac{(p_1 p_2)^{1/2}}{(1-p_1)(1-p_2)} \sum_{f} \sum_{w \in \mathbf{w}_f} e^{-|w \cdot \phi + m_f|} \right]$$

where $p_{1,2} \equiv e^{-\epsilon_{1,2}}$ and \mathbf{R}^+ denotes the positive roots for the gauge group

$$\operatorname{PE}\left[f(\mu)\right] \equiv \exp\left(\sum_{n=1}^{\infty} \frac{1}{n} f(n\mu)\right)$$

Blowup Equation

Recall on the Ω -deformed $\mathbb{R}^4 \times S^1$ ($\mathbb{C}^2 \times S^1$)

$$Z(\phi, m; \epsilon_1, \epsilon_2) = \operatorname{Tr}\left[(-1)^F e^{-\beta \{Q, Q^\dagger\}} e^{-\epsilon_1 (J_1 + J_R)} e^{-\epsilon_2 (J_2 + J_R)} e^{-\phi \cdot \Pi} e^{-m \cdot H} \right]$$

Blowup equation is a functional equation identifying two partition functions on different backarounds

(Gottsche-) Nakajima-Yoshioka blowup equation

$$\begin{split} \Lambda(m_{j};\epsilon_{1},\epsilon_{2})\hat{Z}(\phi_{i},m_{j};\epsilon_{1},\epsilon_{2}) &= \sum_{\vec{n}} (-1)^{|\vec{n}|} \hat{Z}^{(N)}(\vec{n},\vec{B}) \times \hat{Z}^{(S)}(\vec{n},\vec{B}) \,, \\ \hat{Z}^{(N)}(\vec{n},\vec{B}) &= \hat{Z}^{(N)}(\phi_{i}+n_{i}\epsilon_{1},m_{i}+B_{i}\epsilon_{1};\epsilon_{1},\epsilon_{2}-\epsilon_{1}) \\ \hat{Z}^{(S)}(\vec{n},\vec{B}) &= \hat{Z}^{(S)}(\phi_{i}+n_{i}\epsilon_{2},m_{j}+B_{j}\epsilon_{2};\epsilon_{1}-\epsilon_{2},\epsilon_{2}) \end{split}$$

 $\Lambda \neq \Lambda(\phi)$: unitary / vanishing equation $(\overrightarrow{n}, \overrightarrow{B})$: magnetic fluxes on \mathbb{P}^1 for (gauge, global) symmetries

Various studies and generalizations:

4d/5d SU(N)

[Nakajim, Yoshioka 03, 05, 09], [Gottsche, Nakajim, Yoshioka 06]

exceptional gauge groups / matter

[Keller, Song 12] [Kim-SSK-Lee-Lee-Song 19]

local CY3

[Huang, Sun, Wang 17]

elliptic, 6d Gu, Haghighat, Klemm, Sun, Wang 18, 19, 20]

6d (2,0) theories, N=1* [Duan, Lee, Nahmgoong, Wang, 21]

RG flows, dualities, global symmetry [Lee-Sun 21]

surface defects, Painleve

[Jeong, Nekrasov 20]

Our Main conjecture

Partition function Z (on the Omega background) of any N=1 theory

$$Z(\phi, m; \epsilon_1, \epsilon_2) = e^{\mathcal{E}(\phi, m; \epsilon_1, \epsilon_2)} Z_{GV}(\phi, m; \epsilon_1, \epsilon_2)$$

can be computed by solving the blowup equation

$$\Lambda(m_j;\epsilon_1,\epsilon_2)\hat{Z}(\phi_i,m_j;\epsilon_1,\epsilon_2) = \sum_{\vec{n}} (-1)^{|\vec{n}|} \hat{Z}^{(N)}(\vec{n},\vec{B}) \times \hat{Z}^{(S)}(\vec{n},\vec{B}),$$

with the following inputs:

