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Quantum field theory

Quantum mechanics

Quantum field theory
A unified framework for 

strong, weak and 
electromagnetic forces

Higgs particle finally 
discovered in 2012

Standard model of particle physics

Special relativity



？
Quantum gravity 

puzzle

Gravity is not renormalizable.

Unifying Gravity?

General relativity

Newton Gravity

Quantum mechanics

Special relativity

Quantum field theory



Renormalizability

Gravity：needs infinitely many “counter terms”:

This may be understood from the dimension of the coupling：
Gravity coupling has mass dimension -2. 
High-dimensional local operators (as counter terms) appear at 
high orders.

ℒ = g(R+c1R2 + c2RμνRμν + c3RμνρσRμνρσ + ⋯)

QED is renormalizable -> we know the full theory

ℒQED = −
1
4

FμνFμν + ψ̄(iγμDμ − m)ψ



An analogy：“four-fermion effective theory”，coupling dimension is -2

G4 g g

Electroweak theory
[G4] = − 2

[g] = 0

Four-fermion theory is an “effective theory” of the more 
fundamental electroweak theory.

W-boson

Renormalizability



Gravity is also an effective theory of some fundamental theory

gs gsGN

Renormalizability

G4 g g

Electroweak theory
[G4] = − 2

[g] = 0

W-boson

An analogy：“four-fermion effective theory”，coupling dimension is -2



String theory: String states (?)

Renormalizability

Gravity is also an effective theory of some fundamental theory

gs gsGN

G4 g g

Electroweak theory
[G4] = − 2

[g] = 0

W-boson

An analogy：“four-fermion effective theory”，coupling dimension is -2



Effective theory only works up to certain energy scale. 
Above such energy scale, the theory is meaningless.

Effective theory



Quantum gravity

Big 
Bang

Effective theory only works up to certain energy scale. 
Above such energy scale, the theory is meaningless.

A fundamental quantum gravity theory is necessary:

• Origin of the universe
• Cosmological constant 
• Black hole singularity



Toward a quantum theory of gravity

String theory, 
Loop quantum gravity, 
Asymptotic safety, 
…



Toward a quantum theory of gravity

Gauge-gravity duality

全息原理 平⽅关系



Outline

Summary and discussion

Color-kinematics duality

New form factor results

Motivation



Gauge-gravity duality: holography

AdS/CFT correspondence

Gravity

Gauge theory

D-dim gravity

(D-1)-dim gauge theory

Strong-weak 
duality



Gravity (Yang-Mills)^2

Gravity Gauge
Theory

Gauge
Theory

Figure 5: String theory suggests that the three-graviton vertex can be expressed
in terms of products of three-gluon vertices.

by the three-vertex in Eq. (3). Indeed, the standard formulations of quantum
gravity generate a plethora of terms that violate the heuristic relation (1).

In section 4 the question of how one rearranges the Einstein action to be
compatible with string theory intuition is returned to. However, in order to give
a precise meaning to the heuristic formula (1) and to demonstrate that scattering
amplitudes in gravity theories can indeed be obtained from standard gauge
theory ones, a completely different approach from the standard Lagrangian or
Hamiltonian ones is required. This different approach is described in the next
section.
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Gauge-gravity duality: double copy

Weak-weak duality



KLT relation

3.2 The KLT Relations in Field Theory

The fact that the KLT relations hold for the extensive variety of compactified
string models [97, 98, 99, 100, 101, 102] implies that they should also be generally
true in field theories of gravity. For the cases of four- and five-particle scattering
amplitudes, in the field theory limit the KLT relations [7] reduce to:

M tree
4 (1, 2, 3, 4) = −is12A

tree
4 (1, 2, 3, 4)Atree

4 (1, 2, 4, 3) , (10)

M tree
5 (1, 2, 3, 4, 5) = is12s34A

tree
5 (1, 2, 3, 4, 5)Atree

5 (2, 1, 4, 3, 5)

+ is13s24A
tree
5 (1, 3, 2, 4, 5)Atree

5 (3, 1, 4, 2, 5) , (11)

where the Mn’s are tree-level amplitudes in a gravity theory, the An’s are color-
stripped tree-level amplitudes in a gauge theory and sij ≡ (ki + kj)2. In these
equations the polarization and momentum labels are suppressed, but the label
“j = 1, . . . , n” is kept to distinguish the external legs. The coupling constants
have been removed from the amplitudes, but are reinserted below in Eqs. (12)
and (13). An explicit generalization to n-point field theory gravity amplitudes
may be found in appendix A of Ref. [36]. The KLT relations before the field
theory limit is taken may, of course, be found in the original paper [7].

The KLT equations generically hold for any closed string states, using their
Fock space factorization into pairs of open string states. Although not obvious,
the gravity amplitudes (10) and (11) have all the required symmetry under
interchanges of identical particles. (This is easiest to demonstrate in string
theory by making use of an SL(2, Z) symmetry on the string world sheet.)

In the field theory limit the KLT equations must hold in any dimension,
because the gauge theory amplitudes appearing on the right-hand-side have
no explicit dependence on the space-time dimension; the only dependence is
implicit in the number of components of momenta or polarizations. Moreover,
if the equations hold in, say, ten dimensions, they must also hold in all lower
dimensions since one can truncate the theory to a lower dimensional subspace.

The amplitudes on the left-hand side of Eqs. (10) and (11) are exactly the
scattering amplitudes that one obtains via standard gravity Feynman rules [64,
65, 54]. The gauge theory amplitudes on the right-hand-side may be computed
via standard Feynman rules available in any modern textbook on quantum field
theory [57, 58]. After computing the full gauge theory amplitude, the color-
stripped partial amplitudes An appearing in the KLT relations (10) and (11),
may then be obtained by expressing the full amplitudes in a color trace ba-
sis [103, 104, 105, 55, 56]:

Atree
n (1, 2, . . . n) = g(n−2)

∑

σ

Tr (T aσ(1) · · ·T aσ(n))Atree
n (σ(1), . . . , σ(n)) ,

(12)
where the sum runs over the set of all permutations, but with cyclic rotations
removed and g as the gauge theory coupling constant. The An partial ampli-
tudes that appear in the KLT relations are defined as the coefficients of each of

13

Field theory limit

x
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by the three-vertex in Eq. (3). Indeed, the standard formulations of quantum
gravity generate a plethora of terms that violate the heuristic relation (1).

In section 4 the question of how one rearranges the Einstein action to be
compatible with string theory intuition is returned to. However, in order to give
a precise meaning to the heuristic formula (1) and to demonstrate that scattering
amplitudes in gravity theories can indeed be obtained from standard gauge
theory ones, a completely different approach from the standard Lagrangian or
Hamiltonian ones is required. This different approach is described in the next
section.
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Color-kinematics duality



In 2008 Bern, Carrasco and Johansson 
proposed a duality between color and 
kinematics factors:

Duality

Color factor Kinematic factor

〈i j〉 = εαβλαi λ
β
j , [i j] = εα̇β̇λ

α
i λ

β
j

O(x) = tr(FαβF
βγψγAφBCψ̄Dα̇ . . .)

PSU(2, 2|4) α, α̇|A A = 1, 2, 3, 4

ε→ 0
∑

&

&− p1 − p2
1

$2($−p1−p2)2

&2 → 0(&− p1 − p2)2 → 0
1
$2
→ 2πδ(+)(&2)

−→
x
←−−−−−−−−
blahblahblah

g
−−−−−→

sii+1

F (1)
n =

∑n
i=1 pi pi+1 pi+2

F (2)
n =

∑n
i=1

(

X
X

)
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(

X
X

) (

X
Y

)

→
(

X
Y

) (

X
Y

)

→
(

Y
X

)

{∆i, Cijk}

〈Oi(x)Oj(0)〉 = δij
(x2)∆i

〈Oi(x1)Oj(x2)Ok(x3)〉 =
Cijk

|x12|
αij |x23|

αjk |x31|αik
(αij = ∆i +∆j −∆k)

−µ
d

µ
Oi(0) = [D,Oi(0)] = HijOj(0)

f̃abc = i
√
2fabc = Tr([T a, T b]T c)

f̃abc = Tr([T a, T b]T c)

2
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Cijk

|x12|
αij |x23|
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−µ
d

µ
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f̃abc = i
√
2fabc = Tr([T a, T b]T c)

f̃abc = Tr([T a, T b]T c)

sij = (pi + pj)
2

2

[Bern, Carrasco, Johansson 2008]

Gauge symmetry Spacetime symmetry

Color-kinematics duality

(conjecture)



Example: 4-pt amplitudeThe simplest example to understand the colour-kinematics duality is to consider

four-point gluon tree amplitudes.

s
t

2

1

3

4

2 3

41
u

1 4

32

Fig. 1: Trivalent graphs of four-point tree amplitudes.

A special representation is given in terms of three trivalent graphs in Fig. 1,

Atree
4 (1, 2, 3, 4) =

cs ns

s
+

ct nt

t
+

cu nu

u
, (2.1)

where ni’s are kinematic factors and ci’s are colour factors given by the product of

structure constants f̃abc associated to each trivalent vertex, more explicitly,

cs = f̃a1a2bf̃ ba3a4 , ct = f̃a2a3bf̃ ba4a1 , cu = f̃a1a3bf̃ ba2a4 . (2.2)

The colour-kinematics duality requires that the numerators should satisfy the same

Jacobi relation of colour factors,

cs = ct + cu ⇒ ns = nt + nu . (2.3)

For more general tree-level amplitudes, the existence of such a representation has

been proved in [?].

The more remarkable and mysterious fact is that it also works at loop level. An

L-loop amplitudes can be represent as a sum over trivalent graphs,

A(L)
n =

∑

Γi

∫ L
∏

j

dD!j
1

Si

CiNi
∏

aDa
. (2.4)

For every propagator of a trivalent graph, one can take it as s channel and perform

t, u-channel transformation, as in Fig. 2, to generate two other graphs. The duality

requires that the numerators of these three graphs should satisfy the Jacobi relation

as the colour factors,

Ci = Cj + Ck ⇒ Ni = Nj +Nk . (2.5)
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A4(1,2,3,4) =
csns

s
+

ctnt

t
+

cunu

u
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Jacobi identity dual Jacobi relation

A4(1,2,3,4) =
csns

s
+

ctnt

t
+

cunu

u

Not trivial !



M4(1,2,3,4) =
nsns

s
+

ntnt

t
+

nunu

u
A4(1,2,3,4) =

csns

s
+

ctnt

t
+

cunu

u

Color-kinematics duality
If the gauge amplitude satisfies CK duality, one can directly 
construct gravity amplitude：



If the gauge amplitude satisfies CK duality, one can directly 
construct gravity amplitude：

M4(1,2,3,4) =
nsns

s
+

ntnt

t
+

nunu

u
A4(1,2,3,4) =

csns

s
+

ctnt

t
+

cunu

u

Color-kinematics duality

Gauge invariance, via double copy, implies the diffeomorphism 
invariance in gravity:

ni → ni + δi ,
∑

i

ci δi

Di
= 0

δi = ni |εj→pj

∑
i

ni δi

Di
= 0

ci = cj + ck

ni = nj + nk



GravityGauge x Gauge CK-duality

M4(1,2,3,4) =
nsns

s
+

ntnt

t
+

nunu

u
A4(1,2,3,4) =

csns

s
+

ctnt

t
+

cunu

u

“double-copy” can be used also at high loops:

A(ℓ) ∼ ∑
i

∫
Ci × Ni

∏D
M(ℓ) ∼ ∑

i
∫

Ni × Ni

∏D

Color-kinematics duality
If the gauge amplitude satisfies CK duality, one can directly 
construct gravity amplitude：



High-loop graviton amplitudes

Very difficult using Feynman diagram:
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Off-shell three-graviton vertex:

�

�
⌧

171 terms

[DeWitt, 1967]

3

2

1

May 28, 2015 9:58 World Scientific Review Volume - 9in x 6in feynRuleSlides page 2

2 J. J. M. Carrasco

�S3

�Aa
µ�A

b
��A

c
⇢

! ifabc ((k1
⇢ � k2

⇢) ⌘µ� + (k2
µ � k3

µ) ⌘�⇢ + (k3
� � k1

�) ⌘⇢µ)