(i) effective prepotential $\mathcal{E}(\phi, m; \epsilon_1, \epsilon_2)$

(ii) consistent magnetic fluxes $(\overrightarrow{n}, \overrightarrow{B})$

Effective Prepotential

In 5d field theories, the effective action consists of

[Witten 96] [Bonetti, Grimm, Hohenegger 13]

- cubic CS term $S_{CS} = \frac{C_{IJK}}{24\pi^2} \int A^I \wedge F^J \wedge F^K$
- mixed gauge/gravitational CS term

$$S_{\rm grav} = -\frac{1}{48} \int C_i^G A^i \wedge p_1(T)$$

p1 : Pontryagin class of tangent bundle of 5d spacetime

- mixed gauge/SU(2)_R CS terms

$$S_R = \frac{1}{2} \int C_i^R A^i \wedge c_2(R)$$

 c_2 : 2nd Chern class of SU(2)_R symm bundle

Together, we define the effective prepotential:

$$\mathcal{E}(\phi, m; \epsilon_1, \epsilon_2) = \frac{1}{\epsilon_1 \epsilon_2} \left[\mathcal{F}(\phi, m) + \frac{1}{48} C_i^G \phi^i(\epsilon_1^2 + \epsilon_2^2) + \frac{1}{2} C_i^R \phi^i \epsilon_+^2 \right]$$

the cubic prepotential (or IMS prepotential)

[Intriligator, Morrison, Seiberg 97]

 $m_a = gauge coupling$

$$\mathcal{F} = \sum_{a} \left(\frac{m_{a}}{2} K_{ij}^{a} \phi_{i}^{a} \phi_{j}^{a} + \frac{\kappa_{a}}{6} d_{ijk}^{a} \phi_{i}^{a} \phi_{j}^{a} \phi_{k}^{a} \right) + \frac{1}{12} \left(\sum_{e \in \mathbf{R}} |e \cdot \phi|^{3} - \sum_{f} \sum_{w \in \mathbf{w}_{f}} |w \cdot \phi + m_{f}|^{3} \right) \qquad \begin{array}{c} \kappa_{a} = \text{CS-level} \\ \kappa_{ij}^{a} = \text{Tr}(\mathsf{T}_{i}^{a}\mathsf{T}_{j}^{a}) \\ d_{ijk}^{a} = \text{Tr}(\mathsf{T}_{i}^{a}\mathsf{T}_{j}^{a},\mathsf{T}_{k}^{a}\}) \end{array}$$

Other coefficients are given by

$$C_i^G = -\partial_i \bigg(\sum_{e \in \mathbf{R}} |e \cdot \phi| - \sum_f \sum_{w \in \mathbf{w}_f} |w \cdot \phi + m_f| \bigg) \qquad \qquad C_i^R = \frac{1}{2} \partial_i \sum_{e \in \mathbf{R}} |e \cdot \phi|$$

In geometry, X = CY3 $D_I = divisors$ $S_i = compact divisors$

$$C_{IJK} = D_I \cdot D_J \cdot D_K$$
 triple intersection number

$$C_i^G = c_2(X) \cdot S_i$$

$$c_2(X) \cdot \mathbb{P}^2 = -6, \quad c_2(X) \cdot \mathbb{F}_n^b = -4 + 2b$$

$$C_i^R = 2$$

For instance, pure SU(2) $6\mathcal{F} = 6m\phi^2 + 8\phi^3$, $C_i^G = -4$, $C_i^R = 2$ local \mathbb{P}^2 (non-Lag.) $6\mathcal{F} = 9\phi^3$, $C_i^G = -6$, $C_i^R = 2$

Either gauge theory or geometric description is known, we can compute

Consistent magnetic flux

Magnetic flux $(\overrightarrow{n}, \overrightarrow{B})$ on \mathbb{P}^1 cannot be arbitrary. It satisfies the quantization condition.