�S3

�'µ⌫�'�⌧ �'⇢�

! 2⌘µ⌧ ⌘⌫�k1
�k1

⇢ + 2⌘µ�⌘⌫⌧k1
�k1

⇢ � 2⌘µ⌫⌘�⌧k1
�k1

⇢ +

2⌘�⌧⌘µ⌫k1
�k1

⇢ + 2⌘��⌘µ⌫k1
⌧k1

⇢ + ⌘µ⌧ ⌘⌫�k2
�k1

⇢ + ⌘µ�⌘⌫⌧k2
�k1

⇢ + ⌘�⌧⌘⌫�k2
µk1

⇢ +

⌘��⌘⌫⌧k2
µk1

⇢ + ⌘�⌧⌘µ�k2
⌫k1

⇢ + ⌘��⌘µ⌧k2
⌫k1

⇢ + ⌘�⌧⌘⌫�k3
µk1

⇢ + ⌘��⌘⌫⌧k3
µk1

⇢ �
⌘�⌫⌘�⌧k3

µk1
⇢ + ⌘�⌧⌘µ�k3

⌫k1
⇢ + ⌘��⌘µ⌧k3

⌫k1
⇢ � ⌘�µ⌘�⌧k3

⌫k1
⇢ + ⌘�⌫⌘µ⌧k3

�k1
⇢ +

⌘�µ⌘⌫⌧k3
�k1

⇢ + ⌘�⌫⌘µ�k3
⌧k1

⇢ + ⌘�µ⌘⌫�k3
⌧k1

⇢ + 2⌘µ⌫⌘⇢⌧k1
�k1

� + 2⌘µ⌫⌘⇢�k1
�k1

⌧ �
2⌘�⇢⌘µ⌫k1

�k1
⌧ + 2⌘�⌫⌘µ⇢k1

�k1
⌧ + 2⌘�µ⌘⌫⇢k1

�k1
⌧ + ⌘µ⌧ ⌘⌫⇢k1

�k2
� + ⌘µ⇢⌘⌫⌧k1

�k2
� +

⌘µ�⌘⌫⇢k1
⌧k2

� + ⌘µ⇢⌘⌫�k1
⌧k2

� + ⌘⌫⌧⌘⇢�k1
�k2

µ + ⌘⌫�⌘⇢⌧k1
�k2

µ + ⌘�⌧⌘⌫⇢k1
�k2

µ �
⌘�⇢⌘⌫⌧k1

�k2
µ + ⌘�⌫⌘⇢⌧k1

�k2
µ + ⌘��⌘⌫⇢k1

⌧k2
µ � ⌘�⇢⌘⌫�k1

⌧k2
µ + ⌘�⌫⌘⇢�k1

⌧k2
µ +

2⌘⌫⇢⌘�⌧k2
�k2

µ + ⌘µ⌧ ⌘⇢�k1
�k2

⌫ + ⌘µ�⌘⇢⌧k1
�k2

⌫ + ⌘�⌧⌘µ⇢k1
�k2

⌫ � ⌘�⇢⌘µ⌧k1
�k2

⌫ +

⌘�µ⌘⇢⌧k1
�k2

⌫ + ⌘��⌘µ⇢k1
⌧k2

⌫ � ⌘�⇢⌘µ�k1
⌧k2

⌫ + ⌘�µ⌘⇢�k1
⌧k2

⌫ + 2⌘µ⇢⌘�⌧k2
�k2

⌫ +

2⌘�⌧⌘⇢�k2
µk2

⌫ + 2⌘��⌘⇢⌧k2
µk2

⌫ � 2⌘�⇢⌘�⌧k2
µk2

⌫ + ⌘µ⌧ ⌘⌫�k1
�k2

⇢ + ⌘µ�⌘⌫⌧k1
�k2

⇢ +

⌘�⌫⌘µ⌧k1
�k2

⇢ + ⌘�µ⌘⌫⌧k1
�k2

⇢ + ⌘�⌫⌘µ�k1
⌧k2

⇢ + ⌘�µ⌘⌫�k1
⌧k2

⇢ + 2⌘µ⌧ ⌘⌫�k2
�k2

⇢ +

2⌘µ�⌘⌫⌧k2
�k2

⇢ �2⌘µ⌫⌘�⌧k2
�k2

⇢ +2⌘�⌫⌘�⌧k2
µk2

⇢ +2⌘�µ⌘�⌧k2
⌫k2

⇢ +⌘⌫⌧⌘⇢�k1
�k3

µ +

⌘⌫�⌘⇢⌧k1
�k3

µ � ⌘⌫⇢⌘�⌧k1
�k3

µ + ⌘�⌧⌘⌫⇢k1
�k3

µ + ⌘�⌫⌘⇢⌧k1
�k3

µ + ⌘��⌘⌫⇢k1
⌧k3

µ +

⌘�⌫⌘⇢�k1
⌧k3

µ + ⌘⌫⌧⌘⇢�k2
�k3

µ + ⌘⌫�⌘⇢⌧k2
�k3

µ + ⌘�⌧⌘⇢�k2
⌫k3

µ + ⌘��⌘⇢⌧k2
⌫k3

µ +

⌘�⌧⌘⌫�k2
⇢k3

µ + ⌘��⌘⌫⌧k2
⇢k3

µ + ⌘µ⌧ ⌘⇢�k1
�k3

⌫ + ⌘µ�⌘⇢⌧k1
�k3

⌫ � ⌘µ⇢⌘�⌧k1
�k3

⌫ +

⌘�⌧⌘µ⇢k1
�k3

⌫ + ⌘�µ⌘⇢⌧k1
�k3

⌫ + ⌘��⌘µ⇢k1
⌧k3

⌫ + ⌘�µ⌘⇢�k1
⌧k3

⌫ + ⌘µ⌧ ⌘⇢�k2
�k3

⌫ +

⌘µ�⌘⇢⌧k2
�k3

⌫ + ⌘�⌧⌘⇢�k2
µk3

⌫ + ⌘��⌘⇢⌧k2
µk3

⌫ + ⌘�⌧⌘µ�k2
⇢k3

⌫ + ⌘��⌘µ⌧k2
⇢k3

⌫ +

2⌘�⌧⌘⇢�k3
µk3

⌫ + 2⌘��⌘⇢⌧k3
µk3

⌫ � 2⌘�⇢⌘�⌧k3
µk3

⌫ + ⌘µ⌧ ⌘⌫⇢k1
�k3

� + ⌘µ⇢⌘⌫⌧k1
�k3

� +

⌘�⌫⌘µ⇢k1
⌧k3

� + ⌘�µ⌘⌫⇢k1
⌧k3

� + ⌘µ⌧ ⌘⌫⇢k2
�k3

� + ⌘µ⇢⌘⌫⌧k2
�k3

� � ⌘µ⌫⌘⇢⌧k2
�k3

� +

⌘�⌧⌘⌫⇢k2
µk3

� + ⌘�⌫⌘⇢⌧k2
µk3

� + ⌘�⌧⌘µ⇢k2
⌫k3

� + ⌘�µ⌘⇢⌧k2
⌫k3

� � ⌘�⌧⌘µ⌫k2
⇢k3

� +

⌘�⌫⌘µ⌧k2
⇢k3

� + ⌘�µ⌘⌫⌧k2
⇢k3

� + 2⌘�⇢⌘⌫⌧k3
µk3

� + 2⌘�⇢⌘µ⌧k3
⌫k3

� + ⌘µ�⌘⌫⇢k1
�k3

⌧ +

⌘µ⇢⌘⌫�k1
�k3

⌧ + ⌘�⌫⌘µ⇢k1
�k3

⌧ + ⌘�µ⌘⌫⇢k1
�k3

⌧ + ⌘µ�⌘⌫⇢k2
�k3

⌧ + ⌘µ⇢⌘⌫�k2
�k3

⌧ �
⌘µ⌫⌘⇢�k2

�k3
⌧ + ⌘��⌘⌫⇢k2

µk3
⌧ + ⌘�⌫⌘⇢�k2

µk3
⌧ + ⌘��⌘µ⇢k2

⌫k3
⌧ + ⌘�µ⌘⇢�k2

⌫k3
⌧ �

⌘��⌘µ⌫k2
⇢k3

⌧ + ⌘�⌫⌘µ�k2
⇢k3

⌧ + ⌘�µ⌘⌫�k2
⇢k3

⌧ + 2⌘�⇢⌘⌫�k3
µk3

⌧ + 2⌘�⇢⌘µ�k3
⌫k3

⌧ �
2⌘�⇢⌘µ⌫k3

�k3
⌧ +2⌘�⌫⌘µ⇢k3

�k3
⌧ +2⌘�µ⌘⌫⇢k3

�k3
⌧ � ⌘�⌧⌘µ�⌘⌫⇢k1 · k2 � ⌘��⌘µ⌧ ⌘⌫⇢k1 ·

k2 � ⌘�⌧⌘µ⇢⌘⌫�k1 · k2 + ⌘�⇢⌘µ⌧ ⌘⌫�k1 · k2 � ⌘��⌘µ⇢⌘⌫⌧k1 · k2 + ⌘�⇢⌘µ�⌘⌫⌧k1 · k2 +

2⌘�⌧⌘µ⌫⌘⇢�k1 · k2 � ⌘�⌫⌘µ⌧ ⌘⇢�k1 · k2 � ⌘�µ⌘⌫⌧⌘⇢�k1 · k2 + 2⌘��⌘µ⌫⌘⇢⌧k1 · k2 �
⌘�⌫⌘µ�⌘⇢⌧k1 · k2 � ⌘�µ⌘⌫�⌘⇢⌧k1 · k2 � 2⌘�⇢⌘µ⌫⌘�⌧k1 · k2 + 2⌘�⌫⌘µ⇢⌘�⌧k1 · k2 +

2⌘�µ⌘⌫⇢⌘�⌧k1 · k2 � ⌘�⌧⌘µ�⌘⌫⇢k1 · k3 � ⌘��⌘µ⌧ ⌘⌫⇢k1 · k3 � ⌘�⌧⌘µ⇢⌘⌫�k1 · k3 +

2⌘�⇢⌘µ⌧ ⌘⌫�k1 · k3 � ⌘��⌘µ⇢⌘⌫⌧k1 · k3 + 2⌘�⇢⌘µ�⌘⌫⌧k1 · k3 + 2⌘�⌧⌘µ⌫⌘⇢�k1 · k3 �
⌘�⌫⌘µ⌧ ⌘⇢�k1 · k3 � ⌘�µ⌘⌫⌧⌘⇢�k1 · k3 + 2⌘��⌘µ⌫⌘⇢⌧k1 · k3 � ⌘�⌫⌘µ�⌘⇢⌧k1 · k3 �
⌘�µ⌘⌫�⌘⇢⌧k1 · k3 � 2⌘�⇢⌘µ⌫⌘�⌧k1 · k3 + ⌘�⌫⌘µ⇢⌘�⌧k1 · k3 + ⌘�µ⌘⌫⇢⌘�⌧k1 · k3 �
⌘�⌧⌘µ�⌘⌫⇢k2 · k3 � ⌘��⌘µ⌧ ⌘⌫⇢k2 · k3 � ⌘�⌧⌘µ⇢⌘⌫�k2 · k3 + 2⌘�⇢⌘µ⌧ ⌘⌫�k2 · k3 �
⌘��⌘µ⇢⌘⌫⌧k2 · k3 + 2⌘�⇢⌘µ�⌘⌫⌧k2 · k3 + ⌘�⌧⌘µ⌫⌘⇢�k2 · k3 � ⌘�⌫⌘µ⌧ ⌘⇢�k2 · k3 �
⌘�µ⌘⌫⌧⌘⇢�k2 · k3 + ⌘��⌘µ⌫⌘⇢⌧k2 · k3 � ⌘�⌫⌘µ�⌘⇢⌧k2 · k3 � ⌘�µ⌘⌫�⌘⇢⌧k2 · k3 �
2⌘�⇢⌘µ⌫⌘�⌧k2 · k3 + 2⌘�⌫⌘µ⇢⌘�⌧k2 · k3 + 2⌘�µ⌘⌫⇢⌘�⌧k2 · k3

Off-shell three-graviton vertex:

�

�
⌧

171 terms

[DeWitt, 1967]

3

2

1

〈i j〉 = εαβλαi λ
β
j , [i j] = εα̇β̇λ

α
i λ

β
j

O(x) = tr(FαβF
βγψγAφBCψ̄Dα̇ . . .)

PSU(2, 2|4) α, α̇|A A = 1, 2, 3, 4

ε→ 0
∑

&

&− p1 − p2
1

$2($−p1−p2)2

&2 → 0(&− p1 − p2)2 → 0
1
$2
→ 2πδ(+)(&2)

−→
x
←−−−−−−−−
blahblahblah

g
−−−−−→

sii+1

F (1)
n =

∑n
i=1 pi pi+1 pi+2

F (2)
n =

∑n
i=1

(

X
X

)

→
(

X
X

) (

X
Y

)

→
(

X
Y

) (

X
Y

)

→
(

Y
X

)

{∆i, Cijk}

〈Oi(x)Oj(0)〉 = δij
(x2)∆i

〈Oi(x1)Oj(x2)Ok(x3)〉 =
Cijk

|x12|
αij |x23|

αjk |x31|αik
(αij = ∆i +∆j −∆k)

−µ
d

µ
Oi(0) = [D,Oi(0)] = HijOj(0)

f̃abc = i
√
2fabc = Tr([T a, T b]T c)

f̃abc = Tr([T a, T b]T c)

sij = (pi + pj)
2

δ3S

2

3-vertex 
more than 
100 terms

3 loops 

5 loops 

No surprise it has 
never been 
calculated via 
Feynman diagrams. 

More terms than 
atoms in your brain! 

~1020 
TERMS 

~1031   
TERMS 

Suppose we want to check UV properties of gravity theories: 

− Calculations to settle 
this seemed utterly 
hopeless! 

− Seemed destined for 
dustbin of undecidable 
questions. 

~1026   
TERMS 

4 loops 

Feynman Diagrams for Gravity 

Supersymmetry helps, but not enough to make a difference. 

3 loops 

5 loops 

No surprise it has 
never been 
calculated via 
Feynman diagrams. 

More terms than 
atoms in your brain! 

~1020 
TERMS 

~1031   
TERMS 

Suppose we want to check UV properties of gravity theories: 

− Calculations to settle 
this seemed utterly 
hopeless! 

− Seemed destined for 
dustbin of undecidable 
questions. 

~1026   
TERMS 

4 loops 

Feynman Diagrams for Gravity 

Supersymmetry helps, but not enough to make a difference. 

3 loops 

5 loops 

No surprise it has 
never been 
calculated via 
Feynman diagrams. 

More terms than 
atoms in your brain! 

~1020 
TERMS 

~1031   
TERMS 

Suppose we want to check UV properties of gravity theories: 

− Calculations to settle 
this seemed utterly 
hopeless! 

− Seemed destined for 
dustbin of undecidable 
questions. 

~1026   
TERMS 

4 loops 

Feynman Diagrams for Gravity 

Supersymmetry helps, but not enough to make a difference. 1031

5-loop

1026~      terms1020

3-loop 4-loop

More than the 
number of atoms 
in human’s brain!

~      terms ~      terms



By studying the simpler gauge theory, one may understand 
the far more complicated gravity theory.

CK-duality v.s. Double-copy

Duality
Color factor Kinematic factor

Gravity (Gauge theory)^2

(conjecture)

Double-copy

Within gauge theory



Still a conjecture at loop level, relying on explicit constructions:

• 4-loop 4-point amplitudes in N=4
• 5-loop Sudakov form factor in N=4
• 2-loop 5-point amplitudes in pure YM

Proved at tree-level:

G. Yang, 2016

Bern, et.al, 2012

O’Connell and Mogull 2015

• String Monodromy relation
• BCFW recursion

Bjerrum-Bohr et.al 2009;  Stieberger 2009

Feng, Huang, Jia 2010

It is usually non-trivial to find CK dual solution at high loops.

Color-kinematics duality



New 3-loop solutions
 for form factors

with 24 free parameters!

arXiv: 2106.05280  with Guanda Lin, Siyuan Zhang 



Three-loop form factors

We consider three-loop three-point form factor in N=4 SYM:

HHiggs boson @ LHC
The dominant production mechanism is the 
gluon fusion through a top quark loop.

p

p

g H
t

2. pT distribution of Higgs Bosons

At LO, the Higgs boson has no pT and a transverse momentum spectrum for the Higgs

is first generated by the process, gg ! gh, which is an NLO contribution to the gluon

fusion process[48]. As pT ! 0, the partonic cross section for Higgs plus jet production

diverges as 1/p2
T ,

d�̂

dt
(gg ! gh) = �̂0
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, (117)

where �̂0 is the LO gg ! h cross section given in Eq. 90, and s, t and u are the partonic

Mandelstam invariants. The pT spectrum for Higgs plus jet at LO is shown in Fig. 13,

where the contributions from the gg and qg, qg initial states are shown separately. Also

shown is the mt ! 1 limit of the spectrum that is derived from the e↵ective Lagrangian of

Eq. 97 . The e↵ective Lagrangian approximation fails around pT ⇠ 2mt. In this process,

there are several distinct momentum scales (pT , mh, mt), as opposed to gluon fusion where

there is only a single scale (mh/mt) at LO. The expansion in mh
mt

for gg ! gh receives

corrections of O( s
m2

t
,

p2
T

m2
t
) and for pT

>
⇠ 2mt, the EFT large top quark mass expansion

cannot be used to obtain reliable distributions.

NLO, NNLO, and N3LO radiative corrections to Higgs plus jet production have been

calculated[49–52] using the mt ! 1 approximation. The lowest order result of Eq. 117

is then reweighted by a K factor derived in the mt ! 1 limit for each kinematic bin.

The e↵ects of the higher order corrections are significant and increase the rate by a factor

of around 1.8 as shown in Fig. 14. The singularity of the LO result at pT = 0 is clearly

visible in Fig. 14 and we note that after the inclusion of the NLO corrections, the pT

spectrum no longer diverges as pT ! 0.

The terms which are singular as pT ! 0 can be isolated and the integrals performed

explicitly. Considering only the gg initial state[53],

d�

dp2
T dy

(pp ! gh) |p2
T!0⇠ �̂0
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◆
� 2�0

�
g(zey)g(ze�y) + ... (118)

where z ⌘ m2
h/S, �0 = (33 � 2nlf )/6, and nlf = 5 is the number of light flavors. Clearly

when pT << mh, the terms containing the logarithms resulting from soft gluon emission

can give a large numerical contribution. The logarithms of the form ↵n
s logm(m2

h/p
2
T ) can
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It is a N=4 version of Higgs+3-gluon amplitudes in QCD:
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1 Introduction

2 Setup

2.1 Effective Lagrangian

Higgs production from gluon fusion can be computed using an effective Lagrangian

Leff = Ĉ0Htr(F 2) +O

(

1

m2
t

)

, (2.1)

Leff = Ĉ0O0 +
1

m2
t

4
∑

i=1

ĈiOi +O

(

1

m4
t

)

, (2.2)

where O0 = Htr(F 2) is the leading term, and the subleading terms contain dimension-7

operators [1–5]

O1 = Htr(F ν
µ F ρ

ν F µ
ρ ) , (2.3)

O2 = Htr(DρFµνD
ρFµν) , (2.4)

O3 = Htr(DρFρµDσF
σµ) , (2.5)

O4 = Htr(FµρD
ρDσF

σµ) . (2.6)

– 1 –

ℱ𝒪i,n = ∫ d4x e−iq⋅x⟨p1, p2, p3 | tr(F2)(x) |0⟩



Three-loop form factors

We consider three-loop three-point form factor in N=4 SYM:

H
It is a N=4 version of Higgs+3-gluon amplitudes in QCD:

ℱ𝒪i,n = ∫ d4x e−iq⋅x⟨p1, p2, p3 | tr(F2)(x) |0⟩

N=4 SYM QCD

N=4 result provides the maximally transcendental part in QCD

Maximal transcendentality principle 
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CK-duality

Unitarity cuts

Ansatz of the 
loop integrand

Solving linear equations

Strategy of high-loop computation

Main challenge:  it is not clear whether the solution exists
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Figure 8. Trivalent topologies for three-loop three-point form factors of tr �
2 .
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Figure 9. Master diagrams for tr �
2 form factors.

(2) Jacobi relations and master numerators

Following steps mentioned in Section 2.1, we chooseN3, N4 as planar master numerators.

Actually, we cannot choose one planar or non-planar numerator as master numerator

in this tr �
2 case. Therefore, the current choice already has the smallest number of

master numerators and meanwhile shows the simplicity due to planarity.

– 9 –

Ansatz
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(2) Jacobi relations and master numerators

Following steps mentioned in Section 2.1, we chooseN3, N4 as planar master numerators.

Actually, we cannot choose one planar or non-planar numerator as master numerator

in this tr �
2 case. Therefore, the current choice already has the smallest number of

master numerators and meanwhile shows the simplicity due to planarity.
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2 master integrals

Ns + Nt + Nu = 0

Ansatz

2

s
1

2

4

3
t

1

2 3

4
u

1 4

2 3

FIG. 1. Trivalent graphs for four-point tree amplitudes.

REVIEW AND STRATEGY

Before discussing three-loop form factors, we briefly re-
view the color-kinematics duality, and an instructive ex-
ample is the four-gluon tree amplitude. It is always pos-
sible to represent the amplitude in terms of three cubic
graphs shown in Fig. 1,

A(0)
4 =

CsNs

s
+

CtNt

t
+

CuNu

u
, (2)

where Ci are color factors as products of structure con-
stants f̃abc for each trivalent vertex, andNi are kinematic
numerators that contain physical information. The color-
kinematics duality requires that the numerators should
satisfy the Jacobi relation of color factors as [1]

Cs = Ct + Cu ) Ns = Nt +Nu . (3)

As shown in Fig. 2, each internal propagator (not di-
rectly connected to the q-leg) is associated to a four-point
tree sub-graph, and loop integrals that contain s, t, u-
channel sub graphs are related by color Jacobi relation.
CK duality asks that their numerators also satisfy the
same Jacobi relations as (3). Because of the duality re-
lation applies to multiple number of propagators, the
numerators of di↵erent topologies are interlocked with
each other, and the CK-dual integrand is thus highly
constrained.

Due to color Jacobi relation, one can make a deforma-
tion of the numerator without changing the amplitude
result:

Ns ! Ns+s�, Nt ! Nt� t�, Nu ! Nu�u� , (4)

which is called a generalized gauge transformation (GT)
[2].

Before discuss the details of the construction, we
present the final form of the CK-dual integrand of 3-loop
3-point form factors:

F (3)
O2,3

= F
(0)
O2,3

X

�3

X

i

Z 3Y

j=1

d
D
`j

1

Si

Ci NiQ
↵i

P 2
↵i

, (5)

where sum over �3 is due to the permutation of external
on-shell momenta pi, i = 1, 2, 3. The symmetry factors
Si remove the overcounts from the automorphism sym-
metries of the graphs.

ts ua

b

d

c

a

b c

d
a d

b c

FIG. 2. Loop graphs related by Jacobi relation.

FIG. 3. Trivalent topologies for the form factor of tr(�2).

CK-DUAL SOLUTIONS

Now we construct the full-color three-loop integrands for
the three-point form factors. First we consider the form
factor of of the stress-tensor supermultiplet, which, with-
out loss of generality, can be simply chosen as tr(�2).

Three-loop form factor of tr(�2)

The first step is to construct an ansatz based on the
CK duality. There are 29 trivalent topologies to con-
sider, as given in Fig. 3. Using Jacobi relations, one can
choose two planar topologies as master integrals, which
are shown in Fig. 4.
Master graphs and zone-variable labeling of master nu-

merators has been listed in Figure. 4. The nice UV be-
havior provides constraint on the power-counting of loop
momenta. For N3, xa, xc can appear at most once, so
both (x2

ai)
1
, (x2

ci)
1, with i = 1, 2, 3, 4, and (x2

ac)
1 are al-

lowed; any term containing xb or containing more than
one xa or xc, such as (x2

ac)
1
, (x2

a0)
1 are forbidden. For

N2, only xb can appear and can appear at most twice, so
only x

2
bi can appear and can appear with power 2, 1, 0.

The total number of parameters are 316.
Given the ansatz, we now apply various constraints

to solve the parameters in the ansatz. We first demand
that each numerator respects the automorphism symme-
tries of the graph. With this only 105 parameters is
obtained. One can see that the symmetries provide a
strong constraint and can substantially reduce the num-
ber of parameters. Next we apply unitarity cut to solve
the remaining parameters. Since the total number of
these parameters is reasonably small (only about 100),
one can directly utilize the most constraining cuts, i.e.
the quadruple cuts in Fig. 5. With these two cuts, there
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(2) Jacobi relations and master numerators

Following steps mentioned in Section 2.1, we chooseN3, N4 as planar master numerators.

Actually, we cannot choose one planar or non-planar numerator as master numerator

in this tr �
2 case. Therefore, the current choice already has the smallest number of

master numerators and meanwhile shows the simplicity due to planarity.
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And ansatz with 316 parameters

Ns + Nt + Nu = 0

Ansatz

4

F (3)
O2,3

= F
(0)
O2,3

X

�3

X

i

Z 3Y

j=1

d
D
`j

1

Si

Ci NiQ
↵i

P 2
↵i

, (8)

The planar loop corrections take the BDS ansatz form:

I
(3)(✏) =�

1

3

�
I
(1)(✏)

�3
+ I

(2)(✏)I(1)(✏) + f
(3)(✏)I(1)(3✏)

+R
(3) + C

(3) +O(✏) , (9)

where

f
(3)(✏) = 4

✓
11

2
⇣4 + (6⇣5 + 5⇣2⇣3)✏+ (c1⇣6 + c2⇣

2
3 )✏

2

◆
,

with (c1⇣6 + c2⇣
2
3 ) = 85.263± 0.004 , (10)

see [38]. The constant C(3) for the form factor of O2 is
defined by requiring that it is independent of the num-
ber of external legs and the so-defined remainder satisfies

R
(3)
n ! R

(3)
n�1 in the collinear limit. Concretely, one can

fix the constant using the three-loop Sudakov result [39]:

R
(3)
O2,2

= 0 ) C
(3)
O2

= �38.252± 0.004 . (11)

For O3, it is tricky to define the collinear limit of the

minimal form factor so we just take C
(3)
O3

= 0. Further-
more, the planar remainders R can be obtained by the
OPE bootstrap method [24]. As a result, one can pre-
dict the planar form factors from ✏

�6 to ✏
0. For example,

the three-loop form factor of tr(�2) at kinematic point
s12 = s23 = s13 at the finite order is to be corrected:

I
(3)
O2

��
✏0

= �160.308± 0.006 . (12)

[to compare with Table, or put our number here]
As for the non-planar correction, the IR subtraction

can also be predicted. The full-color three-loop IR diver-
gence can be factorized out as

F (pi, ai, ✏) = Z (pi, ✏)F
fin(pi, ai, ✏) , (13)

where Z takes the form [40]

Z = P exp

"
�

1X

`=1

g
2`

✓
dipole terms +

1

`✏
�(`)

◆#
, (14)

where the dipole terms can be completely fixed by cusp
and collinear anomalous dimensions and contribute only
to the planar three-point form factors. The � terms rep-
resent the non-dipole contributions starting from three-
loop order [41] and result only in the subleading contri-
butions in our problems. For three-point form factors,
because of the small number of external lines, one only
needs to consider

�(3)
3 = ↵

X

i

X

j<k,j,k 6=i

f̃abef̃cde(T
a
iT

d
i +Td

iT
a
i )T

b
jT

c
k ,

(15)

where ↵ = �(⇣5 + 2⇣2⇣3) [sign] and the color operators
act as Ta5

1 T
a1 =

p
2fa5a1a6T

a6 . Consequently, the non-

planar correction I
(3)
O2,NP should have only ✏

�1 divergence
with coe�cients

I
(3)
O2,NP

���
✏�1

= � (⇣5 + 2⇣2⇣3) . (16)

We present the numerical result for planar form factors
in Tab. I, using the packages of FIESTA [] and pySecDec
[], and emphasis that it is consistent with the aforemen-
tioned predictions considering the numerical errors. For
the non-planar form factors, the IR subtraction check is
also passed.

DISCUSSION

We construct for the first time the full-color three-loop
form factor results in N = 4 SYM based on the the color-
kinematics duality. The results pass non-trivial unitarity
checks and have consistent IR divergences. These results
are expected to give the maximally transcendental parts
of the three-loop QCD corrections to Higgs plus three-
gluon amplitudes which have phenomenological interests.
Theoretically, the most surprising finding is that the

CK-dual representations contain a large number of free
parameters, considering that it is usually not easy to find
CK-dual solutions. The appearance of large number of
free parameters suggests that the form factor type quan-
tities may be an ideal arena for applying color-kinematics
duality. [Emphasize non-planar] It is possible to general-
ize the result to higher loops.
The existence of free parameters should be related to

the so-called generalized gauge transformation as men-
tioned in (16). While for loop amplitudes the general-
ized GT usually breaks CK duality, a new feature of form
factor comes from the insertion of color-singlet operator.
This makes it possible that di↵erent topologies have same
color factor, providing color relations which are beyond
the Jacobi relations.
A simpler example to consider is the 2-loop 3-point

form factor. A review of the construction shows that the
2-loop CK-dual representation satisfying minimal power-
counting still contains 4 free parameters. Consider the
graphs in Fig. 8, the first two graphs have same color
factor Ca = Cb. This induces a new type of generalized
GT beyond Jacobi relations:

Na ! Na+ `
2
A�, Nb ! Nb� `

2
B�, with any �, (17)

which leaves the integrand unchanged

Ca Ia[`
2
A�]� Cb Ib[`

2
B�] = �(Ca � Cb) Ic[1] = 0 , (18)

here Ia,b,c are integrals corresponding to the topologies in
Fig. 8. We find that the cancellation of free parameters
must involve such relations.
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FIG. 1. Trivalent graphs for four-point tree amplitudes.

REVIEW AND STRATEGY

Before discussing three-loop form factors, we briefly re-
view the color-kinematics duality, and an instructive ex-
ample is the four-gluon tree amplitude. It is always pos-
sible to represent the amplitude in terms of three cubic
graphs shown in Fig. 1,

A(0)
4 =

CsNs

s
+

CtNt

t
+

CuNu

u
, (2)

where Ci are color factors as products of structure con-
stants f̃abc for each trivalent vertex, andNi are kinematic
numerators that contain physical information. The color-
kinematics duality requires that the numerators should
satisfy the Jacobi relation of color factors as [1]

Cs = Ct + Cu ) Ns = Nt +Nu . (3)

As shown in Fig. 2, each internal propagator (not di-
rectly connected to the q-leg) is associated to a four-point
tree sub-graph, and loop integrals that contain s, t, u-
channel sub graphs are related by color Jacobi relation.
CK duality asks that their numerators also satisfy the
same Jacobi relations as (3). Because of the duality re-
lation applies to multiple number of propagators, the
numerators of di↵erent topologies are interlocked with
each other, and the CK-dual integrand is thus highly
constrained.

Due to color Jacobi relation, one can make a deforma-
tion of the numerator without changing the amplitude
result:

Ns ! Ns+s�, Nt ! Nt� t�, Nu ! Nu�u� , (4)

which is called a generalized gauge transformation (GT)
[2].

Before discuss the details of the construction, we
present the final form of the CK-dual integrand of 3-loop
3-point form factors:

F (3)
O2,3

= F
(0)
O2,3

X

�3

X

i

Z 3Y

j=1

d
D
`j

1

Si

Ci NiQ
↵i

P 2
↵i

, (5)

where sum over �3 is due to the permutation of external
on-shell momenta pi, i = 1, 2, 3. The symmetry factors
Si remove the overcounts from the automorphism sym-
metries of the graphs.

ts ua

b

d

c

a

b c

d
a d

b c

FIG. 2. Loop graphs related by Jacobi relation.

FIG. 3. Trivalent topologies for the form factor of tr(�2).

CK-DUAL SOLUTIONS

Now we construct the full-color three-loop integrands for
the three-point form factors. First we consider the form
factor of of the stress-tensor supermultiplet, which, with-
out loss of generality, can be simply chosen as tr(�2).

Three-loop form factor of tr(�2)

The first step is to construct an ansatz based on the
CK duality. There are 29 trivalent topologies to con-
sider, as given in Fig. 3. Using Jacobi relations, one can
choose two planar topologies as master integrals, which
are shown in Fig. 4.
Master graphs and zone-variable labeling of master nu-

merators has been listed in Figure. 4. The nice UV be-
havior provides constraint on the power-counting of loop
momenta. For N3, xa, xc can appear at most once, so
both (x2

ai)
1
, (x2

ci)
1, with i = 1, 2, 3, 4, and (x2

ac)
1 are al-

lowed; any term containing xb or containing more than
one xa or xc, such as (x2

ac)
1
, (x2

a0)
1 are forbidden. For

N2, only xb can appear and can appear at most twice, so
only x

2
bi can appear and can appear with power 2, 1, 0.

The total number of parameters are 316.
Given the ansatz, we now apply various constraints

to solve the parameters in the ansatz. We first demand
that each numerator respects the automorphism symme-
tries of the graph. With this only 105 parameters is
obtained. One can see that the symmetries provide a
strong constraint and can substantially reduce the num-
ber of parameters. Next we apply unitarity cut to solve
the remaining parameters. Since the total number of
these parameters is reasonably small (only about 100),
one can directly utilize the most constraining cuts, i.e.
the quadruple cuts in Fig. 5. With these two cuts, there
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Figure 8. Trivalent topologies for three-loop three-point form factors of tr �
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2 form factors.

(2) Jacobi relations and master numerators

Following steps mentioned in Section 2.1, we chooseN3, N4 as planar master numerators.

Actually, we cannot choose one planar or non-planar numerator as master numerator

in this tr �
2 case. Therefore, the current choice already has the smallest number of

master numerators and meanwhile shows the simplicity due to planarity.
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Final solution with 24 free parameters

Solving ansatz

F
(0)
O,4 A

(0)
7

l1
l2

l3
l4

p1

p2

p3

(a) Cut1: F4-A7 cut
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(b) Cut2: F5-A6 cut

Figure 7. Quadruple cuts for three-loop three-point form factors

Cut2 :
4

i 1

d⌘li
4

F
0 ,MHV

O,5 l1, l2, l3, l4, p3 A
0 ,NNMHV

6
p1, p2, l4, l3, l2, l1

F
0 ,NMHV

O,5 l1, l2, l3, l4, p3 A
0 ,NMHV

6
p1, p2, l4, l3, l2, l1

F
0 ,NNMHV

O,5 l1, l2, l3, l4, p3 A
0 ,MHV

6
p1, p2, l4, l3, l2, l1 .

(2.13)

The MHV tree level amplitudes are standard Parke-Taylor form [14], and form factors, for

O tr �
2
, tr �

3 , take simple Parke-Taylor like form and can be found in, e.g., [15]. As

for the NkMHV amplitudes and form factors, they can be computed via BCFW on-shell

recursion [16] or CSW vertex expansion [17] methods. Using these methods, tree products

can be computed numerically to very high precision.

The RHS in (2.8) has been discussed above, while the LHS typically involves diagrams

with total number n O 100 . Thus, the two sides in (2.8) are both very complicated and

their equivalence provides a very strong check of the correctness of CK-integrands.

Other cuts

Explain the non-planar cuts.

Comments on D-dimensional cut checks.

3 Three-loop Three-point Integrands in CK-representation

3.1 Three-loop three-point form factor of tr �
2

In this section, we construct the full color three-loop integrand for the three-point form factor

of the stress-tensor supermultiplet. For simplicity, we will choose tr �
2 to get the correction

part without loss of generality.

CK ansatz

(1) Trivalent topologies

With the topology selection rules described in Section 2.1, there are 29 topologies pos-

sibly contribute, illustrated as (1)–(29) in Figure. 8, numerators of which are denoted

as N1, , N29 respectively in this subsection. Z: @Guanda,

sth added

here.
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Most complicated cuts

Solve ansatz：
Symmetry constraints 
and Unitarity cuts

4

F (3)
O2,3

= F
(0)
O2,3

X

�3

X

i

Z 3Y

j=1

d
D
`j

1

Si

Ci NiQ
↵i

P 2
↵i

, (8)

The planar loop corrections take the BDS ansatz form:

I
(3)(✏) =�

1

3

�
I
(1)(✏)

�3
+ I

(2)(✏)I(1)(✏) + f
(3)(✏)I(1)(3✏)

+R
(3) + C

(3) +O(✏) , (9)

where

f
(3)(✏) = 4

✓
11

2
⇣4 + (6⇣5 + 5⇣2⇣3)✏+ (c1⇣6 + c2⇣

2
3 )✏

2

◆
,

with (c1⇣6 + c2⇣
2
3 ) = 85.263± 0.004 , (10)

see [38]. The constant C(3) for the form factor of O2 is
defined by requiring that it is independent of the num-
ber of external legs and the so-defined remainder satisfies

R
(3)
n ! R

(3)
n�1 in the collinear limit. Concretely, one can

fix the constant using the three-loop Sudakov result [39]:

R
(3)
O2,2

= 0 ) C
(3)
O2

= �38.252± 0.004 . (11)

For O3, it is tricky to define the collinear limit of the

minimal form factor so we just take C
(3)
O3

= 0. Further-
more, the planar remainders R can be obtained by the
OPE bootstrap method [24]. As a result, one can pre-
dict the planar form factors from ✏

�6 to ✏
0. For example,

the three-loop form factor of tr(�2) at kinematic point
s12 = s23 = s13 at the finite order is to be corrected:

I
(3)
O2

��
✏0

= �160.308± 0.006 . (12)

[to compare with Table, or put our number here]
As for the non-planar correction, the IR subtraction

can also be predicted. The full-color three-loop IR diver-
gence can be factorized out as

F (pi, ai, ✏) = Z (pi, ✏)F
fin(pi, ai, ✏) , (13)

where Z takes the form [40]

Z = P exp

"
�

1X

`=1

g
2`

✓
dipole terms +

1

`✏
�(`)

◆#
, (14)

where the dipole terms can be completely fixed by cusp
and collinear anomalous dimensions and contribute only
to the planar three-point form factors. The � terms rep-
resent the non-dipole contributions starting from three-
loop order [41] and result only in the subleading contri-
butions in our problems. For three-point form factors,
because of the small number of external lines, one only
needs to consider

�(3)
3 = ↵

X

i

X

j<k,j,k 6=i

f̃abef̃cde(T
a
iT

d
i +Td

iT
a
i )T

b
jT

c
k ,

(15)

where ↵ = �(⇣5 + 2⇣2⇣3) [sign] and the color operators
act as Ta5

1 T
a1 =

p
2fa5a1a6T

a6 . Consequently, the non-

planar correction I
(3)
O2,NP should have only ✏

�1 divergence
with coe�cients

I
(3)
O2,NP

���
✏�1

= � (⇣5 + 2⇣2⇣3) . (16)

We present the numerical result for planar form factors
in Tab. I, using the packages of FIESTA [] and pySecDec
[], and emphasis that it is consistent with the aforemen-
tioned predictions considering the numerical errors. For
the non-planar form factors, the IR subtraction check is
also passed.