Suppose M2-brane wrapping a 2-cycle C of the charge (j_l, j_r) couples with the flux F

- F \cdot C is integral / half-integral when C^2 is even / odd
- F · C is integral / half-integral when $2(j_l + j_r)$ is odd / even

W-bosons (0,1/2): integral flux

hypermultiplet (0,0) : half-integral flux

There exists a chamber such that mass of all BPS particles are non-negative. This further restricts background flux

 $n\in\mathbb{Z},\,B_{\mathfrak{m}}=0,\pm1,\pm2\qquad n\in\mathbb{Z},\,B_{\mathfrak{m}}=\pm1/2,\pm3/2$

Solving the blowup equation

With two inputs: effective prepotential and magnetic fluxes

$$Z(\phi, m; \epsilon_1, \epsilon_2) = e^{\mathcal{E}(\phi, m; \epsilon_1, \epsilon_2)} Z_{GV}(\phi, m; \epsilon_1, \epsilon_2),$$

$$Z_{GV}(\phi, m; \epsilon_1, \epsilon_2) = \operatorname{PE}\left[\sum_{j_l, j_r, \mathbf{d}} (-1)^{2(j_l + j_r)} N_{j_l, j_r}^{\mathbf{d}} \frac{\chi_{j_l}(p_1/p_2) \chi_{j_r}(p_1 p_2)}{(p_1^{1/2} - p_1^{-1/2})(p_2^{1/2} - p_2^{-1/2})} e^{-\mathbf{d} \cdot \mathbf{m}}\right]$$

We recast the blowup equation:

d: degree of 2-cycles; m: vol (2-cycles)

$$\begin{split} \Lambda \hat{Z}_{GV} &= \sum_{\vec{n}} (-1)^{|\vec{n}|} e^{-V} \hat{Z}_{GV}^{(N)}(\vec{n},B) \hat{Z}_{GV}^{(S)}(\vec{n},B) \\ \text{where} \qquad V = \mathcal{E} - \mathcal{E}^{(N)} - \mathcal{E}^{(S)} \end{split}$$

3 different sets of (\vec{n}, \vec{B}) gives three linearly independent equations can solve for three unknowns at each instanton order : $Z_{GV}, Z_{GV}^{(N)}, Z_{GV}^{(S)}$ Less than 3 sets

Strategy for less than 3 sets

Expand the partition function in terms of the Kahler parameters

Solve the blowup equation order by order in the Kahler parameter to determine $N_{(j_l,j_r)}^{d}$

Even undetermined, those we have determined are another input for higher order equation.

 \Rightarrow Solve iteratively $N^{\mathbf{d}}_{(j_l,j_r)}$

Examples

Two SU(2) theories are perturbatively indistinguishable (same \mathcal{E}), but have different instanton spectra.

 \rightarrow A good example for having same \mathcal{E} with different fluxes B yielding different results

$$Z_{GV}(\phi, m; \epsilon_1, \epsilon_2) = \mathcal{Z}_{pert}(\phi; \epsilon_1, \epsilon_2) \cdot \mathcal{Z}_{inst}(\phi, m; \epsilon_1, \epsilon_2)$$
$$\mathcal{Z}_{inst}(\phi, m; \epsilon_1, \epsilon_2) = \sum_{k=0}^{\infty} q^k Z_k(\phi; \epsilon_1, \epsilon_2) \quad \text{with the instanton fugacity } q \equiv e^{-m} \text{ and } Z_0 = 1$$

- $\mathcal{E} = \frac{1}{\epsilon_1 \epsilon_2} \left(\mathcal{F} \frac{\epsilon_1^2 + \epsilon_2^2}{12} \phi + \epsilon_+^2 \phi \right) \qquad 6\mathcal{F} = 6m\phi^2 + 8\phi^3$ Effective prepotential $\mathcal{Z}_{\text{pert}}(\phi;\epsilon_1,\epsilon_2) = \text{PE}\left[-\frac{1+p_1p_2}{(1-p_1)(1-p_2)}e^{-2\phi}\right]$ Perturbative part $\begin{cases} \mathbb{F}_0: SU(2)_0 & n \in \mathbb{Z}, B_m = -2, -1, 0, 1, 2\\ \mathbb{F}_1: SU(2)_\pi & n \in \mathbb{Z}, B_m = -\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}. \end{cases}$
- Magnetic flux