DISCUSSION

We construct for the first time the full-color three-loop
form factor results in N = 4 SYM based on the the color-
kinematics duality. The results pass non-trivial unitarity
checks and have consistent IR divergences. These results
are expected to give the maximally transcendental parts
of the three-loop QCD corrections to Higgs plus three-
gluon amplitudes which have phenomenological interests.
Theoretically, the most surprising finding is that the

CK-dual representations contain a large number of free
parameters, considering that it is usually not easy to find
CK-dual solutions. The appearance of large number of
free parameters suggests that the form factor type quan-
tities may be an ideal arena for applying color-kinematics
duality. [Emphasize non-planar] It is possible to general-
ize the result to higher loops.
The existence of free parameters should be related to

the so-called generalized gauge transformation as men-
tioned in (16). While for loop amplitudes the general-
ized GT usually breaks CK duality, a new feature of form
factor comes from the insertion of color-singlet operator.
This makes it possible that di↵erent topologies have same
color factor, providing color relations which are beyond
the Jacobi relations.
A simpler example to consider is the 2-loop 3-point

form factor. A review of the construction shows that the
2-loop CK-dual representation satisfying minimal power-
counting still contains 4 free parameters. Consider the
graphs in Fig. 8, the first two graphs have same color
factor Ca = Cb. This induces a new type of generalized
GT beyond Jacobi relations:

Na ! Na+ `
2
A�, Nb ! Nb� `

2
B�, with any �, (17)

which leaves the integrand unchanged

Ca Ia[`
2
A�]� Cb Ib[`

2
B�] = �(Ca � Cb) Ic[1] = 0 , (18)

here Ia,b,c are integrals corresponding to the topologies in
Fig. 8. We find that the cancellation of free parameters
must involve such relations.



Integration and checks
All free parameters cancel at integrand level.
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FIG. 4. Master diagrams for tr(�2) form factor.
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FIG. 5. Quadruple cuts for 3-loop 3-point form factors.

are still 24 parameters remains unsolved. Finally, we
check whether all the CK duality equations and unitar-
ity cuts are satisfied, and we find the solution with 24
free parameters pass all these checks.

Explicit expressions of the numerators Ni, color fac-
tors Ci, symmetry factors Si and propagator lists P↵i

are given in the ancillary files.

Three-loop form factor of tr(�3)

We further present the full color three-loop integrand for
the form factor of tr(�3). Since the computational pro-
cedure is similar to the previous form factor, we will only
briefly summarize the main result.

There are 26 topologies possibly contribute as listed in
Fig. 6. One can choose the four planar topologies, three
of them are of range-3 and the last one is range-2 as
shown in Fig. 7, as master numerators, and the minimal
ansatz expressed with zone variables is made. Based on
the rung rule [37], it is possible to determine the terms
which do not proportional to any propagators and the
total number of parameters, associated with terms in-
volving propagators, is 273.

As for solving the ansatz, the symmetries of all the
diagrams as well as all the dual Jacobi relations are em-
ployed to reduce the number of parameters to only 26.
The two planar quadruple cuts fix 16 more parameters.
We have checked that no further constraints come from
other cuts. The final solution contains 10 free parame-
ters, with various factors provided in the ancillary files.

INTEGRATION AND CHECKS

Having the full integrands that depend on free parame-
ters, one may ask at which level do the parameters can-
cel. It turns out that they cancel simply at the integrand
level. To be more precise, the free parameters are all as-
sociated to terms that are proportional to certain prop-

FIG. 6. Trivalent topologies for the form factor of tr(�3).
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FIG. 7. Master diagrams for tr(�3) form factor.

agators. A detailed study reveals that the cancellation
of the free parameters always involves several trivalent
graphs, which after shrinking corresponding propagators
produce the same topology. Such a freedom should be
related to the generalized gauge transformation similar
to (16), and we will come back to this in the discussion
section.

Then we can compare our numerical results with the
above predictions to guarantee the correctness of our
results. Our numerical results are obtained using the
packages FIESTA [] and pySecDec [], and we emphasis
that the numerical integration for non-planar integrals
are highly involved so that we need to organize the inte-
grand according to dlog integrals to make the numerical
evaluation more e�cient. We present or not the results in
Table and stress that they are consistent with the afore-
mentioned predictions considering the numerical errors.
For further details and discussions on the numerics, see
[](long paper). [moved here]

After cancelling the parameters, the simplified inte-
grands are suitable for further integral reductions or nu-
merical computations. Since the analytic expressions
of three-loop master integrals are not yet available, we
choose to perform a numerical computation. This allow
us to check the IR divergences and also extract the in-
formation of finite remainder function.

It is convenient to organize the ful-color results with
Nc expansion. We find that the form factor of tr(�3) has
only planar contribution, while that of tr(�2) contains
non-planar corrections:

F (3)
O2,3

= F
(0)
O2,3

f123

�
N

3
c I

(3)
O2

+ 12NcI
(3)
O2,NP

�
, (6)

F (3)
O3,3

= F
(0)
O3,3

d123N
3
c I

(3)
O3

. (7)

Color decomposition:
4

F (3)
O2,3

= F
(0)
O2,3

X

�3

X

i

Z 3Y

j=1

d
D
`j

1

Si

Ci NiQ
↵i

P 2
↵i

, (8)

The planar loop corrections take the BDS ansatz form:

I
(3)(✏) =�

1

3

�
I
(1)(✏)

�3
+ I

(2)(✏)I(1)(✏) + f
(3)(✏)I(1)(3✏)

+R
(3) + C

(3) +O(✏) , (9)

where

f
(3)(✏) = 4

✓
11

2
⇣4 + (6⇣5 + 5⇣2⇣3)✏+ (c1⇣6 + c2⇣

2
3 )✏

2

◆
,

with (c1⇣6 + c2⇣
2
3 ) = 85.263± 0.004 , (10)

see [38]. The constant C(3) for the form factor of O2 is
defined by requiring that it is independent of the num-
ber of external legs and the so-defined remainder satisfies

R
(3)
n ! R

(3)
n�1 in the collinear limit. Concretely, one can

fix the constant using the three-loop Sudakov result [39]:

R
(3)
O2,2

= 0 ) C
(3)
O2

= �38.252± 0.004 . (11)

For O3, it is tricky to define the collinear limit of the

minimal form factor so we just take C
(3)
O3

= 0. Further-
more, the planar remainders R can be obtained by the
OPE bootstrap method [24]. As a result, one can pre-
dict the planar form factors from ✏

�6 to ✏
0. For example,

the three-loop form factor of tr(�2) at kinematic point
s12 = s23 = s13 at the finite order is to be corrected:

I
(3)
O2

��
✏0

= �160.308± 0.006 . (12)

[to compare with Table, or put our number here]
As for the non-planar correction, the IR subtraction

can also be predicted. The full-color three-loop IR diver-
gence can be factorized out as

F (pi, ai, ✏) = Z (pi, ✏)F
fin(pi, ai, ✏) , (13)

where Z takes the form [40]

Z = P exp

"
�

1X

`=1

g
2`

✓
dipole terms +

1

`✏
�(`)

◆#
, (14)

where the dipole terms can be completely fixed by cusp
and collinear anomalous dimensions and contribute only
to the planar three-point form factors. The � terms rep-
resent the non-dipole contributions starting from three-
loop order [41] and result only in the subleading contri-
butions in our problems. For three-point form factors,
because of the small number of external lines, one only
needs to consider

�(3)
3 = ↵

X

i

X

j<k,j,k 6=i

f̃abef̃cde(T
a
iT

d
i +Td

iT
a
i )T

b
jT

c
k ,

(15)

where ↵ = �(⇣5 + 2⇣2⇣3) [sign] and the color operators
act as Ta5

1 T
a1 =

p
2fa5a1a6T

a6 . Consequently, the non-

planar correction I
(3)
O2,NP should have only ✏

�1 divergence
with coe�cients

I
(3)
O2,NP

���
✏�1

= � (⇣5 + 2⇣2⇣3) . (16)

We present the numerical result for planar form factors
in Tab. I, using the packages of FIESTA [] and pySecDec
[], and emphasis that it is consistent with the aforemen-
tioned predictions considering the numerical errors. For
the non-planar form factors, the IR subtraction check is
also passed.

DISCUSSION

We construct for the first time the full-color three-loop
form factor results in N = 4 SYM based on the the color-
kinematics duality. The results pass non-trivial unitarity
checks and have consistent IR divergences. These results
are expected to give the maximally transcendental parts
of the three-loop QCD corrections to Higgs plus three-
gluon amplitudes which have phenomenological interests.
Theoretically, the most surprising finding is that the

CK-dual representations contain a large number of free
parameters, considering that it is usually not easy to find
CK-dual solutions. The appearance of large number of
free parameters suggests that the form factor type quan-
tities may be an ideal arena for applying color-kinematics
duality. [Emphasize non-planar] It is possible to general-
ize the result to higher loops.
The existence of free parameters should be related to

the so-called generalized gauge transformation as men-
tioned in (16). While for loop amplitudes the general-
ized GT usually breaks CK duality, a new feature of form
factor comes from the insertion of color-singlet operator.
This makes it possible that di↵erent topologies have same
color factor, providing color relations which are beyond
the Jacobi relations.
A simpler example to consider is the 2-loop 3-point

form factor. A review of the construction shows that the
2-loop CK-dual representation satisfying minimal power-
counting still contains 4 free parameters. Consider the
graphs in Fig. 8, the first two graphs have same color
factor Ca = Cb. This induces a new type of generalized
GT beyond Jacobi relations:

Na ! Na+ `
2
A�, Nb ! Nb� `

2
B�, with any �, (17)

which leaves the integrand unchanged

Ca Ia[`
2
A�]� Cb Ib[`

2
B�] = �(Ca � Cb) Ic[1] = 0 , (18)

here Ia,b,c are integrals corresponding to the topologies in
Fig. 8. We find that the cancellation of free parameters
must involve such relations.
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are still 24 parameters remains unsolved. Finally, we
check whether all the CK duality equations and unitar-
ity cuts are satisfied, and we find the solution with 24
free parameters pass all these checks.

Explicit expressions of the numerators Ni, color fac-
tors Ci, symmetry factors Si and propagator lists P↵i

are given in the ancillary files.

Three-loop form factor of tr(�3)

We further present the full color three-loop integrand for
the form factor of tr(�3). Since the computational pro-
cedure is similar to the previous form factor, we will only
briefly summarize the main result.

There are 26 topologies possibly contribute as listed in
Fig. 6. One can choose the four planar topologies, three
of them are of range-3 and the last one is range-2 as
shown in Fig. 7, as master numerators, and the minimal
ansatz expressed with zone variables is made. Based on
the rung rule [37], it is possible to determine the terms
which do not proportional to any propagators and the
total number of parameters, associated with terms in-
volving propagators, is 273.

As for solving the ansatz, the symmetries of all the
diagrams as well as all the dual Jacobi relations are em-
ployed to reduce the number of parameters to only 26.
The two planar quadruple cuts fix 16 more parameters.
We have checked that no further constraints come from
other cuts. The final solution contains 10 free parame-
ters, with various factors provided in the ancillary files.

INTEGRATION AND CHECKS

Having the full integrands that depend on free parame-
ters, one may ask at which level do the parameters can-
cel. It turns out that they cancel simply at the integrand
level. To be more precise, the free parameters are all as-
sociated to terms that are proportional to certain prop-

FIG. 6. Trivalent topologies for the form factor of tr(�3).
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agators. A detailed study reveals that the cancellation
of the free parameters always involves several trivalent
graphs, which after shrinking corresponding propagators
produce the same topology. Such a freedom should be
related to the generalized gauge transformation similar
to (16), and we will come back to this in the discussion
section.

Then we can compare our numerical results with the
above predictions to guarantee the correctness of our
results. Our numerical results are obtained using the
packages FIESTA [] and pySecDec [], and we emphasis
that the numerical integration for non-planar integrals
are highly involved so that we need to organize the inte-
grand according to dlog integrals to make the numerical
evaluation more e�cient. We present or not the results in
Table and stress that they are consistent with the afore-
mentioned predictions considering the numerical errors.
For further details and discussions on the numerics, see
[](long paper). [moved here]

After cancelling the parameters, the simplified inte-
grands are suitable for further integral reductions or nu-
merical computations. Since the analytic expressions
of three-loop master integrals are not yet available, we
choose to perform a numerical computation. This allow
us to check the IR divergences and also extract the in-
formation of finite remainder function.

It is convenient to organize the ful-color results with
Nc expansion. We find that the form factor of tr(�3) has
only planar contribution, while that of tr(�2) contains
non-planar corrections:

F (3)
O2,3

= F
(0)
O2,3

f123

�
N

3
c I

(3)
O2

+ 12NcI
(3)
O2,NP

�
, (6)

F (3)
O3,3

= F
(0)
O3,3

d123N
3
c I

(3)
O3

. (7)

The three-loop case

Still, we discuss the BDS form first. The three-loop BDS ansatz is

I
p3qp✏q “ ´1

3

´
I

p1qp✏q
¯
3

` I
p2qp✏qIp1qp✏q ` f p3qp✏qIp1qp3✏q ` R

p3q ` Cp3q ` Op✏q , (5.18)

where

f p3qp✏q “ 4

ˆ
11

2
⇣4 ` p6⇣5 ` 5⇣2⇣3q✏ ` pc1⇣6 ` c2⇣

2

3 q✏2
˙

, (5.19)

and Cp3q is a pure number, similar to the Cp2q discussed above. The accurate expression for

c1,2 in f p3q is still unknown, as well as Cp3q. Although these numbers only shift R
p3q by a

pure number, we still need to their value to compare our remainders with results obtained

from other methods. Fortunately, f p3q have been calculated numerically by the three-loop

splitting function rp3q
S p✏q in[68], which obeys

rp3q
S “ ´1

3

`
rp1q
S p✏q

˘
3 ` rp1q

S p✏qrp2q
S p✏q ` f p3qp✏qrp1q

S p3✏q ` Op✏q , (5.20)

giving

X “ pc1⇣6 ` c2⇣
2

3 q “ 85.263 ˘ 0.004 . (5.21)

Since Cp3q is independent of the number of external legs, we can fix it by using the three-loop

Sudakov result [69]11:

R
p3q
2

“ 0 ñ 11⇡6

270
´ 8

9
X ` Cp3q “ 8

ˆ
´13

9
⇣23 ´ 193⇡6

25515

˙
, (5.22)

leading to

Cp3q “ ´38.252 ˘ 0.004 . (5.23)

We make a comment that for the minimal form factor of trp�3q, the collinear limit is somewhat

subtle. So in this case, we use a BDS ansatz without Cp3q.
Then we move on to the full-color IR structure. The g6 order of (5.3) reads

F p3q,div “ ´ 1

6
D3

1F
p0q ` 1

2
D2

1F
p1q,fin ´ D1F

p2q,fin ` 1

2
pD2D1 ` D1D2qF p0q

´ D2F
p1q,fin ´ D3F

p0q ´ 1

3✏
�p3qF p0q ` F p3q,fin

(5.24)

where D` is the `-loop dipole part. For three point form factors, the �p3q is actually the only

possible subleading contributions, as will be clarified now. Some new cusp and anomalous

dimensions are introduced at three-loop order

�p3q
cusp “ 22⇣4, G

p3q
coll

“ 8⇣5 ` 20

3
⇣2⇣3 (5.25)

11
We comment that f p3q

for form factors and amplitudes are the same (up to overall normalization) but

Cp3q
can be di↵erent. Given the same f p3q

, the di↵erence between Cp3q
for form factors and amplitudes is

equivalent to the di↵erence between the remainders (defined via a BDS form without Cp3q
) of Sudakov form

factors and four point amplitudes, which in general does not vanish.
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Planar part is given by the BDS ansatz: Bern, Dixon, Smirnov 2005

Three-loop IR divergences provide important check, 
(which are also a research frontier).
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Integral examples

~100,000 CPU core hours

Smirnov 2015
FIESTA

Borowka et.al 2017

pySecDec

Dixon, McLoed, Wilhelm 2020

Table 4. Numerical results for three-point form factor

Form factor I
p3q
trp�2q

ps12, s23, s13q ✏´6 ✏´5 ✏´4 ✏´3 ✏´2 ✏´1 ✏0

(-2,-2,-2) ´4.49999 9.35749 ´22.6136 55.8891 ´77.252 92.943 ´336.51

est. error 6 ˆ 10´7 2.3 ˆ 10´5 3.3 ˆ 10´4 0.0021 0.012 0.078 0.59

Form factor I
p3q
trp�3q

ps12, s23, s13q ✏´6 ✏´5 ✏´4 ✏´3 ✏´2 ✏´1 ✏0

(-2,-2,-2) 4.5 -9.35749 6.0280 -31.503 -19.56 -123.58 -216.7

est. error 2 ˆ 10´13 1 ˆ 10´6 2 ˆ 10´5 3 ˆ 10´4 0.002 0.02 0.4

Form factor I
p3q
trp�2q,NP

ps12, s23, s13q ✏´6 ✏´5 ✏´4 ✏´3 ✏´2 ✏´1 ✏0

(-2,-2,-2) ´2.3 ˆ 10´7 5.8 ˆ 10´6 3.8 ˆ 10´5 5.6 ˆ 10´4 ´0.001 ´9.989 ´265.314

est. error 1.2 ˆ 10´6 2.4 ˆ 10´5 3.0 ˆ 10´4 2.5 ˆ 10´3 0.02 0.1848 1.757

6.3 Numerical results and checks

After conquering the di�culties in numerical evaluations, we reach the high-precision numer-

ical results given in Table. 4. To get this result, it still requires large computing resources:

we have used for example billions of sampling points per integral in FIESTA evaluations and

Op106q CPU core hours in total.

Given these results, we can check with known results and structures.

At Nc-leading order, we compare the divergent part our result with the BDS ansatz,

which requires high order of ✏-expansion of Ip`q with ` “ 1, 2. Concretely, to get Op✏0q of

(6.16), results of Ip1q up to Op✏4q and I
p2q up to Op✏2q are necessary. Most of the required

expression are known analytically [86], but one non-planar master integral for the trp�2q form
factor is unknown and has to be evaluated numerically.

Take the BDS form for trp�3q form factors as an example, the epsilon expansion is

´ 1

3

´
I

p1qp✏q
¯
3

` I
p2qp✏qIp1qp✏q ` f p3qp✏qIp1qp3✏q (6.27)

“ 9

2✏6
´ 9.3574869

✏5
` 6.028071

✏4
´ 31.50306

✏3
´ 19.5639

✏2
´ 123.580

✏
` Op✏q ,

which shows a perfect match with Table 4. The di↵erence between our results and BDS

ansatz lies in the error range which confirms the estimated error produced by the programs.

As for the subleading contributions, prediction in (6.23) tells us that ✏´6 to ✏´2 poles

should cancel and the residue of ✏´1 pole should be 2p⇣5 ` 2⇣2⇣3q “ 9.98. We observe that

the non-planar result in Table. 4 match the prediction. It should be mentioned that at ✏´1

order, the value of a single integral is typically several hundred or even thousand and these

large numbers cancel to get a correct small number.
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FIG. 5. Quadruple cuts for 3-loop 3-point form factors.

are still 24 parameters remains unsolved. Finally, we
check whether all the CK duality equations and unitar-
ity cuts are satisfied, and we find the solution with 24
free parameters pass all these checks.

Explicit expressions of the numerators Ni, color fac-
tors Ci, symmetry factors Si and propagator lists P↵i

are given in the ancillary files.

Three-loop form factor of tr(�3)

We further present the full color three-loop integrand for
the form factor of tr(�3). Since the computational pro-
cedure is similar to the previous form factor, we will only
briefly summarize the main result.

There are 26 topologies possibly contribute as listed in
Fig. 6. One can choose the four planar topologies, three
of them are of range-3 and the last one is range-2 as
shown in Fig. 7, as master numerators, and the minimal
ansatz expressed with zone variables is made. Based on
the rung rule [37], it is possible to determine the terms
which do not proportional to any propagators and the
total number of parameters, associated with terms in-
volving propagators, is 273.

As for solving the ansatz, the symmetries of all the
diagrams as well as all the dual Jacobi relations are em-
ployed to reduce the number of parameters to only 26.
The two planar quadruple cuts fix 16 more parameters.
We have checked that no further constraints come from
other cuts. The final solution contains 10 free parame-
ters, with various factors provided in the ancillary files.

INTEGRATION AND CHECKS

Having the full integrands that depend on free parame-
ters, one may ask at which level do the parameters can-
cel. It turns out that they cancel simply at the integrand
level. To be more precise, the free parameters are all as-
sociated to terms that are proportional to certain prop-

FIG. 6. Trivalent topologies for the form factor of tr(�3).
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agators. A detailed study reveals that the cancellation
of the free parameters always involves several trivalent
graphs, which after shrinking corresponding propagators
produce the same topology. Such a freedom should be
related to the generalized gauge transformation similar
to (16), and we will come back to this in the discussion
section.

Then we can compare our numerical results with the
above predictions to guarantee the correctness of our
results. Our numerical results are obtained using the
packages FIESTA [] and pySecDec [], and we emphasis
that the numerical integration for non-planar integrals
are highly involved so that we need to organize the inte-
grand according to dlog integrals to make the numerical
evaluation more e�cient. We present or not the results in
Table and stress that they are consistent with the afore-
mentioned predictions considering the numerical errors.
For further details and discussions on the numerics, see
[](long paper). [moved here]
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choose to perform a numerical computation. This allow
us to check the IR divergences and also extract the in-
formation of finite remainder function.
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see [38]. The constant C(3) for the form factor of O2 is
defined by requiring that it is independent of the num-
ber of external legs and the so-defined remainder satisfies
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more, the planar remainders R can be obtained by the
OPE bootstrap method [24]. As a result, one can pre-
dict the planar form factors from ✏
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0. For example,

the three-loop form factor of tr(�2) at kinematic point
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gence can be factorized out as

F (pi, ai, ✏) = Z (pi, ✏)F
fin(pi, ai, ✏) , (13)

where Z takes the form [40]

Z = P exp

"
�

1X

`=1

g
2`

✓
dipole terms +

1

`✏
�(`)

◆#
, (14)

where the dipole terms can be completely fixed by cusp
and collinear anomalous dimensions and contribute only
to the planar three-point form factors. The � terms rep-
resent the non-dipole contributions starting from three-
loop order [41] and result only in the subleading contri-
butions in our problems. For three-point form factors,
because of the small number of external lines, one only
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We present the numerical result for planar form factors
in Tab. I, using the packages of FIESTA [] and pySecDec
[], and emphasis that it is consistent with the aforemen-
tioned predictions considering the numerical errors. For
the non-planar form factors, the IR subtraction check is
also passed.

DISCUSSION

We construct for the first time the full-color three-loop
form factor results in N = 4 SYM based on the the color-
kinematics duality. The results pass non-trivial unitarity
checks and have consistent IR divergences. These results
are expected to give the maximally transcendental parts
of the three-loop QCD corrections to Higgs plus three-
gluon amplitudes which have phenomenological interests.
Theoretically, the most surprising finding is that the

CK-dual representations contain a large number of free
parameters, considering that it is usually not easy to find
CK-dual solutions. The appearance of large number of
free parameters suggests that the form factor type quan-
tities may be an ideal arena for applying color-kinematics
duality. [Emphasize non-planar] It is possible to general-
ize the result to higher loops.
The existence of free parameters should be related to

the so-called generalized gauge transformation as men-
tioned in (16). While for loop amplitudes the general-
ized GT usually breaks CK duality, a new feature of form
factor comes from the insertion of color-singlet operator.
This makes it possible that di↵erent topologies have same
color factor, providing color relations which are beyond
the Jacobi relations.
A simpler example to consider is the 2-loop 3-point

form factor. A review of the construction shows that the
2-loop CK-dual representation satisfying minimal power-
counting still contains 4 free parameters. Consider the
graphs in Fig. 8, the first two graphs have same color
factor Ca = Cb. This induces a new type of generalized
GT beyond Jacobi relations:

Na ! Na+ `
2
A�, Nb ! Nb� `

2
B�, with any �, (17)

which leaves the integrand unchanged

Ca Ia[`
2
A�]� Cb Ib[`

2
B�] = �(Ca � Cb) Ic[1] = 0 , (18)

here Ia,b,c are integrals corresponding to the topologies in
Fig. 8. We find that the cancellation of free parameters
must involve such relations.
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3.2 Three-loop three-point form factor of trp�2q
In this subsection, we construct the full color three-loop integrand for the three-point form

factor of the stress-tensor supermultiplet. For simplicity, we will choose trp�2q to get the

correction part without loss of generality.

– 17 –

(5)(4)(3)(2)(1)

p1

p3

`a

`c

p2

`b
`c

`a
`b

p1

p2

p3

p1

p2p3

`c

`b

`a

`c

`a

p3

p1

p2

`b p1

p2p3

`a `b `c

(10)(9)(8)(7)(6)

p1

p3

`a

`c

p2
`b

`c

`a
`b

p1

p2

p3

p1

p3

`c

p2

`b

p3

`a

`c

p2

`b

p1

p3

`a

`c

p2

`b

(15)(14)(13)(12)(11)

p1

p3

`a

`c

p2

`b

p1

p3

`a

`c

p2

`b

p1

p3

`a

`c

p2

`b
`a

`b

`c

p1

p2

p3

p1

p2p3
`c

`b

`a

(20)(19)(18)(17)(16)

p1

p2p3

`c

`b`a p1

p2p3

`c`b`a p1

p2p3
`c

`b`a p1

p2p3

`c

`b`a p1

p2p3
`c

`b`a

(25)(24)(23)(22)(21)

`a

p3

p1

p2
`c

`b

p1

p2p3

`a

`b

`c

p1

p2p3

`a `b `c p1

p2p3

`a `b

`c

p1

p3

`a

`c

p2
`b

(28)(27)(26)

p1

p3

`a

`c

p2
`b

p1

p3

`a

`c

p2
`b

p1

p3

`a

`c

p2

`b

p1

p3

`a

`c

p2

`b

(29)

Figure 10. Trivalent topologies for three-loop three-point form factors of trp�2q.

p1

p2p3

`c

`b

`a

`c

`a

p3

p1

p2

`b

xc

xb

xa

x0

x1

x2

x3

x0

x1

x2

x3 xa

xb

xc

(3) (4)

Figure 11. Planar master diagrams for trp�2q form factors.

3.2 Three-loop three-point form factor of trp�2q
In this subsection, we construct the full color three-loop integrand for the three-point form
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correction part without loss of generality.
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Integral examples

Much harder than planar cases: 

Table 4. Numerical results for three-point form factor

Form factor I
p3q
trp�2q

ps12, s23, s13q ✏´6 ✏´5 ✏´4 ✏´3 ✏´2 ✏´1 ✏0

(-2,-2,-2) ´4.49999 9.35749 ´22.6136 55.8891 ´77.252 92.943 ´336.51

est. error 6 ˆ 10´7 2.3 ˆ 10´5 3.3 ˆ 10´4 0.0021 0.012 0.078 0.59

Form factor I
p3q
trp�3q

ps12, s23, s13q ✏´6 ✏´5 ✏´4 ✏´3 ✏´2 ✏´1 ✏0

(-2,-2,-2) 4.5 -9.35749 6.0280 -31.503 -19.56 -123.58 -216.7

est. error 2 ˆ 10´13 1 ˆ 10´6 2 ˆ 10´5 3 ˆ 10´4 0.002 0.02 0.4

Form factor I
p3q
trp�2q,NP

ps12, s23, s13q ✏´6 ✏´5 ✏´4 ✏´3 ✏´2 ✏´1 ✏0

(-2,-2,-2) ´2.3 ˆ 10´7 5.8 ˆ 10´6 3.8 ˆ 10´5 5.6 ˆ 10´4 ´0.001 ´9.989 ´265.314

est. error 1.2 ˆ 10´6 2.4 ˆ 10´5 3.0 ˆ 10´4 2.5 ˆ 10´3 0.02 0.1848 1.757

6.3 Numerical results and checks

After conquering the di�culties in numerical evaluations, we reach the high-precision numer-

ical results given in Table. 4. To get this result, it still requires large computing resources:

we have used for example billions of sampling points per integral in FIESTA evaluations and

Op106q CPU core hours in total.

Given these results, we can check with known results and structures.

At Nc-leading order, we compare the divergent part our result with the BDS ansatz,

which requires high order of ✏-expansion of Ip`q with ` “ 1, 2. Concretely, to get Op✏0q of

(6.16), results of Ip1q up to Op✏4q and I
p2q up to Op✏2q are necessary. Most of the required

expression are known analytically [86], but one non-planar master integral for the trp�2q form
factor is unknown and has to be evaluated numerically.

Take the BDS form for trp�3q form factors as an example, the epsilon expansion is

´ 1

3

´
I

p1qp✏q
¯
3

` I
p2qp✏qIp1qp✏q ` f p3qp✏qIp1qp3✏q (6.27)

“ 9

2✏6
´ 9.3574869

✏5
` 6.028071

✏4
´ 31.50306

✏3
´ 19.5639

✏2
´ 123.580

✏
` Op✏q ,

which shows a perfect match with Table 4. The di↵erence between our results and BDS

ansatz lies in the error range which confirms the estimated error produced by the programs.

As for the subleading contributions, prediction in (6.23) tells us that ✏´6 to ✏´2 poles

should cancel and the residue of ✏´1 pole should be 2p⇣5 ` 2⇣2⇣3q “ 9.98. We observe that

the non-planar result in Table. 4 match the prediction. It should be mentioned that at ✏´1

order, the value of a single integral is typically several hundred or even thousand and these

large numbers cancel to get a correct small number.

– 38 –

−2(ζ5 + 2ζ2ζ3) = − 9.983
Non-dipole prediction

New non-planar 
finite remainder !

- choosing proper UT numerators 
- several 1000,000 CPU core hours (FIESTA)



Summary and discussion



By studying the simpler gauge theory, one may understand 
the far more complicated gravity theory.

CK-duality v.s. Double-copy

Duality
Color factor Kinematic factor

Gravity (Gauge theory)^2

(conjecture)

Double-copy

Within gauge theory



Summary
We obtain 3-loop form factors via CK duality and unitarity cut:
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The planar loop corrections take the BDS ansatz form:

I
(3)(✏) =�

1
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�
I
(1)(✏)

�3
+ I

(2)(✏)I(1)(✏) + f
(3)(✏)I(1)(3✏)

+R
(3) + C

(3) +O(✏) , (9)

where

f
(3)(✏) = 4

✓
11

2
⇣4 + (6⇣5 + 5⇣2⇣3)✏+ (c1⇣6 + c2⇣

2
3 )✏

2

◆
,

with (c1⇣6 + c2⇣
2
3 ) = 85.263± 0.004 , (10)

see [38]. The constant C(3) for the form factor of O2 is
defined by requiring that it is independent of the num-
ber of external legs and the so-defined remainder satisfies

R
(3)
n ! R

(3)
n�1 in the collinear limit. Concretely, one can

fix the constant using the three-loop Sudakov result [39]:

R
(3)
O2,2

= 0 ) C
(3)
O2

= �38.252± 0.004 . (11)

For O3, it is tricky to define the collinear limit of the

minimal form factor so we just take C
(3)
O3

= 0. Further-
more, the planar remainders R can be obtained by the
OPE bootstrap method [24]. As a result, one can pre-
dict the planar form factors from ✏

�6 to ✏
0. For example,

the three-loop form factor of tr(�2) at kinematic point
s12 = s23 = s13 at the finite order is to be corrected:

I
(3)
O2

��
✏0

= �160.308± 0.006 . (12)

[to compare with Table, or put our number here]
As for the non-planar correction, the IR subtraction

can also be predicted. The full-color three-loop IR diver-
gence can be factorized out as

F (pi, ai, ✏) = Z (pi, ✏)F
fin(pi, ai, ✏) , (13)

where Z takes the form [40]

Z = P exp

"
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1X
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g
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✓
dipole terms +

1

`✏
�(`)

◆#
, (14)

where the dipole terms can be completely fixed by cusp
and collinear anomalous dimensions and contribute only
to the planar three-point form factors. The � terms rep-
resent the non-dipole contributions starting from three-
loop order [41] and result only in the subleading contri-
butions in our problems. For three-point form factors,
because of the small number of external lines, one only
needs to consider
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b
jT

c
k ,

(15)

where ↵ = �(⇣5 + 2⇣2⇣3) [sign] and the color operators
act as Ta5

1 T
a1 =

p
2fa5a1a6T

a6 . Consequently, the non-

planar correction I
(3)
O2,NP should have only ✏

�1 divergence
with coe�cients

I
(3)
O2,NP

���
✏�1

= � (⇣5 + 2⇣2⇣3) . (16)

We present the numerical result for planar form factors
in Tab. I, using the packages of FIESTA [] and pySecDec
[], and emphasis that it is consistent with the aforemen-
tioned predictions considering the numerical errors. For
the non-planar form factors, the IR subtraction check is
also passed.