$SU(2)_{\theta=0,\pi}$

With these inputs, we can expand the blowup equation to the first order in the instanton fugacity e^{-m}

$$\begin{split} \Lambda_1 + \hat{Z}_1 &= p_1^{B_m} \hat{Z}_1^{(N)} + p_2^{B_m} \hat{Z}_1^{(S)} - \frac{(p_1 p_2)^{B_m + 1} e^{-2(2 + B_m)\phi_1}}{(1 - e^{-2\phi})(1 - p_1 e^{-2\phi})(1 - p_2 e^{-2\phi})(1 - p_1 p_2 e^{-2\phi})} \\ &- \frac{(p_1 p_2)^{B_m - 1} e^{-2(2 - B_m)\phi_1}}{(1 - e^{-2\phi_1})(1 - p_1^{-1} e^{-2\phi_1})(1 - p_2^{-1} e^{-2\phi_1})(1 - (p_1 p_2)^{-1} e^{-2\phi_1})} \,. \end{split}$$

Three unknowns:
$$\hat{Z}_1, \hat{Z}_1^{(N)}, \hat{Z}_1^{(S)}$$

There are more than 3 distinct equations coming from fluxes:

$$\begin{cases} \mathbb{F}_0: SU(2)_0 & n \in \mathbb{Z}, B_m = -2, -1, 0, 1, 2\\ \mathbb{F}_1: SU(2)_\pi & n \in \mathbb{Z}, B_m = -\frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}. \end{cases}$$

Solutions: $Z_1^{SU(2)_0}(\phi;\epsilon_1,\epsilon_2) = \frac{p_1 p_2 (1+p_1 p_2) e^{-2\phi}}{(1-p_1)(1-p_2)(1-p_1 p_2 e^{-2\phi})(e^{-2\phi}-p_1 p_2)},$ $Z_1^{SU(2)_{\pi}}(\phi;\epsilon_1,\epsilon_2) = -\frac{p_1^{3/2} p_2^{3/2} (1+e^{-2\phi}) e^{-\phi}}{(1-p_1)(1-p_2)(1-p_1 p_2 e^{-2\phi})(e^{-2\phi}-p_1 p_2)}.$

SU(2) again but with one blowup equation.

Recall GV inv. form:

$$Z_{GV}(\phi, m; \epsilon_{1,2}) = \operatorname{PE}\left[\sum_{j_l, j_r} \sum_{d_1, d_2=0}^{\infty} (-1)^{2(j_l+j_r)} N_{j_l, j_r}^{(d_1, d_2)} A_{j_l, j_r}(\epsilon_1, \epsilon_2) e^{-d_1 \operatorname{vol}(e) - d_2 \operatorname{vol}(f)}\right]$$
$$A_{j_l, j_r}(\epsilon_1, \epsilon_2) \equiv \frac{\chi_{j_l}^{SU(2)}(p_1/p_2) \chi_{j_r}^{SU(2)}(p_1p_2)}{(p_1^{1/2} - p_1^{-1/2})(p_2^{1/2} - p_2^{-1/2})}.$$

 $\begin{array}{l} (d_1,d_2): \text{degree for 2-cycles e and f, respectively.} \\ \text{e.g., (0,1) means perturbative part} \\ \mathcal{Z}_{\text{pert}}(\phi;\epsilon_1,\epsilon_2) = \mathrm{PE}\left[-\frac{1+p_1p_2}{(1-p_1)(1-p_2)}e^{-2\phi}\right] & \longrightarrow \quad N_{0,\frac{1}{2}}^{(0,1)} = 1 \qquad N_{j_l,j_r}^{(0,d_2)} = 0 \text{ for } d_2 > 1 \end{array}$