DISCUSSION

We construct for the first time the full-color three-loop
form factor results in N = 4 SYM based on the the color-
kinematics duality. The results pass non-trivial unitarity
checks and have consistent IR divergences. These results
are expected to give the maximally transcendental parts
of the three-loop QCD corrections to Higgs plus three-
gluon amplitudes which have phenomenological interests.
Theoretically, the most surprising finding is that the

CK-dual representations contain a large number of free
parameters, considering that it is usually not easy to find
CK-dual solutions. The appearance of large number of
free parameters suggests that the form factor type quan-
tities may be an ideal arena for applying color-kinematics
duality. [Emphasize non-planar] It is possible to general-
ize the result to higher loops.
The existence of free parameters should be related to

the so-called generalized gauge transformation as men-
tioned in (16). While for loop amplitudes the general-
ized GT usually breaks CK duality, a new feature of form
factor comes from the insertion of color-singlet operator.
This makes it possible that di↵erent topologies have same
color factor, providing color relations which are beyond
the Jacobi relations.
A simpler example to consider is the 2-loop 3-point

form factor. A review of the construction shows that the
2-loop CK-dual representation satisfying minimal power-
counting still contains 4 free parameters. Consider the
graphs in Fig. 8, the first two graphs have same color
factor Ca = Cb. This induces a new type of generalized
GT beyond Jacobi relations:

Na ! Na+ `
2
A�, Nb ! Nb� `

2
B�, with any �, (17)

which leaves the integrand unchanged

Ca Ia[`
2
A�]� Cb Ib[`

2
B�] = �(Ca � Cb) Ic[1] = 0 , (18)

here Ia,b,c are integrals corresponding to the topologies in
Fig. 8. We find that the cancellation of free parameters
must involve such relations.

Ns + Nt + Nu = 0Cs + Ct + Cu = 0

The CK-dual numerators contain a large number of free parameters:

We evaluate the integrals numerically and find consistent IR and 
planar finite results.

tr(ϕ2) : 24 parameters tr(ϕ3) : 10 parameters



These deformation correspond to “CK-duality preserving 
generalized GT”. Is there any deep interpretation？

It is usually non-trivial to find CK dual solution at high loops.

Large number of free parameters -> 
form factor is a nice arena for applying CK duality, and 
probably the duality can be realized at higher loops.

Free parameters

Does the double-copy of form factor have gravity 
correspondence?



Gauge-gravity duality

Understand better the duality and 
quantum theory of gravity



Thank you!



Extra slides



Generalized gauge transformation

They usually break CK duality: s + t + u ≠ 0

εμ
i → εμ

i + αpμ
i

Ni + Nj + Nk = 0 ⇒ δi + δj + δk = 0

δi = Ni |εμ
j →αpμ

j

Cs + Ct + Cu = 0The result does not change since

Generalized GT: Ns → Ns + sΔ, Nt → Nt + tΔ, Nu → Nu + uΔ

2

s
1

2

4

3
t

1

2 3

4
u

1 4

2 3

FIG. 1. Trivalent graphs for four-point tree amplitudes.

REVIEW AND STRATEGY

Before discussing three-loop form factors, we briefly re-
view the color-kinematics duality, and an instructive ex-
ample is the four-gluon tree amplitude. It is always pos-
sible to represent the amplitude in terms of three cubic
graphs shown in Fig. 1,

A(0)
4 =

CsNs

s
+

CtNt

t
+

CuNu

u
, (2)

where Ci are color factors as products of structure con-
stants f̃abc for each trivalent vertex, andNi are kinematic
numerators that contain physical information. The color-
kinematics duality requires that the numerators should
satisfy the Jacobi relation of color factors as [1]

Cs = Ct + Cu ) Ns = Nt +Nu . (3)

As shown in Fig. 2, each internal propagator (not di-
rectly connected to the q-leg) is associated to a four-point
tree sub-graph, and loop integrals that contain s, t, u-
channel sub graphs are related by color Jacobi relation.
CK duality asks that their numerators also satisfy the
same Jacobi relations as (3). Because of the duality re-
lation applies to multiple number of propagators, the
numerators of di↵erent topologies are interlocked with
each other, and the CK-dual integrand is thus highly
constrained.

Due to color Jacobi relation, one can make a deforma-
tion of the numerator without changing the amplitude
result:

Ns ! Ns+s�, Nt ! Nt� t�, Nu ! Nu�u� , (4)

which is called a generalized gauge transformation (GT)
[2].

Before discuss the details of the construction, we
present the final form of the CK-dual integrand of 3-loop
3-point form factors:

F (3)
O2,3

= F
(0)
O2,3

X

�3

X

i

Z 3Y

j=1

d
D
`j

1

Si

Ci NiQ
↵i

P 2
↵i

, (5)

where sum over �3 is due to the permutation of external
on-shell momenta pi, i = 1, 2, 3. The symmetry factors
Si remove the overcounts from the automorphism sym-
metries of the graphs.

ts ua

b

d

c

a

b c

d
a d

b c

FIG. 2. Loop graphs related by Jacobi relation.

FIG. 3. Trivalent topologies for the form factor of tr(�2).

CK-DUAL SOLUTIONS

Now we construct the full-color three-loop integrands for
the three-point form factors. First we consider the form
factor of of the stress-tensor supermultiplet, which, with-
out loss of generality, can be simply chosen as tr(�2).

Three-loop form factor of tr(�2)

The first step is to construct an ansatz based on the
CK duality. There are 29 trivalent topologies to con-
sider, as given in Fig. 3. Using Jacobi relations, one can
choose two planar topologies as master integrals, which
are shown in Fig. 4.
Master graphs and zone-variable labeling of master nu-

merators has been listed in Figure. 4. The nice UV be-
havior provides constraint on the power-counting of loop
momenta. For N3, xa, xc can appear at most once, so
both (x2

ai)
1
, (x2

ci)
1, with i = 1, 2, 3, 4, and (x2

ac)
1 are al-

lowed; any term containing xb or containing more than
one xa or xc, such as (x2

ac)
1
, (x2

a0)
1 are forbidden. For

N2, only xb can appear and can appear at most twice, so
only x

2
bi can appear and can appear with power 2, 1, 0.

The total number of parameters are 316.
Given the ansatz, we now apply various constraints

to solve the parameters in the ansatz. We first demand
that each numerator respects the automorphism symme-
tries of the graph. With this only 105 parameters is
obtained. One can see that the symmetries provide a
strong constraint and can substantially reduce the num-
ber of parameters. Next we apply unitarity cut to solve
the remaining parameters. Since the total number of
these parameters is reasonably small (only about 100),
one can directly utilize the most constraining cuts, i.e.
the quadruple cuts in Fig. 5. With these two cuts, there



New relations in form factors

Cs + Ct + Cu = 0The result does not change since

5

TABLE I. Numerical results for three-point form factors.

Form factor I(3)
tr(�2)

(s12, s23, s13) ✏�6 ✏�5 ✏�4 ✏�3 ✏�2 ✏�1 ✏0

(-2,-2,-2) �4.5 9.3575 �22.613 55.893 �77.25 92.8 �338.19

est. error 8⇥ 10�10 2⇥ 10�4 0.001 0.006 0.03 0.2 1.7

Form factor I(3)
tr(�3)

(s12, s23, s13) ✏�6 ✏�5 ✏�4 ✏�3 ✏�2 ✏�1 ✏0

(-2,-2,-2) -4.5 9.35749 -6.0280 31.503 19.56 123.58 216.7

est. error 2⇥ 10�13 1⇥ 10�6 2⇥ 10�5 3⇥ 10�4 0.002 0.02 0.4

TABLE II. Numerical results for non-planar three-point form factors.

Form factor I(3)
tr(�2),NP

(s12, s23, s13) ✏�6 ✏�5 ✏�4 ✏�3 ✏�2 ✏�1 ✏0

(-2,-2,-2) 1.9⇥ 10�6 4.1⇥ 10�6 �0.0004 0.0003 �0.055

est. error 6.9⇥ 10�6 2.3⇥ 10�4 0.003 0.027 0.27

p1

p2

p3
`A

(a)

p1

p2p3

`B

(b)

p1

p3

p2

(c)

FIG. 8. Graph examples for form factor of tr(�2). Fig. (a)
and (b) have same color factor, and after shrinking the prop-
agators labeled by `A and `B , both figures reduce to Fig. (c).

Given the fact that double copy of gauge amplitudes
can generate gravity amplitudes, it is natural to ask if
there is a physical meaning of making double-copy for
form factors. For this one should first ask if the double-
copy operation is ‘well-defined’ mathematically : such a
double-copy quantity should be independent of the free
parameters. When replacing color factors by a set of
kinematic numerators,

X

i

CiNiQ
Di,↵

)

X

i

ÑiNiQ
Di,↵

, (19)

such a set of numerators Ñi should satisfy the same
color relations including those beyond Jacobi relations.
For example, in the case of Fig. 8, it requires the color-
kinematics relation:

Ca = Cb ) Ña = Ñb . (20)

We find that, at least for the two and three-loop three-
point form factors, there is no numerator solution sat-
isfying such requirement. It would be interesting to see
whether such solution may exist in general case. The
maximal cut seems to prevent us from getting local nu-
merators satisfying Na = Nb

Also, the existence of beyond-Jacobi may have some
implications on the di↵eomorphism invariance.

The results we obtain reveal a new type of symmetry
— ’CK duality preserving generalized GT’.

It is necessary to mention more about analytical cal-
culation, especially the UT basis, and analytical master
integrals? Since we have mention something about d log
and we can also emphasis again that our result contains
the non-planar contributions.
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The planar loop corrections take the BDS ansatz form:
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with (c1⇣6 + c2⇣
2
3 ) = 85.263± 0.004 , (10)

see [38]. The constant C(3) for the form factor of O2 is
defined by requiring that it is independent of the num-
ber of external legs and the so-defined remainder satisfies

R
(3)
n ! R

(3)
n�1 in the collinear limit. Concretely, one can

fix the constant using the three-loop Sudakov result [39]:

R
(3)
O2,2

= 0 ) C
(3)
O2

= �38.252± 0.004 . (11)

For O3, it is tricky to define the collinear limit of the

minimal form factor so we just take C
(3)
O3

= 0. Further-
more, the planar remainders R can be obtained by the
OPE bootstrap method [24]. As a result, one can pre-
dict the planar form factors from ✏

�6 to ✏
0. For example,

the three-loop form factor of tr(�2) at kinematic point
s12 = s23 = s13 at the finite order is to be corrected:

I
(3)
O2

��
✏0

= �160.308± 0.006 . (12)

[to compare with Table, or put our number here]
As for the non-planar correction, the IR subtraction

can also be predicted. The full-color three-loop IR diver-
gence can be factorized out as

F (pi, ai, ✏) = Z (pi, ✏)F
fin(pi, ai, ✏) , (13)

where Z takes the form [40]

Z = P exp

"
�

1X

`=1

g
2`

✓
dipole terms +

1

`✏
�(`)

◆#
, (14)

where the dipole terms can be completely fixed by cusp
and collinear anomalous dimensions and contribute only
to the planar three-point form factors. The � terms rep-
resent the non-dipole contributions starting from three-
loop order [41] and result only in the subleading contri-
butions in our problems. For three-point form factors,
because of the small number of external lines, one only
needs to consider
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where ↵ = �(⇣5 + 2⇣2⇣3) [sign] and the color operators
act as Ta5

1 T
a1 =

p
2fa5a1a6T

a6 . Consequently, the non-

planar correction I
(3)
O2,NP should have only ✏

�1 divergence
with coe�cients
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= � (⇣5 + 2⇣2⇣3) . (16)

We present the numerical result for planar form factors
in Tab. I, using the packages of FIESTA [] and pySecDec
[], and emphasis that it is consistent with the aforemen-
tioned predictions considering the numerical errors. For
the non-planar form factors, the IR subtraction check is
also passed.

DISCUSSION

We construct for the first time the full-color three-loop
form factor results in N = 4 SYM based on the the color-
kinematics duality. The results pass non-trivial unitarity
checks and have consistent IR divergences. These results
are expected to give the maximally transcendental parts
of the three-loop QCD corrections to Higgs plus three-
gluon amplitudes which have phenomenological interests.
Theoretically, the most surprising finding is that the

CK-dual representations contain a large number of free
parameters, considering that it is usually not easy to find
CK-dual solutions. The appearance of large number of
free parameters suggests that the form factor type quan-
tities may be an ideal arena for applying color-kinematics
duality. [Emphasize non-planar] It is possible to general-
ize the result to higher loops.
The existence of free parameters should be related to

the so-called generalized gauge transformation as men-
tioned in (16). While for loop amplitudes the general-
ized GT usually breaks CK duality, a new feature of form
factor comes from the insertion of color-singlet operator.
This makes it possible that di↵erent topologies have same
color factor, providing color relations which are beyond
the Jacobi relations.
A simpler example to consider is the 2-loop 3-point

form factor. A review of the construction shows that the
2-loop CK-dual representation satisfying minimal power-
counting still contains 4 free parameters. Consider the
graphs in Fig. 8, the first two graphs have same color
factor Ca = Cb. This induces a new type of generalized
GT beyond Jacobi relations:

Na ! Na+ `
2
A�, Nb ! Nb� `

2
B�, with any �, (17)

which leaves the integrand unchanged

Ca Ia[`
2
A�]� Cb Ib[`

2
B�] = �(Ca � Cb) Ic[1] = 0 , (18)

here Ia,b,c are integrals corresponding to the topologies in
Fig. 8. We find that the cancellation of free parameters
must involve such relations.

Ca + Cb = 0

Generalized GT: Ns → Ns + sΔ, Nt → Nt + tΔ, Nu → Nu + uΔ

The result does not change since

Generalized GT:
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FIG. 1. Trivalent graphs for four-point tree amplitudes.

REVIEW AND STRATEGY

Before discussing three-loop form factors, we briefly re-
view the color-kinematics duality, and an instructive ex-
ample is the four-gluon tree amplitude. It is always pos-
sible to represent the amplitude in terms of three cubic
graphs shown in Fig. 1,

A(0)
4 =

CsNs

s
+

CtNt

t
+

CuNu

u
, (2)

where Ci are color factors as products of structure con-
stants f̃abc for each trivalent vertex, andNi are kinematic
numerators that contain physical information. The color-
kinematics duality requires that the numerators should
satisfy the Jacobi relation of color factors as [1]

Cs = Ct + Cu ) Ns = Nt +Nu . (3)

As shown in Fig. 2, each internal propagator (not di-
rectly connected to the q-leg) is associated to a four-point
tree sub-graph, and loop integrals that contain s, t, u-
channel sub graphs are related by color Jacobi relation.
CK duality asks that their numerators also satisfy the
same Jacobi relations as (3). Because of the duality re-
lation applies to multiple number of propagators, the
numerators of di↵erent topologies are interlocked with
each other, and the CK-dual integrand is thus highly
constrained.

Due to color Jacobi relation, one can make a deforma-
tion of the numerator without changing the amplitude
result:

Ns ! Ns+s�, Nt ! Nt� t�, Nu ! Nu�u� , (4)

which is called a generalized gauge transformation (GT)
[2].

Before discuss the details of the construction, we
present the final form of the CK-dual integrand of 3-loop
3-point form factors:
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where sum over �3 is due to the permutation of external
on-shell momenta pi, i = 1, 2, 3. The symmetry factors
Si remove the overcounts from the automorphism sym-
metries of the graphs.
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FIG. 2. Loop graphs related by Jacobi relation.

FIG. 3. Trivalent topologies for the form factor of tr(�2).

CK-DUAL SOLUTIONS

Now we construct the full-color three-loop integrands for
the three-point form factors. First we consider the form
factor of of the stress-tensor supermultiplet, which, with-
out loss of generality, can be simply chosen as tr(�2).

Three-loop form factor of tr(�2)

The first step is to construct an ansatz based on the
CK duality. There are 29 trivalent topologies to con-
sider, as given in Fig. 3. Using Jacobi relations, one can
choose two planar topologies as master integrals, which
are shown in Fig. 4.
Master graphs and zone-variable labeling of master nu-

merators has been listed in Figure. 4. The nice UV be-
havior provides constraint on the power-counting of loop
momenta. For N3, xa, xc can appear at most once, so
both (x2

ai)
1
, (x2

ci)
1, with i = 1, 2, 3, 4, and (x2

ac)
1 are al-

lowed; any term containing xb or containing more than
one xa or xc, such as (x2

ac)
1
, (x2

a0)
1 are forbidden. For

N2, only xb can appear and can appear at most twice, so
only x

2
bi can appear and can appear with power 2, 1, 0.

The total number of parameters are 316.
Given the ansatz, we now apply various constraints

to solve the parameters in the ansatz. We first demand
that each numerator respects the automorphism symme-
tries of the graph. With this only 105 parameters is
obtained. One can see that the symmetries provide a
strong constraint and can substantially reduce the num-
ber of parameters. Next we apply unitarity cut to solve
the remaining parameters. Since the total number of
these parameters is reasonably small (only about 100),
one can directly utilize the most constraining cuts, i.e.
the quadruple cuts in Fig. 5. With these two cuts, there

Beyond Jacobi

Jacobi relation

New in form factor
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FIG. 4. Master diagrams for tr(�2) form factor.
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FIG. 5. Quadruple cuts for 3-loop 3-point form factors.

are still 24 parameters remains unsolved. Finally, we
check whether all the CK duality equations and unitar-
ity cuts are satisfied, and we find the solution with 24
free parameters pass all these checks.

Explicit expressions of the numerators Ni, color fac-
tors Ci, symmetry factors Si and propagator lists P↵i

are given in the ancillary files.

Three-loop form factor of tr(�3)

We further present the full color three-loop integrand for
the form factor of tr(�3). Since the computational pro-
cedure is similar to the previous form factor, we will only
briefly summarize the main result.

There are 26 topologies possibly contribute as listed in
Fig. 6. One can choose the four planar topologies, three
of them are of range-3 and the last one is range-2 as
shown in Fig. 7, as master numerators, and the minimal
ansatz expressed with zone variables is made. Based on
the rung rule [37], it is possible to determine the terms
which do not proportional to any propagators and the
total number of parameters, associated with terms in-
volving propagators, is 273.

As for solving the ansatz, the symmetries of all the
diagrams as well as all the dual Jacobi relations are em-
ployed to reduce the number of parameters to only 26.
The two planar quadruple cuts fix 16 more parameters.
We have checked that no further constraints come from
other cuts. The final solution contains 10 free parame-
ters, with various factors provided in the ancillary files.

INTEGRATION AND CHECKS

Having the full integrands that depend on free parame-
ters, one may ask at which level do the parameters can-
cel. It turns out that they cancel simply at the integrand
level. To be more precise, the free parameters are all as-
sociated to terms that are proportional to certain prop-

FIG. 6. Trivalent topologies for the form factor of tr(�3).
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FIG. 7. Master diagrams for tr(�3) form factor.

agators. A detailed study reveals that the cancellation
of the free parameters always involves several trivalent
graphs, which after shrinking corresponding propagators
produce the same topology. Such a freedom should be
related to the generalized gauge transformation similar
to (16), and we will come back to this in the discussion
section.

Then we can compare our numerical results with the
above predictions to guarantee the correctness of our
results. Our numerical results are obtained using the
packages FIESTA [] and pySecDec [], and we emphasis
that the numerical integration for non-planar integrals
are highly involved so that we need to organize the inte-
grand according to dlog integrals to make the numerical
evaluation more e�cient. We present or not the results in
Table and stress that they are consistent with the afore-
mentioned predictions considering the numerical errors.
For further details and discussions on the numerics, see
[](long paper). [moved here]

After cancelling the parameters, the simplified inte-
grands are suitable for further integral reductions or nu-
merical computations. Since the analytic expressions
of three-loop master integrals are not yet available, we
choose to perform a numerical computation. This allow
us to check the IR divergences and also extract the in-
formation of finite remainder function.

It is convenient to organize the ful-color results with
Nc expansion. We find that the form factor of tr(�3) has
only planar contribution, while that of tr(�2) contains
non-planar corrections:

F (3)
O2,3

= F
(0)
O2,3

f123

�
N

3
c I

(3)
O2

+ 12NcI
(3)
O2,NP

�
, (6)

F (3)
O3,3

= F
(0)
O3,3

d123N
3
c I

(3)
O3

. (7)

tr(ϕ3) : 10 parameters
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Consider one-loop amplitudes:
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Unitarity cuts

We can perform unitarity cuts:

and from tree products, we derive the coefficients more directly.

Cutkosky cutting rule:



Unitarity cuts

We can perform unitarity cuts:

High-loop generalization:



Interpretation

[Monteiro, O’Connell 2011]Self-dual YM/gravity

Does the Jacobi relation for momentum have 
any physical meaning?

The spinor products are then given by

[12] ! X(p1, p2) ⌘ p1wp2u � p1up2w, (27)

h12i ! Q(p1, p2) ⌘ Q(p1)�Q(p2). (28)

We will use the notation X(p1, p2) and Q(p1, p2) to emphasize that the spinor product is

taken with this unusual rescaling of the spinors. The benefit is that the definition of X

extends to arbitrary o↵-shell momenta. We shall have more to say about the freedom to

rescale spinors in the later sections of this paper.

III. SELF-DUAL YANG-MILLS THEORY

In this section, we begin our study of classical background fields. Since our goal is to

investigate any possible BCJ-like structure of the fields, we choose to study the simplest non-

trivial fields available. These are the self-dual solutions. Firstly, we consider the self-dual

Yang-Mills (SDYM) equations in Minkowski spacetime,

Fµ⌫ =
i

2
"µ⌫⇢�F

⇢�
. (29)

The gauge field is necessarily complexified, and the physical interpretation is that it is a

configuration of positive helicity waves. Our set-up follows Bardeen and Cangemi [29, 30];

see also [31]. We work with the coordinates (26), such that the metric is given by

ds
2 = du dv � dw dw̄. (30)

We choose the light-cone gauge, where Au = 0. The self-dual equations (29) then imply3

Aw = 0, Av = �
1

4
@w�, Aw̄ = �

1

4
@u�, (31)

3 In our conventions, the field strengh is Fµ⌫ = @µA⌫ � @⌫Aµ � ig[Aµ, A⌫ ], and the structure constants of

the Yang-Mills Lie algebra are defined by [T a, T b] = ifabcT c.
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which is a consequence of4

X(k1, k2)X(k3, k1 + k2) +X(k2, k3)X(k1, k2 + k3) +X(k3, k1)X(k2, k3 + k1) = 0. (44)

The relation that we found here is exactly of the type that BCJ pointed out for Yang-

Mills scattering amplitudes [2], but now in the context of classical background solutions.

The obvious question now is: what is the algebra whose structure constants are the F
p1p2p3

factors? The answer appears naturally once we look at the gravity case.

For completeness, let us remark that there is a simple expression valid to all orders [30],

�(n)(k) = (ig)n
Z

d
�
p1d

�
p2 . . . d

�
pn+1 �

�(p1 + p2 + . . .+ pn+1 � k)

⇥ j(p1)j(p2) . . . j(pn+1)Q(p1, p2)
�1
Q(p2, p3)

�1
. . . Q(pn, pn+1)

�1
. (45)

However, this form is not convenient for our purposes, since the Feynman diagram expansion

is not explicit. Moreover, unlike the preceding discussion, this expression is only valid if j(k)

has support on k
2 = 0, i.e. if the legs representing sources correspond to on-shell particles.

IV. SELF-DUAL GRAVITY

We consider now self-dual gravity (SDG) with Lorentzian signature, using an approach

analogous to the one we used for SDYM. Previously, Mason and Skinner [32] have computed

the MHV amplitudes in gravity by perturbing the classical, self-dual background field, in

work analogous to that of Bardeen and Cangemi [29, 30] on self-dual Yang-Mills theory. Our

focus here will be on the background field itself rather than perturbations around it. The

self-dual equations are

Rµ⌫�� =
i

2
"µ⌫⇢�R

⇢�

��
. (46)

Inspired by the gauge field (31), we try as a solution the metric

gµ⌫ = ⌘µ⌫ + hµ⌫ , (47)

4 On-shell, this identity can be understood as a special case of the Schouten identity.
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and also an equation of motion for the Lie algebra-valued scalar field �,

@
2�+ ig[@w�, @u�] = 0, (32)

where @
2 = 4 (@u@v � @w@w̄) is the wave operator. Thus, our problem reduces to studying a

scalar equation with a cubic coupling.

Following the discussion in the last section, let us now solve the scalar equation (32) with

the boundary condition that, when g ! 0, �(x) ! j(x). In momentum space, we can write

this equation as

�a(k) =
1

2
g

Z
d
�
p1d

�
p2

Fp1p2
k
f
b1b2a

k2
�b1(p1)�

b2(p2), (33)

where we have defined

Fp1p2
k
⌘ �

�(p1 + p2 � k)X(p1, p2). (34)

We shall use an integral Einstein convention for the contraction of the indices of Fp1p2
k,

Fp1q
k
Fp2p3

q
⌘

Z
d
�
q �
�(p1 + q � k)X(p1, q) �

�(p2 + p3 � q)X(p2, p3)

= �
�(p1 + p2 + p3 � k)X(p1, p2 + p3)X(p2, p3). (35)

Moreover, we can lower and raise indices using

�
pq

⌘ �
�(p+ q) = �pq, such that �pq�

qk = �p
k = �

�(p� k). (36)

It is straightforward to see that F p1p2p3 = Fp1p2p3 is totally antisymmetric, e.g.

F
p1p2p3 = �

�(p1 + p2 + p3)X(p1,�p1 � p3) = ��
�(p1 + p2 + p3)X(p1, p3) = �F

p1p3p2 . (37)

Our notation is designed to emphasize the fact that the coe�cients F
p1p2p3 have the same

algebraic properties as the structure constants f
abc. However, we will learn below that

the significance is deeper, and that F
p1p2p3 are, in fact, structure constants for a certain

infinite-dimensional Lie algebra.

Equipped with this formalism, we solve the equation of motion for �a (33) iteratively, as
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The Lie algebra is

[Lp1 , Lp2 ] = iX(p1, p2)Lp1+p2 = iFp1p2
k
Lk, (54)

and the Jacobi identity was given in (43).

We have seen that this algebra is the kinematic analogue of the Yang-Mills Lie algebra.

It is interesting to note that there is a correspondence between the Lie algebra of area-

preserving di↵eomorphisms of S2 and the Lie algebra of the generators of SU(N) in the

planar limit N ! 1, in the sense that there exists an appropriate basis such that the

structure constants are the same [34].

Let us now proceed, as in the SDYM case, to solve this gravitational equation (50). In

momentum space, the equation can be written as

�(k) =
1

2


Z
d
�
p1d

�
p2

X(p1, p2)F k

p1p2

k2
�(p1)�(p2), (55)

We again take �
(0)(k) = j(k) to have support on the light cone. To the first few orders in

, the solution is

�
(0)(k) = j(k), (56)

�
(1)(k) =

1

2


Z
d
�
p1d

�
p2

X(p1, p2)F k

p1p2

k2
j(p1)j(p2), (57)

�
(2)(k) =

1

2

2

Z
d
�
p1d

�
p2d

�
p3

X(p1, q)F k

p1q
X(p2, p3)F q

p2p3

k2(p2 + p3)2
j(p1)j(p2)j(p3). (58)

Let us explore the relationship between the expressions (33-40) and (55-58). Indeed,

it is clear that one can deduce the gravitational expressions from the Yang-Mills cases by

replacing the SU(N) structure constants fabc by appropriate factors of X. These factors of

X are, in turn, related to the structure constants F of the kinematic algebra. However, the

relationship is not given by f ! F because this would involve squaring a delta function. One

algorithm for deducing the gravitational expressions from the Yang-Mills formulae involves

extracting the overall momentum conserving delta function, and then following the BCJ

procedure of identifying a kinematic numerator which is to be squared. Let us illustrate

this at the level of the second corrections, �(2)a and �
(2). Beginning with the Yang-Mills
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where  is the gravitational coupling, ⌘µ⌫ is the Minkowski metric (30), and the non-vanishing

components of hµ⌫ are

hvv = �
1

4
@
2
w
�, hw̄w̄ = �

1

4
@
2
u
�, hvw̄ = hw̄v = �

1

4
@w@u�. (48)

The SDG equations (46) then imply that the scalar field � obeys5

@
2
�+ 

�
(@2

w
�) (@2

u
�)� (@w@u�)

2
�
= 0, (49)

where @
2 denotes the Minkowski space wave operator. It turns out that this equation was

first obtained by Plebañski [33], and that it allows for the most general solution of SDG.

The resemblance between SDYM and SDG becomes even more striking if we rewrite (49)

as

@
2
�+ {@w�, @u�} = 0, (50)

which should be compared to (32). We introduced here the Poisson bracket

{f, g} ⌘ (@wf) (@ug)� (@uf) (@wg), (51)

from which we construct the Poisson algebra

{e
�ik1·x, e�ik2·x} = �X(k1, k2) e

�i(k1+k2)·x. (52)

This is the kinematic algebra that we were looking for in the last section. It is the Poisson

version of the algebra of area-preserving di↵eomorphisms of w and u. To see this, consider

a di↵eomorphism w ! w
0(w, u), u ! u

0(w, u). This transformation preserves the Poisson

bracket (51) if and only if it has a unit Jacobian, i.e. it is area-preserving. The infinitesimal

generators of the di↵eomorphisms are

Lk = e
�ik·x(�kw@u + ku@w). (53)

5 The possible contributions to the right-hand-side of (49) can be absorbed by a redefinition of �.
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The Lie algebra is

[Lp1 , Lp2 ] = iX(p1, p2)Lp1+p2 = iFp1p2
k
Lk, (54)

and the Jacobi identity was given in (43).

We have seen that this algebra is the kinematic analogue of the Yang-Mills Lie algebra.

It is interesting to note that there is a correspondence between the Lie algebra of area-

preserving di↵eomorphisms of S2 and the Lie algebra of the generators of SU(N) in the

planar limit N ! 1, in the sense that there exists an appropriate basis such that the

structure constants are the same [34].

Let us now proceed, as in the SDYM case, to solve this gravitational equation (50). In

momentum space, the equation can be written as

�(k) =
1

2


Z
d
�
p1d

�
p2

X(p1, p2)F k

p1p2

k2
�(p1)�(p2), (55)

We again take �
(0)(k) = j(k) to have support on the light cone. To the first few orders in

, the solution is

�
(0)(k) = j(k), (56)

�
(1)(k) =

1

2


Z
d
�
p1d

�
p2

X(p1, p2)F k

p1p2

k2
j(p1)j(p2), (57)

�
(2)(k) =

1

2

2

Z
d
�
p1d

�
p2d

�
p3

X(p1, q)F k

p1q
X(p2, p3)F q

p2p3

k2(p2 + p3)2
j(p1)j(p2)j(p3). (58)

Let us explore the relationship between the expressions (33-40) and (55-58). Indeed,

it is clear that one can deduce the gravitational expressions from the Yang-Mills cases by

replacing the SU(N) structure constants fabc by appropriate factors of X. These factors of

X are, in turn, related to the structure constants F of the kinematic algebra. However, the

relationship is not given by f ! F because this would involve squaring a delta function. One

algorithm for deducing the gravitational expressions from the Yang-Mills formulae involves

extracting the overall momentum conserving delta function, and then following the BCJ

procedure of identifying a kinematic numerator which is to be squared. Let us illustrate

this at the level of the second corrections, �(2)a and �
(2). Beginning with the Yang-Mills
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Dual Jacobi relation can be understood from the 
algebra of area-preserving diffeomorphism.
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Off-shell three-graviton vertex:
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171 terms

[DeWitt, 1967]
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Gravitational wave
Quantum amplitudes for classical gravity:
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Figure 33: The five cubic diagrams for inelastic scalar scattering with gluon production in gauge
theory. The legs carrying momenta p1 and p2 are incoming and the remaining ones are outgoing.

Ri with generators T a

Ri
. The kinematic numerators follow from the Feynman rules of the

Lagrangian (8.73).54 They are:
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ca ≠ cb = cc cd ≠ ce = cc . (8.76)

It can be easily checked that the numerators (8.4) obey the corresponding kinematic relations.
The double-copy amplitude follows from the usual rules, see Sec. 2:

M = ≠i
3

nana

Da
+ nbnb

Db
+ ncnc

Dc
+ ndnd

Dd
+ nene

De

4
. (8.77)

The tensor product of the two outgoing gluon polarization vectors can be projected onto a
graviton state. For internal lines a more involved projection is necessary [188]. We shall
return to it shortly.

To relate the amplitude just constructed to the classical scattering of massive bodies it
is necessary to focus on the classical kinematic regime. There exists many “classical limits”

54We note that, as discussed in previous sections, a quartic scalar term is not necessary for CK duality
because the scalar fields are taken in a complex representation of the gauge group.
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• Gravitational radiation

Point particle 
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Gravitational wave
Quantum amplitudes for classical gravity:

• PN and PM correction for classical potential
• Gravitational radiation

0PN 1PN 2PN 3PN 4PN 5PN 6PN 7PN

1PM ( 1 + v2 + v4 + v6 + v8 + v10 + v12 + v14 + . . . ) G1

2PM ( 1 + v2 + v4 + v6 + v8 + v10 + v12 + . . . ) G2

3PM ( 1 + v2 + v4 + v6 + v8 + v10 + . . . ) G3

4PM ( 1 + v2 + v4 + v6 + v8 + . . . ) G4

5PM ( 1 + v2 + v4 + v6 + . . . ) G5

6PM ( 1 + v2 + v4 + . . . ) G6

...