Suppose we found only one flux for SU(2)₀: $B_m = 0$

From the blowup equation at 1st order in the instanton $d_1 = 1$, we then further expand the equation with d_2 , namely $e^{-2\phi}$

$$\begin{split} \Lambda_1 &= \hat{Z}_1^{(N)} + \hat{Z}_1^{(S)} - \hat{Z}_1 - \left(p_1 p_2 + (p_1 p_2)^{-1}\right) e^{-4\phi} \\ &- \frac{(1+p_1)(1+p_2)(1+p_1^3 p_2^3)}{p_1^2 p_2^2} e^{-6\phi} + \mathcal{O}(e^{-8\phi}) \end{split}$$

We then solve this equation order by order in d_2

d	$\oplus N^{\mathbf{d}}_{j_l,j_r}(j_l,j_r)$	d	$\oplus N^{\mathbf{d}}_{j_l,j_r}(j_l,j_r)$
(1, 0)	$N_{0,rac{1}{2}}^{(1,0)}(0,rac{1}{2})$	(1, 1)	$N_{0,rac{1}{2}}^{(1,1)}(0,rac{1}{2})\oplus(0,rac{3}{2})$
(1,2)	$N_{0,rac{1}{2}}^{(1,2)}(0,rac{1}{2})\oplus(0,rac{5}{2})$	(1,3)	$N_{0,rac{1}{2}}^{(1,3)}(0,rac{1}{2})\oplus(0,rac{7}{2})$

 $N_{0,\frac{1}{2}}^{(1,d_2)}$ is not fixed $\hat{Z}_1^{(N)} + \hat{Z}_1^{(S)} - \hat{Z}_1 \rightarrow 0$ But at higher orders in d_1 , it is fixed to 1 for d_2 =0, 0 otherwise

Rank2: $SU(3)_{\kappa}$, $\kappa \leq 7$

Geometrically, they are engineered by glueing two Hirzebruch surfaces.

Rank2: $SU(3)_{\kappa}$, $\kappa \leq 7$

Input:

• Effective prepotential

$$\mathcal{E} = \frac{1}{\epsilon_1 \epsilon_2} \left(\mathcal{F} - \frac{\epsilon_1^2 + \epsilon_2^2}{12} (\phi_1 + \phi_2) + \epsilon_+^2 (\phi_1 + \phi_2) \right),$$

$$6 \mathcal{F} = 6m(\phi_1^2 - \phi_1 \phi_2 + \phi_2^2) + 3\kappa \phi_1 \phi_2 (\phi_1 - \phi_2) + 8\phi_1^3 - 3\phi_1^2 \phi_2 - 3\phi_1 \phi_2^2 + 8\phi_2^3,$$

Magnetic flux

$$n_1, n_2 \in \mathbb{Z}$$
 and $B_m = \begin{cases} -\frac{1}{2}, \frac{1}{2}, \frac{3}{2} & \kappa = 0, 2, 4, 6 \\ -1, 0, 1 & \kappa = 1, 3, 5, 7 \end{cases}$

• GV form

$$\begin{aligned} Z_{GV}(\phi_i, m; \epsilon_1, \epsilon_2) &= \mathcal{Z}_{\text{pert}}(\phi_i; \epsilon_1, \epsilon_2) \cdot \mathcal{Z}_{\text{inst}}(\phi_i, m; \epsilon_1, \epsilon_2) \ ,\\ \mathcal{Z}_{\text{pert}}(\phi_i; \epsilon_1, \epsilon_2) &= \text{PE}\left[-\frac{1+p_1 p_2}{(1-p_1)(1-p_2)} \left(e^{-(2\phi_1 - \phi_2)} + e^{-(2\phi_2 - \phi_1)} + e^{-(\phi_1 + \phi_2)} \right) \right]\\ \mathcal{Z}_{\text{inst}}(\phi_i, m; \epsilon_1, \epsilon_2) &= \sum_{k=0}^{\infty} q^k Z_k(\phi; \epsilon_1, \epsilon_2) \ , \end{aligned}$$

Rank2: SU(3)₅ and Sp(2) $_{\pi}$

Two theories are known to be UV-dual / fiber-base dual.

Geometrically, $\mathbb{F}_6 \xrightarrow{e \qquad h+2f} \mathbb{F}_0$

SU(3) frame: $vol(f_1) = 2\phi_1 - \phi_2$, $vol(f_2) = -\phi_1 + 2\phi_2$, $vol(e_2) = -2\phi_1 + 2\phi_2 + m$ Sp(2) frame: $vol(f_1) = 2\phi_1 - \phi_2$, $vol(f_2) = -2\phi_1 + 2\phi_2$, $vol(e_2) = -\phi_1 + 2\phi_2 + m$

Map between two theories

[Hayashi-SSK-Lee-Yagi 15,16]

$$\phi_1^{SU} = \phi_1^{Sp} + \frac{1}{3}m^{Sp} , \quad \phi_2^{SU} = \phi_2^{Sp} + \frac{2}{3}m^{Sp} , \quad m^{SU} = -\frac{2}{3}m^{Sp}$$

Rank2: SU(3)₅ and Sp(2) $_{\pi}$

• Effective prepotential

$$\begin{aligned} \mathcal{E} &= \frac{1}{\epsilon_1 \epsilon_2} \left(\mathcal{F} - \frac{\epsilon_1^2 + \epsilon_2^2}{12} (\phi_1 + \phi_2) + \epsilon_+^2 (\phi_1 + \phi_2) \right) ,\\ 6\mathcal{F} &= 6m (2\phi_1^2 - 2\phi_1\phi_2 + \phi_2^2) + 8\phi_1^3 + 12\phi_1^2\phi_2 - 18\phi_1\phi_2^2 + 8\phi_2^3 , \end{aligned}$$

• Magnetic flux

$$n_1, n_2 \in \mathbb{Z}$$
, $B_m = -1, 0, 1$

Duality under the map

$$SU(3)_5 \iff Sp(2)_{\pi}$$

d	$\oplus N^{\mathbf{d}}_{j_l,j_r}(j_l,j_r)$	d	$\oplus N^{\mathbf{d}}_{j_l,j_r}(j_l,j_r)$
(1, 0, 0)	$(0, \frac{1}{2})$	(1,0,1)	$(0, \frac{3}{2})$
(1, 0, 2)	$(0, \frac{5}{2})$	(1, 1, 0)	$(0, \frac{1}{2})$
(1,1,1)	$(0,rac{1}{2})\oplus(0,rac{3}{2})$	(1, 1, 2)	$(0,rac{3}{2})\oplus(0,rac{5}{2})$
(1, 2, 0)	$(0, \frac{1}{2})$	(1, 2, 1)	$(0,rac{1}{2})\oplus(0,rac{3}{2})$
(1, 2, 2)	$(0,rac{1}{2})\oplus(0,rac{3}{2})\oplus(0,rac{5}{2})$	(2,0,1)	$(0, \frac{5}{2})$
(2, 0, 2)	$(0,rac{5}{2})\oplus(0,rac{7}{2})\oplus(rac{1}{2},4)$	(2,1,1)	$(0,rac{3}{2})\oplus(0,rac{5}{2})$
(2, 1, 2)	$egin{aligned} (0,rac{3}{2})\oplus 3(0,rac{5}{2})\oplus 2(0,rac{7}{2})\oplus\ (rac{1}{2},3)\oplus(rac{1}{2},4) \end{aligned}$	(2, 2, 1)	$(0,rac{1}{2})\oplus(0,rac{3}{2})\oplus(0,rac{5}{2})$
(2, 2, 2)	$(0,rac{1}{2})\oplus 3(0,rac{3}{2})\oplus 4(0,rac{5}{2})\oplus \ 2(0,rac{7}{2})\oplus (rac{1}{2},2)\oplus (rac{1}{2},3)\oplus (rac{1}{2},4)$	(3, 0, 1)	$(0, \frac{7}{2})$
(3, 0, 2)	$egin{aligned} (0,rac{5}{2})\oplus(0,rac{7}{2})\oplus2(0,rac{9}{2})\oplus\ (rac{1}{2},4)\oplus(rac{1}{2},5)\oplus(1,rac{11}{2}) \end{aligned}$	(3,1, <mark>1)</mark>	$(0,rac{5}{2})\oplus(0,rac{7}{2})$
(3, 1, 2)	$egin{aligned} &(0,rac{3}{2})\oplus 3(0,rac{5}{2})\oplus 5(0,rac{7}{2})\oplus\ &3(0,rac{9}{2})\oplus (rac{1}{2},3)\oplus 3(rac{1}{2},4)\oplus\ &2(rac{1}{2},5)\oplus (1,rac{9}{2})\oplus (1,rac{11}{2}) \end{aligned}$	(3,2, 1)	$(0,rac{3}{2})\oplus(0,rac{5}{2})\oplus(0,rac{7}{2})$
(3, 2, 2)	$(0, \frac{1}{2}) \oplus 3(0, \frac{3}{2}) \oplus 8(0, \frac{5}{2}) \oplus 7(0, \frac{7}{2}) \oplus 4(0, \frac{9}{2}) \oplus (\frac{1}{2}, 2) \oplus 3(\frac{1}{2}, 3) \oplus 4(\frac{1}{2}, 4) \oplus 2(\frac{1}{2}, 5) \oplus (1, \frac{7}{2}) \oplus (1, \frac{9}{2}) \oplus (1, \frac{11}{2})$		