Figure 1: A summary of known results for the two-body potential for spinless black holes in the PN
and PM expansions, outlined in blue and green regions respectively. The new 3PM result summarized in
Ref. [20] and discussed at length in this paper is highlighted in the shaded (red) region. The overlap gives
strong crosschecks on any calculations in either approach.

as a series in powers of the coupling G, keeping all orders in the velocity, and for this purpose we
define the PM potential to be

V (p, r) =
Œÿ

n=1

A
G

|r|

Bn

cn(p2) , (1.2)

where the coe�cients cn are functions of p ≥ v which contain arbitrarily high powers in the
velocity. Of course, whether the new information in PM dynamics can be directly used to improve
gravitational wave templates for inspiraling binary systems requires detailed study, e.g. along the
lines of Ref. [33]. Nonetheless, at the very least, as can be seen from Fig. 1 the PM approximation is
complementary to the PN approximation, providing results for a subset of terms at each PN order.

The primary goal of this paper is to develop e�cient methods for high-precision predictions
of the dynamics of gravitationally bound compact objects. By using scattering amplitudes as the
starting point, we take advantage of the enormous progress in the past decade for computing and un-
derstanding them in gravitational theories, with systematically improvable precision. This includes
applying generalized unitarity [34, 35] and double-copy constructions [36–38], which have enabled
explicit (super)gravity calculations at remarkably high orders of perturbation theory [39–41]. The
double copy allows us to express gravitational scattering amplitudes in terms of corresponding
simpler gauge theory amplitudes, while generalized unitarity gives a means for building loop ampli-
tudes from simpler tree amplitudes. As we shall see, these can also be combined with spinor-helicity
methods [42] which then yield amazingly compact expressions for unitarity cuts that contain all
information required to build the classical potential at 3PM.

The central idea in relating scattering amplitudes to the orbital dynamics of compact binaries
is that both processes are governed by the same underlying theory. By construction, the e�ective

5
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First 3PM computation using amplitudes:



Interpretation

[Monteiro, O’Connell 2011]Self-dual YM/gravity

Does the Jacobi relation for momentum have 
any physical meaning?

The spinor products are then given by

[12] ! X(p1, p2) ⌘ p1wp2u � p1up2w, (27)

h12i ! Q(p1, p2) ⌘ Q(p1)�Q(p2). (28)

We will use the notation X(p1, p2) and Q(p1, p2) to emphasize that the spinor product is

taken with this unusual rescaling of the spinors. The benefit is that the definition of X

extends to arbitrary o↵-shell momenta. We shall have more to say about the freedom to

rescale spinors in the later sections of this paper.

III. SELF-DUAL YANG-MILLS THEORY

In this section, we begin our study of classical background fields. Since our goal is to

investigate any possible BCJ-like structure of the fields, we choose to study the simplest non-

trivial fields available. These are the self-dual solutions. Firstly, we consider the self-dual

Yang-Mills (SDYM) equations in Minkowski spacetime,

Fµ⌫ =
i

2
"µ⌫⇢�F

⇢�
. (29)

The gauge field is necessarily complexified, and the physical interpretation is that it is a

configuration of positive helicity waves. Our set-up follows Bardeen and Cangemi [29, 30];

see also [31]. We work with the coordinates (26), such that the metric is given by

ds
2 = du dv � dw dw̄. (30)

We choose the light-cone gauge, where Au = 0. The self-dual equations (29) then imply3

Aw = 0, Av = �
1

4
@w�, Aw̄ = �

1

4
@u�, (31)

3 In our conventions, the field strengh is Fµ⌫ = @µA⌫ � @⌫Aµ � ig[Aµ, A⌫ ], and the structure constants of

the Yang-Mills Lie algebra are defined by [T a, T b] = ifabcT c.
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which is a consequence of4

X(k1, k2)X(k3, k1 + k2) +X(k2, k3)X(k1, k2 + k3) +X(k3, k1)X(k2, k3 + k1) = 0. (44)

The relation that we found here is exactly of the type that BCJ pointed out for Yang-

Mills scattering amplitudes [2], but now in the context of classical background solutions.

The obvious question now is: what is the algebra whose structure constants are the F
p1p2p3

factors? The answer appears naturally once we look at the gravity case.

For completeness, let us remark that there is a simple expression valid to all orders [30],

�(n)(k) = (ig)n
Z

d
�
p1d

�
p2 . . . d

�
pn+1 �

�(p1 + p2 + . . .+ pn+1 � k)

⇥ j(p1)j(p2) . . . j(pn+1)Q(p1, p2)
�1
Q(p2, p3)

�1
. . . Q(pn, pn+1)

�1
. (45)

However, this form is not convenient for our purposes, since the Feynman diagram expansion

is not explicit. Moreover, unlike the preceding discussion, this expression is only valid if j(k)

has support on k
2 = 0, i.e. if the legs representing sources correspond to on-shell particles.

IV. SELF-DUAL GRAVITY

We consider now self-dual gravity (SDG) with Lorentzian signature, using an approach

analogous to the one we used for SDYM. Previously, Mason and Skinner [32] have computed

the MHV amplitudes in gravity by perturbing the classical, self-dual background field, in

work analogous to that of Bardeen and Cangemi [29, 30] on self-dual Yang-Mills theory. Our

focus here will be on the background field itself rather than perturbations around it. The

self-dual equations are

Rµ⌫�� =
i

2
"µ⌫⇢�R

⇢�

��
. (46)

Inspired by the gauge field (31), we try as a solution the metric

gµ⌫ = ⌘µ⌫ + hµ⌫ , (47)

4 On-shell, this identity can be understood as a special case of the Schouten identity.
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and also an equation of motion for the Lie algebra-valued scalar field �,

@
2�+ ig[@w�, @u�] = 0, (32)

where @
2 = 4 (@u@v � @w@w̄) is the wave operator. Thus, our problem reduces to studying a

scalar equation with a cubic coupling.

Following the discussion in the last section, let us now solve the scalar equation (32) with

the boundary condition that, when g ! 0, �(x) ! j(x). In momentum space, we can write

this equation as

�a(k) =
1

2
g

Z
d
�
p1d

�
p2

Fp1p2
k
f
b1b2a

k2
�b1(p1)�

b2(p2), (33)

where we have defined

Fp1p2
k
⌘ �

�(p1 + p2 � k)X(p1, p2). (34)

We shall use an integral Einstein convention for the contraction of the indices of Fp1p2
k,

Fp1q
k
Fp2p3

q
⌘

Z
d
�
q �
�(p1 + q � k)X(p1, q) �

�(p2 + p3 � q)X(p2, p3)

= �
�(p1 + p2 + p3 � k)X(p1, p2 + p3)X(p2, p3). (35)

Moreover, we can lower and raise indices using

�
pq

⌘ �
�(p+ q) = �pq, such that �pq�

qk = �p
k = �

�(p� k). (36)

It is straightforward to see that F p1p2p3 = Fp1p2p3 is totally antisymmetric, e.g.

F
p1p2p3 = �

�(p1 + p2 + p3)X(p1,�p1 � p3) = ��
�(p1 + p2 + p3)X(p1, p3) = �F

p1p3p2 . (37)

Our notation is designed to emphasize the fact that the coe�cients F
p1p2p3 have the same

algebraic properties as the structure constants f
abc. However, we will learn below that

the significance is deeper, and that F
p1p2p3 are, in fact, structure constants for a certain

infinite-dimensional Lie algebra.

Equipped with this formalism, we solve the equation of motion for �a (33) iteratively, as
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The Lie algebra is

[Lp1 , Lp2 ] = iX(p1, p2)Lp1+p2 = iFp1p2
k
Lk, (54)

and the Jacobi identity was given in (43).

We have seen that this algebra is the kinematic analogue of the Yang-Mills Lie algebra.

It is interesting to note that there is a correspondence between the Lie algebra of area-

preserving di↵eomorphisms of S2 and the Lie algebra of the generators of SU(N) in the

planar limit N ! 1, in the sense that there exists an appropriate basis such that the

structure constants are the same [34].

Let us now proceed, as in the SDYM case, to solve this gravitational equation (50). In

momentum space, the equation can be written as

�(k) =
1

2


Z
d
�
p1d

�
p2

X(p1, p2)F k

p1p2

k2
�(p1)�(p2), (55)

We again take �
(0)(k) = j(k) to have support on the light cone. To the first few orders in

, the solution is

�
(0)(k) = j(k), (56)

�
(1)(k) =

1

2


Z
d
�
p1d

�
p2

X(p1, p2)F k

p1p2

k2
j(p1)j(p2), (57)

�
(2)(k) =

1

2

2

Z
d
�
p1d

�
p2d

�
p3

X(p1, q)F k

p1q
X(p2, p3)F q

p2p3

k2(p2 + p3)2
j(p1)j(p2)j(p3). (58)

Let us explore the relationship between the expressions (33-40) and (55-58). Indeed,

it is clear that one can deduce the gravitational expressions from the Yang-Mills cases by

replacing the SU(N) structure constants fabc by appropriate factors of X. These factors of

X are, in turn, related to the structure constants F of the kinematic algebra. However, the

relationship is not given by f ! F because this would involve squaring a delta function. One

algorithm for deducing the gravitational expressions from the Yang-Mills formulae involves

extracting the overall momentum conserving delta function, and then following the BCJ

procedure of identifying a kinematic numerator which is to be squared. Let us illustrate

this at the level of the second corrections, �(2)a and �
(2). Beginning with the Yang-Mills
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where  is the gravitational coupling, ⌘µ⌫ is the Minkowski metric (30), and the non-vanishing

components of hµ⌫ are

hvv = �
1

4
@
2
w
�, hw̄w̄ = �

1

4
@
2
u
�, hvw̄ = hw̄v = �

1

4
@w@u�. (48)

The SDG equations (46) then imply that the scalar field � obeys5

@
2
�+ 

�
(@2

w
�) (@2

u
�)� (@w@u�)

2
�
= 0, (49)

where @
2 denotes the Minkowski space wave operator. It turns out that this equation was

first obtained by Plebañski [33], and that it allows for the most general solution of SDG.

The resemblance between SDYM and SDG becomes even more striking if we rewrite (49)

as

@
2
�+ {@w�, @u�} = 0, (50)

which should be compared to (32). We introduced here the Poisson bracket

{f, g} ⌘ (@wf) (@ug)� (@uf) (@wg), (51)

from which we construct the Poisson algebra

{e
�ik1·x, e�ik2·x} = �X(k1, k2) e

�i(k1+k2)·x. (52)

This is the kinematic algebra that we were looking for in the last section. It is the Poisson

version of the algebra of area-preserving di↵eomorphisms of w and u. To see this, consider

a di↵eomorphism w ! w
0(w, u), u ! u

0(w, u). This transformation preserves the Poisson

bracket (51) if and only if it has a unit Jacobian, i.e. it is area-preserving. The infinitesimal

generators of the di↵eomorphisms are

Lk = e
�ik·x(�kw@u + ku@w). (53)

5 The possible contributions to the right-hand-side of (49) can be absorbed by a redefinition of �.
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X are, in turn, related to the structure constants F of the kinematic algebra. However, the

relationship is not given by f ! F because this would involve squaring a delta function. One

algorithm for deducing the gravitational expressions from the Yang-Mills formulae involves

extracting the overall momentum conserving delta function, and then following the BCJ

procedure of identifying a kinematic numerator which is to be squared. Let us illustrate

this at the level of the second corrections, �(2)a and �
(2). Beginning with the Yang-Mills
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Dual Jacobi relation can be understood from the 
algebra of area-preserving diffeomorphism.



Classical solutions

[Monteiro, O’Connell, White 2014]

Double copy for “Kerr-Schild” type solutions:

Yang-Mills theory, the gravity theory is General Relativity coupled to a 2-form field (equivalent to
an axion in four dimensions) and a dilaton 5 [2, 3].

Similarly, one may start with eq. (1) and replace the kinematic numerators {ni} with a second set
of colour factors c̃i:

T (L)
m = iLym−2+2L

∑

i∈Γ

∫ L
∏

l=1

dDpl
(2π)D

1

Si

c̃i ci
∏

αi
p2αi

, (5)

where y is the appropriate coupling constant. The particle content of this theory is a set of scalar
fields φaa

′

, which transform in the adjoint representation of two Lie algebras. This is an example of
a biadjoint scalar theory [11,53,60,61], as mentioned in the introduction. The equation of motion
of such a theory is explicitly given by

∂2φaa
′

− yfabcfa′b′c′φbb
′

φcc
′

= 0, (6)

where the second term arises from a cubic interaction involving both sets of structure constants.

As is clear in the above discussion, the definitions of BCJ duality and the double / zeroth copies are
intrinsically perturbative. Nevertheless, we will see the ideas of this section (such as the replacement
of coupling constants and colour information by kinematics) throughout the paper. We will also
use the Minkowski metric diag(−,+,+,+, . . .) throughout, unless otherwise stated.

3 Kerr-Schild coordinates and the double copy

In this section, we examine a particular choice of coordinates in gravity theories, namely Kerr-
Schild (KS) coordinates, that will be crucial for what follows. These coordinates are applicable to
a specific class of solutions of the Einstein equations, namely Kerr-Schild solutions (for a review,
see e.g. [63]). These have the property that the spacetime metric gµν may be written in the form 6

gµν = ηµν + hµν

≡ ηµν + kµkνφ (7)

where φ is a scalar function, ηµν is the Minkowski metric and the (co)vector field kµ has the property
that it is null with respect to both the Minkowski and full metric:

ηµνkµkν = 0 = gµνkµkν . (8)

Therefore, the inverse metric is simply

gµν = ηµν − φkµkν , (9)

where we raise the index on k using the Minkowski metric.

5For recent work regarding the construction of pure gravity (no additional fields) from a double copy procedure,
see ref. [30].

6Throughout the paper we will refer to hµν (the deviation from the Minkowski metric) as the graviton, despite
the fact that we are working in the non-linear regime.
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To understand the dynamics of Kerr-Schild metrics, we turn to the Einstein equations. Recall that
the Einstein tensor is

Gµν = Rµν −
1

2
gµνR, (10)

using the conventional notation for the Ricci tensor Rµν and scalar R = Rµ
µ. In terms of the

function φ and vector kµ introduced in Eq. (7), one has

Rµ
ν =

1

2

(

∂µ∂α (φk
αkν) + ∂ν∂

α (φkαk
µ)− ∂2 (φkµkν)

)

;

R = ∂µ∂ν (φk
µkν) , (11)

where, as usual, Rµ
ν = gµλRλν but we have defined ∂µ = ηµν∂µ. This mixed convention is useful,

because it is only with this particular combination of indices that the Ricci tensor has the remark-
able property that it is linear in φ (and indeed in hµν).

A simplification occurs for the stationary case in which all time derivatives vanish. Without loss
of generality, we may also set k0 = 1, with all dynamics in the zeroth component contained in the
function φ. The stationary nature of the solution means that the Ricci tensor can be simplified for
each of the components, and one finds (using ∂i = ∂i, ki = ki)

R0
0 =

1

2
∇2φ; (12)

Ri
0 = −

1

2
∂j

[

∂i
(

φkj
)

− ∂j
(

φki
)]

; (13)

Ri
j =

1

2
∂l
[

∂i
(

φklkj
)

+ ∂j
(

φklki
)

− ∂l
(

φkikj
)

]

; (14)

R = ∂i∂j
(

φkikj
)

, (15)

where Latin indices run over the spacelike components.

Let us now interpret these equations in the spirit of the double copy. To that end, we define a
vector field Aµ = φkµ, with associated Abelian field strength Fµν = ∂µAν − ∂νAµ. We will refer to
this as a Kerr-Schild ansatz. More generally, one can consider a non-Abelian gauge field Aa

µ which,
in this Kerr-Schild ansatz, can be written as Aa

µ = kµφa. The vacuum Einstein equations Rµν = 0
imply, in the stationary case, that the gauge field satisfies the (Abelian) Maxwell equations

∂µF
µν = ∂µ(∂

µ(φkν)− ∂ν(φkµ)) = 0, (16)

whose components are related to (12) and (13). It may seem surprising that the gauge field satisfies
the Abelian equations. However, this reflects the linear structure of the Einstein equations in the
Kerr-Schild coordinate system.

Going further, we may also interpret φ in the spirit of the zeroth copy. The Kerr-Schild ansatz
for the gauge field Aµ is obtained by removing a factor of kν from the (non-perturbative) graviton
hµν . Repeating this, we find that the Kerr-Schild scalar function φ is the field that survives upon
taking the zeroth copy. This field then satisfies the equation of motion

∇2φ = 0. (17)
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