Table 6. BPS spectrum of $SU(3)_5$ for $d_1 \leq 3$ and $d_2, d_3 \leq 2$. Here, $\mathbf{d} = (d_1, d_2, d_3)$ labels the BPS states with charge $d_1e_2 + d_2f_1 + d_3f_2$.

Rank2: SU(3)8

Geometrically $\mathbb{F}_{q} \stackrel{e}{=} \stackrel{h+3f}{=} \mathbb{F}_{j}$ 3-primitive curves: $\operatorname{vol}(f_{1}) = 2\phi_{1} - \phi_{2}$, $\operatorname{vol}(f_{2}) = -\phi_{1} + 2\phi_{2}$, $\operatorname{vol}(e_{2}) = -3\phi_{1} + \phi_{2} + m$, but non-shrinkable (cannot be all non-negative, as $m \rightarrow o$) \Longrightarrow Cannot have a UV completion in the geom. phase. $\Gamma_{Jefferson, Kate, Kim, Vata 'IFJ}$ it was pointed out that $\exists KK$ theory: $SU(3)_{15/2} + IF \iff G_{2} + 1 \operatorname{Adj}$. $\begin{cases} by \ decoupling \ 1F \\ SU(3)_{8} \end{cases}$.

Interestingly, No 5-brane webs yet; No ADHM methods. ⇒ The partition function has not been computed. But Blomp can compute Z.

Rank2: SU(3)₈

· Effective prepotential

$$\mathcal{E} = \frac{1}{\epsilon_1 \epsilon_2} \left(\mathcal{F} - \frac{\epsilon_1^2 + \epsilon_2^2}{12} (\phi_1 + \phi_2) + \epsilon_+^2 (\phi_1 + \phi_2) \right),$$

$$6\mathcal{F} = 8\phi_1^3 + 21\phi_1^2\phi_2 - 27\phi_1\phi_2^2 + 8\phi_2^3 + 6m(\phi_1^2 - \phi_1\phi_2 + \phi_2^2)$$

· Magnetic fluxes

 $n_1 \in \mathbb{Z} + 1/3$, $n_2 \in \mathbb{Z} + 2/3$, $B_m = -1/6$

BPS spectrum

(1,0,0)
(1,0,2)
(1,2,0) states:

negotive masses
hypermultiplets
flop
hon-trivial phase of CB.

d	$\oplus N^{\mathbf{d}}_{j_l,j_r}(j_l,j_r)$	d	$\oplus N^{\mathbf{d}}_{j_l,j_r}(j_l,j_r)$
(1, 0, 0)	(0, 0)	(1, 0, 1)	(0, 1)
(1, 0, 2)	(0, 2)	(1, 0, 3)	(0, 3)
(1, 1, 0)	(0, 0)	(1, 1, 1)	$(0,0)\oplus(0,1)$
(1, 1, 2)	$(0,1)\oplus(0,2)$	(1, 1, 3)	$(0,2)\oplus(0,3)$
(1, 2, 0)	(0, 0)	(1, 2, 1)	$(0,0)\oplus(0,1)$
(1, 2, 2)	$(0,0)\oplus(0,1)\oplus(0,2)$	(1, 2, 3)	$(0,1)\oplus(0,2)\oplus(0,3)$
(1, 3, 0)	(0, 0)	(1, 3, 1)	$(0,0)\oplus(0,1)$
(1, 3, 2)	$(0,0)\oplus(0,1)\oplus(0,2)$	(1, 3, 3)	$(0,0)\oplus (0,1)\oplus (0,2)\oplus (0,3)$
(2, 0, 2)	$(0, \frac{5}{2})$	(2, 0, 3)	$(0,rac{5}{2})\oplus(0,rac{7}{2})\oplus(rac{1}{2},4)$
(2, 1, 2)	$(0,rac{3}{2})\oplus(0,rac{5}{2})$	(2, 1, 3)	$(0,rac{3}{2})\oplus 3(0,rac{5}{2})\oplus 2(0,rac{7}{2})\oplus\ (rac{1}{2},3)\oplus (rac{1}{2},4)$
(2, 2, 1)	$(0, \frac{1}{2})$	(2, 2, 2)	$(0,rac{1}{2})\oplus 2(0,rac{3}{2})\oplus (0,rac{5}{2})$
(2, 2, 3)	$\begin{array}{c}(0,\frac{1}{2})\oplus 3(0,\frac{3}{2})\oplus 5(0,\frac{5}{2})\oplus\\2(0,\frac{7}{2})\oplus (\frac{1}{2},2)\oplus (\frac{1}{2},3)\oplus (\frac{1}{2},4)\end{array}$	(2, 3, 1)	$2(0,rac{1}{2})\oplus (rac{1}{2},0)$
(2, 3, 2)	$3(0,rac{1}{2})\oplus 3(0,rac{3}{2})\oplus (0,rac{5}{2})\oplus \ (rac{1}{2},1)$	(2, 3, 3)	$\begin{array}{c} 3(0,\frac{1}{2})\oplus 6(0,\frac{3}{2})\oplus 6(0,\frac{5}{2})\oplus \\ 2(0,\frac{7}{2})\oplus (\frac{1}{2},1)\oplus 2(\frac{1}{2},2)\oplus \\ (\frac{1}{2},3)\oplus (\frac{1}{2},4) \end{array}$

Table 29. BPS spectrum of $SU(3)_8$ for $d_1 \leq 2$ and $d_2, d_3 \leq 3$. Here, $\mathbf{d} = (d_1, d_2, d_3)$ labels the state wrapping curve $d_1e_2 + d_2f_1 + d_3f_2$.

KK theory: Rank1

_

•
$$SU(2) + 8F$$
 - $6d = string on a circle$
(E, magnetic fluxes) $\Rightarrow BPS$
• $SU(2)_0 + 1Ad_j$ - $6d = M-string on a circle$
• $SU(2)_{TL} + 1Ad_j$ - $6d = N=(2,0) = A_2 thy w/ Z_2 - twist$
I like $SU(2)_{0,TL}$: two distict sets
of fluxes
· $decoupling$
· instantonic "hypen.
· $Local (P^2 + 1Ad_j)$: non - Lagrangian [Bhardwaj /

KK theory: Rank2

Conclusion

A systematic bootstrap method for BPS spectra of 5d N = 1 field theories (including KK theories), based on the Nakajima-Yoshioka's blowup equation

for any theories: either gauge theory description or geometric description

With inputs: effective prepotential, consistent magnetic fluxes.

Various examples: rank 1 and rank 2, KK theories

Wilson lines: Online talk on July 14 by Minsung KIm

Strings and QFTs for Eurasian time zone

External homepage

HEP - theory

Audience:Researchers in the topicSeminar series times:Wednesday 15:00-16:00, 16:00-17:00Organizer:Satoshi Nawata*